Static and Modal Analysis of Low Porosity Thin Metallic Auxetic Structures Using Speckle Interferometry and Digital Image Correlation
Document Type
Article
Publication Date
10-6-2017
Publisher
Springer
Abstract
This study presents an evaluation of the static and dynamic mechanical behavior of low porosity, ductile two-dimensional auxetic metamaterials. The full in-plane displacement fields and the eigenmodes of different geometric structures were investigated and compared with finite element simulations using speckle interferometry and digital image correlation. The results showed strong agreement, validating the theoretical approach used and establishing a method for testing and quantitatively assessing the performance of negative Poisson ratio structures, and metamaterials in general, for different purposes and fields. The findings of this study also increase our knowledge of elastic instabilities in metallic auxetic structures, with further applications in several engineering fields that can benefit from combining the qualities of ductile materials with additional features typical of these smart structures.
Recommended Citation
Francesconi, L., Taylor, M., Bertoldi, K., & Baldi, A. (2018). Static and Modal Analysis of Low Porosity Thin Metallic Auxetic Structures Using Speckle Interferometry and Digital Image Correlation. Experimental Mechanics, 58(2), 283–300. https://doi.org/10.1007/s11340-017-0345-4