Document Type

Article

Publication Date

4-14-2023

Publisher

IEEE

Abstract

For decades, the fundamental driving force behind energy-efficient and cost-effective electronic components has been the downward scaling of electronic devices. However, due to approaching the fundamental limits of silicon-based complementary metal-oxide-semiconductor (CMOS) devices, various emerging materials and device structures are considered alternative aspirants, such as negative-capacitance field-effect transistors (NCFETs), for their promising advantages in terms of scaling, speed, and power consumption. In this article, we present a brief overview of the progress made on NCFETs, including theoretical and experimental approaches, a current understanding of NCFET device physics, possible physical mechanisms for NC, and future functionalization prospects. In addition, in the context of recent findings, critical technological difficulties that must be addressed in the NCFET development are also discussed.

Comments

CCBY - IEEE is not the copyright holder of this material. Please follow the instructions via https://creativecommons.org/licenses/by/4.0/ to obtain full-text articles and stipulations in the API documentation.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.