Document Type


Publication Date



American Institute of Physics Publishing


We investigate the diffusion of charge and spin at 15 K in p-type GaAs, combining transient-grating and energy-resolved microluminescence measurements to cover a broad range of photoelectron density. At very low optical power, in a unipolar nondegenerate regime, charge and spin diffuse at the same rate, implying that the spin-drag effects are negligible. Upon increasing the photoelectron concentration up to about 1016 cm–3, the charge diffusion constant decreases because of ambipolar electrostatic interactions with the slower-diffusing holes while the spin diffusion constant is reduced only weakly by the ambipolar interaction. A further increase in the excitation power causes increases in both the charge and spin diffusion constants as a consequence of the Pauli principle since the photoelectron gas becomes degenerate.


Copyright © 2017 American Institute of Physics Publishing. Reprinted with permission.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.