Document Type

Article

Publication Date

8-2022

Publisher

SAGE/American Sociological Association

Abstract

Researchers often need to work with categorical income data. The typical nonparametric (including midpoint) and parametric estimation methods used to estimate summary statistics both have advantages, but they carry assumptions that cause them to deviate in important ways from real-world income distributions. The method introduced here, random empirical distribution imputation (REDI), imputes discrete observations using binned income data, while also calculating summary statistics. REDI achieves this through random cold-deck imputation from a real-world reference data set (demonstrated here using the Current Population Survey Annual Social and Economic Supplement). This method can be used to reconcile bins between data sets or across years and handle top incomes. REDI has other advantages for computing values of an income distribution that is nonparametric, bin consistent, area and variance preserving, continuous, and computationally fast. The author provides proof of concept using two years of the American Community Survey. The method is available as the redi command for Stata.

Comments

Reprinted with permission.

Included in

Sociology Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.