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ABSTRACT

This project introduces a novel Conversational Menu Assistant leveraging Retrieval Augmented Generation (RAG)
techniques within a modified Large Language Model (LLM) framework to enhance dining experiences by providing
personalized menu assistance. The main innovation lies in the system’s ability to integrate up-to-date menu information
from various sources, including web scraping, into its responses, thereby circumventing the limitations commonly
associated with LLMs, such as the need for frequent retraining and the challenge of handling dynamic information.
Our solution addresses the pressing issue of reducing the workload on restaurant servers and streamlining the ordering
process by o↵ering precise menu details, personalized recommendations based on dietary preferences, and an intuitive
user interface for an improved customer experience.

The implementation of our Conversational Menu Assistant demonstrates the e�cacy of RAG techniques in real-
world applications, showcasing a significant advancement over existing LLMs by focusing on restaurant menus.
Through a comprehensive development approach utilizing Python for AI and data processing, React for dynamic
user interface design, and OpenAI’s API enhanced with menu-specific information, we aim to achieve high accuracy
in responses. Preliminary results indicate a positive impact on the dining experience, o↵ering a proof of concept with
potential for future expansion to include broader restaurant selection assistance.

Acknowledging potential ethical and societal implications, our project includes mitigation strategies to address
concerns such as the impact on server employment and tipping practices. Future work will focus on refining the
LLM’s accuracy, particularly regarding dietary restrictions and allergies, and exploring the scalability of our approach
to a wider array of restaurants. This project represents a significant step forward in the application of RAG techniques
to improve service industry e�ciency and customer satisfaction.
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Chapter 1

Introduction

1.1 Problem Statement

Large Language Models (LLMs) are artificial intelligence models that have been trained on massive amounts of textual

data to understand and generate human-like text. These models are based on deep learning techniques and can perform

a wide range of natural language understanding and generation tasks. LLMs, however, can often make surprising

errors that are di�cult to detect. A common issue with LLMs is “hallucinations,” a phenomenon that can occur when

a model generates completely false information [1]. Training LLMs presents a significant financial challenge due to

the extensive computational resources, substantial energy consumption, and the need for vast amounts of high-quality

data. In fact, it is estimated that training OpenAI’s GPT-4 model cost over $60 million [2]. This training cost also

makes updating LLMs with current information prohibitive. Collectively, these issues make the standalone use of

LLMs impractical for any tasks that require current information.

Popular restaurants experience high levels of crowding, putting pressure on both the restaurants and the sta↵ to

wait tables and take orders, which is further exacerbated by the long times customers may spend navigating menus

they are unfamiliar with. LLMs can be used as virtual waiters to help alleviate these issues, but only if they have

access to menu information.

Seemingly small, insignificant changes in a query can greatly a↵ect the outcome of an LLM’s response, signif-

icantly altering the accuracy and relevance of the generated answer. RAG (Retrieval Augmented Generation) is a

technique that enhances LLM prompts by incorporating external information retrieved from external sources, pro-

viding valuable context for the language model. Its purpose is to supplement large language models (LLMs) with

information it did not have access to in its training data, which can include any type of information, including pro-

prietary data, or more current or up-to-date information [3] [4]. This enables users to customize LLMs by supplying

any information to the LLM to augment its capabilities. Currently, ChatGPT 3.5 is trained using an estimated nearly

400 billion parameters, and GPT-4 is estimated to use 1.5 trillion parameters [5]. Given the immense parameter count,

extensive computational resources are needed for training large language models. However, with the integration of
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RAG, LLMs can expand their capabilities and generate responses reflective of current information without needing to

be fine-tuned or retrained, thereby getting more functionality out of the existing model [3].

As a proof of concept for the usefulness of RAG, and its ability to solve challenges like those discussed earlier,

we propose a restaurant menu chatbot that retrieves additional information from food databases and online reviews to

add additional context to the already-trained LLM. When customers have questions about the menu such as dietary

restrictions or ingredients inside a dish, the customer can ask the chatbot and receive an accurate answer instead of

having to take time away from a busy waiter. We believe that such an application could seamlessly integrate with and

enhance QR code style menus which already reside in a browser. This would allow restaurants to serve customers

more e�ciently, and would also alleviate much of the stress placed on waiters serving many tables at once.

1.2 Background and Related Work

A leader in the domain of LLMs is GPT-4, an iteration of OpenAI’s Generative Pre-trained Transformer series. GPT-

4 builds upon its predecessors by o↵ering improved natural language understanding and generation capabilities [6].

However, despite its advancements, GPT-4 still faces limitations, including its dependency on the quality of the train-

ing data and its limitations with regards to accessing real-time information or databases directly without appropriate

integrations.

