Colin Rioux

Date of Award


Document Type



Santa Clara : Santa Clara University, 2022.

Degree Name

Master of Science (MS)


Computer Science and Engineering

First Advisor

Sharon Hsiao


Pseudocode is a traditional teaching tactic in computer science, yet it is not standardized and programming language dependent. Thus, it can be quite time consuming to write it. With the advancement of AI methodologies in NLP, AI could help address this problem. This work investigates the quality of AI generated pseudocode from source code. Five studies are conducted in this work to measure pseudocode quality, where each study modifies model input to observe accuracy and generalizability. The results show that there is an association between pseudocode quality and training and test set similarity. Furthermore, a sizable and diverse training set and a same language test set is critical for good quality generated pseudocode. Future work can explore language independent embeddings to simplify datasets while maintaining language semantics, if the creation of more applicable datasets is unfeasible.