Document Type

Article

Publication Date

2021

Publisher

School of Applied Mathematics and Informatics, J.J. Strossmayer University of Osijek/Osijek Mathematical Society

Abstract

For singularly perturbed two-dimensional linear convection-diffusion problems, although optimal error estimates of an upwind finite difference scheme on Bakhvalov-type meshes are widely known, the analysis remains unanswered (Roos and Stynes in Comput. Meth. Appl. Math. 15 (2015), 531--550). In this short communication, by means of a new truncation error and barrier function based analysis, we address this open question for a generalization of Bakhvalov-type meshes in the sense of Boglaev and Kopteva. We prove that the upwind scheme on these mesh modifications is optimal first-order convergence, uniformly with respect to the perturbation parameter, in the discrete maximum norm. Furthermore, we derive a sufficient condition on the transition point choices to guarantee that our modified meshes can preserve the favorable properties of the original Bakhvalov mesh.

Comments

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.