Evaluation of the Snow-Covered Area Data Product from MODIS

Document Type

Article

Publication Date

1-2003

Publisher

John Wiley & Sons, Inc.

Abstract

The Moderate Resolution Imaging Spectroradiometer (MODIS), flown on board the Terra Earth Observing System (EOS) platform launched in December 1999, produces a snow-covered area (SCA) product. This product is expected to be of better quality than SCA products based on operational satellites (notably GOES and AVHRR), due both to improved spectral resolution and higher spatial resolution of the MODIS instrument. The gridded MODIS SCA product was compared with the SCA product produced and distributed by the National Weather Service National Operational Hydrologic Remote Sensing Center (NOHRSC) for 46 selected days over the Columbia River basin and 32 days over the Missouri River basin during winter and spring of 2000–01. Snow presence or absence was inferred from ground observations of snow depth at 1330 stations in the Missouri River basin and 762 stations in the Columbia River basin, and was compared with the presence/absence classification for the corresponding pixels in the MODIS and NOHRSC SCA products. On average, the MODIS SCA images classified fewer pixels as cloud than NOHRSC, the effect of which was that 15% more of the Columbia basin area could be classified as to presence–absence of snow, while overall there was a statistically insignificant difference over the Missouri basin. Of the pixels classified as cloud free, MODIS misclassified 4% and 5% fewer overall (for the Columbia and Missouri basins respectively) than did the NOHRSC product. When segregated by vegetation cover, forested areas had the greatest differences in fraction of cloud cover reported by the two SCA products, with MODIS classifying 13% and 17% less of the images as cloud for the Missouri and Columbia basins respectively. These differences are particularly important in the Columbia River basin, 39% of which is forested. The ability of MODIS to classify significantly greater amounts of snow in the presence of cloud in more topographically complex, forested, and snow-dominated areas of these two basins provides valuable information for hydrologic prediction.

Share

COinS