Document Type

Article

Publication Date

8-1-2021

Publisher

Cambridge University Press (before 2023) / Oxford University Press

Abstract

Atomic force microscopy (AFM) measurements of dihedral angles are conducted for the first time to characterize the ratio of the twin-boundary energy (γΤ) to the surface free energy (γS). In plane, twin morphology is measured with AFM, verified by scanning electron microscopy, optical microscopy, and found to be consistent. The chemical composition and homogeneity of annealed Cu10 wt%Zn sample are confirmed by energy-dispersive spectroscopy. AFM data indicate that the average depth and height of the grooves and peaks are 118 ± 45 and 158 ± 45 nm, respectively. Surface roughness parameters, Sq and Sa, are measured by a factor of two to four less than the depth and height of the twin boundaries. Both surface roughness parameters are less with no planar defects present compared with selected areas containing twin boundaries. The average dihedral angle is found to be 167 ± 5° for the grooves and 193 ± 4° for the peaks. The twin to surface interfacial free energy ratio, γT/γS, is 0.0018. The comparison of AFM-based results to the other method-based results obtained on pure metals is discussed.

Comments

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.