Date of Award


Document Type



Santa Clara : Santa Clara University, 2016.

Degree Name

Doctor of Philosophy (PhD)


Mechanical Engineering

First Advisor

Mohammad A. Ayoubi


To reduce the cost of lifting to orbit, modern spacecraft and structures used in space applications are designed from light material as flexible multibody system. Moreover The unprecedented requirements for rapid retargeting, precision pointing and tracking capability have made these multibody highly flexible spacecraft vulnerable to dynamic excitation caused by the slewing/pointing maneuver, vibration and external disturbances. As a result, this will degrade the performance of the spacecraft including the pointing accuracy. Thus the aspect of modeling and control become extremely important for the safe and effective operation. Despite the numerous research, the development of high performance, nonlinear control laws for attitude stability, rapid slewing and precision pointing remain the primary objective of scientists and engineers. The aim of the work presented in this thesis is to investigate the stability, performance, and robustness of a class of fuzzy control system called Takagi-Sugeno (T-S) applied to a flexible multi-body spacecraft, and to show the advantage and the simplicity in implementing the T-S fuzzy controller over other baseline nonlinear controllers.