Document Type

Article

Publication Date

2-2005

Publisher

American Geophysical Union / John Wiley & Sons, Inc.

Abstract

Understanding the uncertainty in the projected impacts of climate change on hydrology will help decision-makers interpret the confidence in different projected future hydrologic impacts. We focus on California, which is vulnerable to hydrologic impacts of climate change. We statistically bias correct and downscale temperature and precipitation projections from 10 GCMs participating in the Coupled Model Intercomparison Project. These GCM simulations include a control period (unchanging CO2 and other forcing) and perturbed period (1%/year CO2 increase). We force a hydrologic model with the downscaled GCM data to generate streamflow at strategic points. While the different GCMs predict significantly different regional climate responses to increasing atmospheric CO2, hydrological responses are robust across models: decreases in summer low flows and increases in winter flows, and a shift of flow to earlier in the year. Summer flow decreases become consistent across models at lower levels of greenhouse gases than increases in winter flows do.

Comments

Copyright © 2005 by the American Geophysical Union. AGU allows final articles to be placed in an institutional repository 6 months after publication.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.