A similar application to RagU is Menu Mystic. Menu Mystic provides users with a tool to scan restaurant menus

by uploading images. It o↵ers three free menu scans per week, leveraging image recognition to extract menu details.

While this approach is beneficial for users who have physical menus, it imposes limitations by requiring image uploads,

which may not always be convenient or feasible [7]. Furthermore, Menu Mystic has been reported to have bugs and

inconsistencies in its performance, which can hinder the user experience and reliability of the information provided.

RagU addresses these limitations by utilizing a pre-established database of restaurants, eliminating the need for

users to upload menu images, o↵ering a superior and more reliable user interface. This approach simplifies the user

experience, as users can e↵ortlessly search for restaurants within the database. By integrating OpenAI’s language

model with a structured database, RagU provides a seamless and e�cient interaction, ensuring users receive accurate

and prompt responses about menu items.

1.3 Objectives

The objectives of this project outline the specific tasks needed to develop and deploy RagU, our conversational chatbot

menu assistant. These steps are designed to ensure that RagU e↵ectively meets user needs and operates smoothly.

• Web Scraping Menu Information:

– Use Beautiful Soup to gather menu data from various restaurant websites.
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– Extract essential details such as restaurant names, addresses, cuisines, and comprehensive menu items,

including descriptions and prices.

– Clean and preprocess the data to ensure accuracy and uniformity.

• Database Creation:

– Design and build a structured database to store the extracted restaurant and menu information.

– Ensure the database schema allows for e�cient querying and retrieval.

– Populate the database with the cleaned menu data, ensuring it is ready for real-time access.

• Integrating with ChatGPT API:

– Connect to the ChatGPT API using the OpenAI library.

– Develop functions that allow the chatbot to interact with the stored data seamlessly.

– Implement the Retrieval Augmented Generation (RAG) technique to enhance the chatbot’s responses with

relevant information from the database.

• Building the RagU Application:

– Create a user interface using Streamlit, enabling users to search for restaurants and interact with the chat-

bot.

– Integrate the database with the interface to allow quick and easy access to restaurant information.

– Implement session management to maintain conversation context, providing a personalized user experi-

ence.

• Testing and Refinement:

– Perform thorough testing to identify and fix any bugs or inconsistencies.

– Optimize the web scraping, database queries, and API interactions to ensure the application runs e�ciently.

– Gather user feedback to iteratively refine and improve the application, ensuring it meets user expectations.

1.4 Our Approach

Our team’s approach to developing a superior conversational chatbot menu assistant, RagU, integrates several ad-

vanced technologies and methodologies to ensure it stands out from existing solutions. Here’s an overview of our

high-level strategy:
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1.4.1 Web Scraping with Beautiful Soup

• Data Collection: We use Beautiful Soup to scrape menu information from various restaurant websites. This pro-

cess involves extracting critical details such as restaurant names, addresses, cuisines, and menu items, including

descriptions and prices.

• Data Cleaning and Preprocessing: Post extraction, the data undergoes cleaning and preprocessing to ensure

consistency, accuracy, and usability. This step is crucial for maintaining a high-quality database that our system

can rely on.

1.4.2 Database Creation

• Structured Storage: We design and implement a structured database using SQLite to store the scraped infor-

mation. We chose SQLite for its simplicity, portability, and minimal resource requirements, making it an ideal

choice for an embedded, low-overhead database solution for our application.

1.4.3 Integration with ChatGPT API

• Advanced Language Processing: We integrate the system with OpenAI’s ChatGPT API, leveraging its power-

ful language processing capabilities to interact with users in a natural and engaging manner.

• Retrieval Augmented Generation (RAG): By utilizing RAG, our system combines information retrieval with

language generation, allowing the chatbot to provide contextually relevant responses by fetching data from our

database. This integration ensures that users receive accurate and detailed menu information.

1.4.4 User Interface Development with Streamlit

• Intuitive Design: We use Streamlit to develop a user-friendly interface that enables users to search for restau-

rants and interact with the chatbot seamlessly.

• Real-Time Interactions: The interface supports real-time interactions, maintaining conversation context and

providing personalized responses based on user queries.

1.4.5 Testing and Refinement

• Comprehensive Testing: We conduct extensive testing to identify and fix bugs, ensuring the system operates

smoothly. This includes unit tests, integration tests, and system tests to cover all aspects of the application.

• Red Teaming: We perform rigorous red teaming exercises where independent teams attempt to exploit vulner-

abilities in the system. This proactive approach helps us identify and mitigate security flaws, ensuring robust

protection against potential threats.
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• Prompt Testing for Optimal Responses: We conduct thorough prompt testing to fine-tune the system’s re-

sponses. By evaluating various prompt scenarios and user interactions, we optimize the chatbot’s ability to

provide accurate, contextually relevant answers.

