The sensitivity of California water resources to climate change scenarios
Document Type
Article
Publication Date
4-2007
Publisher
John Wiley & Sons, Inc.
Abstract
Using the latest available General Circulation Model (GCM) results we present an assessment of climate change impacts on California hydrology and water resources. The approach considers the output of two GCMs, the PCM and the HadCM3, run under two different greenhouse gas (GHG) emission scenarios: the high emission A1fi and the low emission B1. The GCM output was statistically downscaled and used in the Variable Infiltration Capacity (VIC) macroscale distributed hydrologic model to derive inflows to major reservoirs in the California Central Valley. Historical inflows used as inputs to the water resources model CalSim II were modified to represent the climate change perturbed conditions for water supply deliveries, reliability, reservoir storage and changes to variables of environmental concern. Our results show greater negative impacts to California hydrology and water resources than previous assessments of climate change impacts in the region. These impacts, which translate into smaller streamflows, lower reservoir storage and decreased water supply deliveries and reliability, will be especially pronounced later in the 21st Century and south of the San Francisco bay Delta. The importance of considering how climate change impacts vary for different temporal, spatial, and institutional conditions in addition to the average impacts is also demonstrated.
Recommended Citation
Vicuna, S., E.P. Maurer, B. Joyce, J.A. Dracup, D. Purkey, 2007, The sensitivity of California water resources to climate change scenarios, Journal of the American Water Resources Association Vol. 43 No. 2, 482-498, doi: 10.1111 / j.1752-1688.2007.00038