Date of Award

6-8-2016

Document Type

Thesis

Publisher

Santa Clara : Santa Clara University, 2016.

Department

Bioengineering

First Advisor

Teresa Ruscetti

Second Advisor

Maryam Mobed-Miremadi

Abstract

With the need for alternatives to fossil fuels becoming more prevalent, biofuels has become an increasingly attractive alternative. Traditional biofuel production was quickly halted as a result of its ethical complications, leading to the development of secondgeneration biofuels. This system utilizes plant waste instead of food as its starting material, allowing for rapid recycling of this widely available and cheap carbon source. This switch was, however, coupled with complications. Of those, the most prominent is the inevitable release of acetic acid resulting from the breakdown of the lignocellulosic waste. This acetic acid is challenging to neutralize or extract in a scalable manner, leaving it in high concentrations in the substrate fed to the yeast, greatly decreasing their efficiency. To combat that problem, we are implementing an acid resistance system endogenous to E. coli inside of the yeast to impart a similar resistance. The system functions on a cyclopropanation mechanism that decreases the permeability of the membrane to slow the diffusion of the acid into the cell. With this system, in conjunction with other complementary modifications, we look to increase the efficiency of secondgeneration biofuel production bringing it another step closer to playing a prominent role in our energy economy.

Share

COinS