Document Type

Article

Publication Date

2-2021

Publisher

AIP Publishing

Abstract

The use of cryogenic silicon as a detector medium for dark matter searches is gaining popularity. Many of these searches are highly dependent on the value of the photoelectric absorption cross section of silicon at low temperatures, particularly near the silicon bandgap energy, where the searches are most sensitive to low mass dark matter candidates. While such cross section data have been lacking from the literature, previous dark matter search experiments have attempted to estimate this parameter by extrapolating it from higher temperature data. However, discrepancies in the high temperature data have led to order-of-magnitude differences in the extrapolations. In this paper, we resolve these discrepancies by using a novel technique to make a direct, low temperature measurement of the photoelectric absorption cross section of silicon at energies near the bandgap (1.2 eV–2.8 eV).

Comments

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.