Document Type

Article

Publication Date

6-18-2020

Publisher

PLOS

Abstract

Plants respond to changes in ultraviolet (UV) radiation both morphologically and physiologically. Among the variety of plant UV-responses, the synthesis of UV-absorbing flavonoids constitutes an effective non-enzymatic mechanism to mitigate photoinhibitory and photooxidative damage caused by UV stress, either reducing the penetration of incident UV radiation or acting as quenchers of reactive oxygen species (ROS). In this study, we designed a UV-exclusion experiment to investigate the effects of UV radiation in Silene littorea. We spectrophotometrically quantified concentrations of both anthocyanins and UV-absorbing phenolic compounds in petals, calyces, leaves and stems. Furthermore, we analyzed the UV effect on the photosynthetic activity in hours of maximum solar radiation and we tested the impact of UV radiation on male and female reproductive performance. We found that anthocyanin concentrations showed a significant decrease of about 20% with UV-exclusion in petals and stems, and a 30% decrease in calyces. The concentrations of UV-absorbing compounds under UV-exclusion decreased by approximately 25% in calyces and stems, and 12% in leaves. Photochemical efficiency of plants grown under UV decreased at maximum light stress, reaching an inhibition of 58% of photosynthetic activity, but their ability to recover after light-stress was not affected. In addition, exposure to UV radiation did not affect ovule production or seed set per flower, but decreased pollen production and total seed production per plant by 31% and 69%, respectively. Our results demonstrate that UV exposure produced opposing effects on the accumulation of plant phenolic compounds and reproduction. UV radiation increased the concentration of phenolic compounds, suggesting a photoprotective role of plant phenolics against UV light, yet overall reproduction was compromised.

Comments

Copyright: © 2020 Del Valle et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.