Document Type

Article

Publication Date

12-14-2017

Publisher

American Institute of Physics Publishing

Abstract

Recent years have seen the rapid discovery of solids whose low-energy electrons have a massless, linear dispersion, such as Weyl, line-node, and Dirac semimetals. The remarkable optical properties predicted in these materials show their versatile potential for optoelectronic uses. However, little is known of their response in the picoseconds after absorbing a photon. Here, we measure the ultrafast dynamics of four materials that share non-trivial band structure topology but that differ chemically, structurally, and in their low-energy band structures: ZrSiS, which hosts a Dirac line node and Dirac points; TaAs and NbP, which are Weyl semimetals; and Sr1–yMn1–zSb2, in which Dirac fermions coexist with broken time-reversal symmetry. After photoexcitation by a short pulse, all four relax in two stages, first sub-picosecond and then few-picosecond. Their rapid relaxation suggests that these and related materials may be suited for optical switches and fast infrared detectors. The complex change of refractive index shows that photoexcited carrier populations persist for a few picoseconds.

Comments

Copyright © 2017 American Institute of Physics Publishing. Reprinted with permission.

Datasets are included as additional files.

Fig3.fig (114 kB)
MATLAB figure #3

Fig4a.fig (12 kB)
MATLAB figure #4a

Fig4d.fig (232 kB)
MATLAB figure #4d

Available for download on Friday, December 14, 2018

Share

COinS