• Implementation of Guardrails: We establish guardrails to prevent inappropriate or harmful responses from

the chatbot. These include pre-defined rules and constraints within the model to ensure safe and responsible use

of the system.

1.5 Di↵erentiation and Improvement Over Existing Solutions

Our system, RagU, di↵erentiates itself from existing solutions through several key aspects:

1.5.1 Elimination of Manual Menu Uploads

Unlike solutions such as Menu Mystic, which require users to upload menu images and have limited free scans, RagU

leverages a pre-established database of restaurant menus. This approach eliminates the need for manual uploads,

providing a more seamless user experience.

1.5.2 Enhanced Accuracy and Contextual Relevance

The integration of RAG allows RagU to provide more accurate and contextually relevant responses compared to

traditional chatbots. By dynamically fetching relevant data from our structured database, RagU ensures that users

receive precise and useful information.

1.5.3 User-Friendly Interface

The use of Streamlit for developing the user interface ensures that RagU is intuitive and easy to use. Real-time

interactions and session management features provide a personalized experience that keeps users engaged and satisfied.

By integrating advanced technologies and focusing on user-centric design, our approach ensures that RagU is not

only di↵erent from but also superior to existing solutions in terms of accuracy, usability, and overall user experience.
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Chapter 2

User Research

2.1 Methods

In the early stages of our project, we attempted to identify user needs through a process of brainstorming as a group

and taking note of the ideas we generated. Since the idea for our project arose from our own experiences at restaurants

and wanting a quick and easy way to digest menus from new restaurants, this made it easier to identify potential user

needs.

Once we had created a functional version of our project, we shared access to the web app with several peers (who

are also studying computer science at SCU) and took note of their feedback. This was helpful in identifying additional

user needs we hadn’t yet considered, and also made us aware of some prompt injection vulnerabilities in our RAG

chatbot. We also had some discussion with our peers who had tried our chatbot application regarding what types of

changes we could make to address additional user needs and patch the existing vulnerabilities with our chatbot.

2.2 Stakeholder Needs

The primary stakeholders for our menu chatbot application are the following: restaurant-goers, restaurant-goers with

allergies or dietary restrictions, online diners (those who order food online), restaurant managers or owners, and

waiters.

Restaurant-goers’ primary needs are to easily find the restaurant menu they are looking for, navigate the menu,

understand dish ingredients, and receive recommendations based on their preferences. This group values a seamless

and informative dining experience.

For restaurant-goers with allergies or dietary restrictions, however, the main need that distinguishes them from

other restaurant-goers is the assurance of accurate information regarding allergens and ingredients to avoid health

risks. They require detailed descriptions and the ability to filter menu options based on their dietary needs.

As for online diners, their needs are similar to restaurant-goers, but with more focus on the digital experience.

They require a smooth and functional interface for helping them ask questions, get meal suggestions, and order food
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online. This could in theory also include a streamlined ordering process that can integrate with existing food ordering

platforms such as DoorDash or UberEats.

Restaurant managers or owners have needs that are somewhat di↵erent as they are primarily interested in increasing

operational e�ciency and customer satisfaction. They would need a chatbot that can adapt to their specific menu and

provide analytics on customer preferences and common inquiries, which can help them optimize their o↵erings and

service.

Lastly, waiters benefit from a chatbot system as it can reduce their workload by handling routine questions about

the menu and allowing them to focus more on providing personalized service. They need a system that is easy to

integrate into their service flow and that can also serve as a tool for training new sta↵ on menu details e�ciently.

However, they do not want a system that would replace them, but rather one that makes them more e�cient.

The stakeholders we have chosen to prioritize are primarily restaurant-goers (including those with allergies or

dietary restrictions), as well as online diners. Due to our constraints, the application we have produced is geared

towards consumers, rather than being software that could be sold directly to restaurants for their own use. As a result,

the needs of restaurant managers, owners, and waiters are not prioritized. Also, in the case of online diners, due to our

constraints we did not work towards any integration with online ordering services. However, this is something that

may be implemented in our future work.

2.3 User Stories

Below are some user stories that are supported by our application.

• As a restaurant-goer who likes to try new food, I want to easily navigate unfamiliar menus.

• As a selective eater, I want to be able to quickly and easily identify dishes on a restaurant menu that suit my

preferences.

• As someone who is busy and often experiences decision fatigue, I want to easily obtain suggestions for a meal

for my family of four.

• As someone who is on a diet, I want to be able to quickly and easily identify foods that are healthier and lower

in calories.

