Circuit Modeling of High-Frequency Electrical Conduction in Carbon Nanofibers
Document Type
Article
Publication Date
8-2009
Publisher
IEEE
Abstract
We show that the simplest possible circuit model of high-frequency electrical conduction in carbon nanofibers from 0.1 to 50 GHz is a frequency-independent resistor in parallel with a frequency-independent capacitor. The resistance is experimentally determined and represents the total dc resistance of the nanofiber and its contacts with the electrodes. The capacitance is obtained as a free parameter and has not been previously observed. The experimental method utilizes a ground-signal-ground test structure whose two-port scattering parameters (S-parameters) can be described to within plusmn0.5 dB and plusmn2deg using a simple lumped-element circuit model. The nanostructure is placed in the signal path of the test structure, and its equivalent circuit is deduced by determining what additional elements must be added to the test structure circuit model to reproduce the resulting changes in the S-parameters. This methodology is applicable to nanowires and nanotubes.
Recommended Citation
F.R. Madriz, J.R. Jameson, S. Krishnan, X. Sun, and C. Y. Yang, “Circuit Modeling of High-Frequency Electrical Conduction in Carbon Nanofibers,” IEEE Transactions on Electron Devices 56, 1557-1561 (2009).