Document Type

Article

Publication Date

1-2006

Publisher

American Geophysical Union / John Wiley & Sons, Inc.

Abstract

Some El Niño events produce unusually large precipitation amounts in Northern and Central California. We use a high-resolution global model of the atmosphere coupled to a physically-based model of surface hydrology to investigate effects of increased atmospheric CO2 and this type of El Niño, both individually and in combination, on monthly river flows in California. Increased CO2 changes the seasonal timing of river flows and increases their variability. SST anomalies typical of a strong El Niño SST increase monthly-mean flows. The two perturbations together result in increased mean flows and increased variability, raising the possibility of both increased flood risk and water shortages. The river flow response to this strong El Niño in an increased CO2 climate is significantly different from the sum of the responses to the individual perturbations.

Comments

Copyright © 2006 by the American Geophysical Union. AGU allows final articles to be placed in an institutional repository 6 months after publication.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.