Date of Award
2-2017
Document Type
Thesis
Publisher
Santa Clara : Santa Clara University, 2017.
Degree Name
Master of Science (MS)
Department
Mechanical Engineering
First Advisor
Dr. Panthea Sepehrband
Second Advisor
Dr. Niaz Abdolrahim
Abstract
The topic of this research is self-diffusion along a 1⁄2 〈110〉 screw dislocation core in face-centered cubic metals. Using molecular dynamics, self-diffusion along a screw dislocation core in four FCC metals, aluminum, copper, nickel and silver is investigated. In all metals under study except in Ag, the results show high diffusivity along the core even in the absence of any preexisting point defects (intrinsic diffusion). Enhanced self-diffusion due to screw dislocations is more remarkable in Al and Ni than in Cu. This behavior has been related to the stacking fault energy and dissociation width of partial dislocations.
The simulations show generation of point defects (e.g. vacancy and interstitial) in core regions at high temperatures, which leads to high diffusivity along the core. Formation of point defects is suggested to be due to reversion of partial dislocations into a full dislocation, where a point defect forms and starts to migrate. The reversion of partials into a full dislocation is observed to occur more frequently in Al and Ni, due to their higher stacking fault energy and lower dissociation width compared to Cu.
Moreover, by introducing a single vacancy in the core regions of Cu, the vacancy mechanism contribution to diffusion was measured and found to be negligible compared to the contribution of intrinsic diffusion. This indicates that the dislocation core becomes an effective source of point defect generation at high temperatures to an extent that the effect of pre-existing point defects on diffusion becomes negligible.
Recommended Citation
Soltanibajestani, Siavash, "A Molecular Dynamics Study of Self-Diffusion Along a Screw Dislocaton Core in Face-Centered Cubic Crystals" (2017). Mechanical Engineering Master's Theses. 9.
https://scholarcommons.scu.edu/mech_mstr/9