Document Type

Presentation

Publication Date

10-24-2013

Abstract

Silk spinning defines the morphologically constrained embiopterans. All individuals spin for protection, including immatures, adult males and the wingless females. Enlarged front tarsi are packed with silk glands and clothed with ejectors. They spin by stepping with their front feet and releasing silk against substrates and onto pre-existing silk, often cloth-like. Spinning is stereotypical and appears to differ between species in frequency and probability of transition between two spin-step positions. This spinning choreography was assessed using thousands of spin-steps scored in the laboratory for 22 species to test (1) the body size hypothesis predicting that spinning would be more complex for larger species and (2) the phylogeny hypothesis which predicted that spinning would display phylogenetic signal. Tests relied on published phylogenies for the order Embioptera. Independent contrast analysis revealed relationships between five spin characteristics and body size, whereby, for example, larger webspinners invested in relatively larger prothoracic tarsi used for spinning and in spin-steps that would yield expansive silk coverings. Spin-step dynamics displayed phylogenetic signal for the frequency of six spin-steps and for 16 spin-step transitions. Discussion focuses on patterns revealed by analysis of phylogenetic signal and the relationship to life style and to recently discovered chemical characteristics of silk.

Comments

Research Poster was presented at the Annual Meeting of the Entomological Society of America in 2013.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.