Date of Award

7-2018

Document Type

Dissertation

Publisher

Santa Clara : Santa Clara University, 2018.

Degree Name

Doctor of Philosophy (PhD)

Department

Mechanical Engineering

First Advisor

Mohammad A. Ayoubi

Abstract

During the upper-stage separation and orbit injection, orbital control, and attitude maneuver, propellant slosh in partially-filled fuel tanks can cause dynamical instability or pointing errors. The spacecraft dynamics combined with propellant sloshing results in a highly nonlinear and coupled dynamic system that requires a complicated control law. This problem has been a long-standing concern for space missions. The purpose of this research is two fold. The first part is to investigate and develop nonlinear Takagi-Sugeno (T-S) fuzzy model-based controllers for a spacecraft with fuel sloshing considering the input constraints on the actuators. It includes i) a fuzzy controller/observer with a minimum upper-bound control input based on the parallel-distributed compensation (PDC) technique, ii) a fuzzy controller/observer based on the linear quadratic regulator (LQR) that uses the premises of the T-S model, and iii) a robust-optimal fuzzy-model-based controller/observer. The designed controllers are globally asymptotically stable and have a satisfactory performance and robustness. The second part of the research is to develop a mathematical model of a spinning spacecraft with fuel sloshing during high-g maneuvers. The equations of motion of a spacecraft with partially-filled multiple-tanks are derived using the Kane’s method. To do this, two spherical pendulums as an equivalent mechanical model of the fuel sloshing are adopted. The effect of the slosh model parameters on the spacecraft nutation angle is studied. The developed model is validated via several numerical simulations.

Share

COinS