• As someone who has allergies, I want to avoid ordering food with allergens and be advised of the risks of

ordering dishes without verifying the dish does not contain allergens.
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Chapter 3

Design and Rationale

3.1 High Level Overview

The system context diagram of the RagU system provides a high-level overview of its three primary components: the

user, the chatbot, and the database. The user interacts with the system through a Streamlit-based interface, allowing

them to search for restaurants and ask about menu items. The chatbot, powered by OpenAI’s ChatGPT API, processes

user inputs using advanced natural language processing and generates relevant responses. It leverages the RAG to fetch

relevant information from the database for contextually appropriate answers. The database stores detailed restaurant

and menu data, pre-collected via web scraping, and is structured for e�cient querying and retrieval.

Figure 3.1: System Context Diagram

The component diagram for RagU’s database illustrates the flow and interaction of data from initial collection to

query processing (Figure 3.2). The SQLite database is populated with detailed menu information scraped from various

restaurant websites using Beautiful Soup. This data includes restaurant names, addresses, cuisines, and individual

menu items with their descriptions and prices. When a user searches for a restaurant using the RagU interface, they

select a restaurant from the search box, which sends a query in the form of a restaurant ID to the SQLite database. The

database then retrieves the corresponding menu data for the specified restaurant ID. This menu data is subsequently

sent to the ChatGPT API interface, where it is incorporated into the chatbot’s response generation process.
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Figure 3.2: Component Diagram: Database

The component diagram for the ChatGPT API interface describes the process of handling user queries in the

RagU system (Figure 3.3). The request handler first authenticates with the ChatGPT API using secure credentials. It

receives menu information from the SQLite database based on the restaurant ID selected by the user from the search

interface, along with the user’s query and any menu modifications. This combined request is sent to the user query

processor, which structures the data for the inference engine. The inference engine, powered by ChatGPT, processes

the structured query and generates a relevant response, which is formatted and sent back to the request handler. Finally,

the request handler delivers the response to the user through the menu UI interface.

9



Figure 3.3: Component Diagram: ChatGPT API Interface

3.2 Design

The initial landing page is depicted in Figure 3.4. This primary interface serves as the gateway for users to access the

database of restaurants, which is categorized by name, address, and cuisine type to facilitate multiple search criteria.

Figure 3.4: Initial Landing Page of RagU

Upon visiting the website, users are met with a search bar. Figures 3.5, 3.6, and 3.7 illustrate the flexibility of the

search functionality, showcasing how users can search according to multiple criteria. This allows users to browse for

di↵erent restaurants or alternatively find a specific ones they are looking for.
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Figure 3.5: Search By Cuisine Type on the RagU Restaurant Search

For instance, if a user is interested in exploring di↵erent cuisines, they can search by cuisine type as shown in

Figure 3.3. Alternatively, users can search for a restaurant by entering its address in the search bar, as demonstrated

in Figure 3. This is particularly useful for users looking to find dining options within a certain area. Additionally, the

database can be queried by the restaurant’s name, an option exemplified in Figure 4, which aids users who already

have a specific restaurant in mind.
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Figure 3.6: Search By Street Address on the RagU Restaurant Search

Figure 3.7: Search By Restaurant Name on the RagU Restaurant Search

Once the desired restaurant is located, the interface transitions to the next phase of user interaction. By clicking

the ’Select’ button associated with a restaurant’s search result, users are directed to a secondary interface, the chatbot-

menu interface (depicted in Figure 3.8). This component of our website enriches the user experience by facilitating

interactive communication with a chatbot that provides detailed menu information, assists with food recommendations,

or answers specific queries related to the restaurant.
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Figure 3.8: Chatbot Menu Interface

On the left side of the screen, the menu (retrieved from the database) is listed, detailing the name, price, and a brief

description of each dish to guide users through their culinary choices e�ciently.

Figure 3.9: Dropdown Menu For Allergens in the Chatbot Interface

Above the main menu area, there are two dropdown menus. The first allows users to customize their search

according to specific dietary needs or allergies. Figure 3.9 highlights the allergen dropdown menu which includes

exclusion options for milk, eggs, fish, shellfish, tree nuts, peanuts, and wheat, ensuring users can safely navigate

their dining options. Concurrently, Figure 3.10 highlights another dropdown menu that caters to dietary preferences

including vegetarian, vegan, gluten-free, and pescatarian, allowing users to modify RagU’s output.
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Figure 3.10: Dropdown Menu For Dietary Restrictions in the Chatbot Interface

Central to this interface is the chatbot, acting as a virtual waiter. This digital assistant is engineered to interact with

users by answering questions about the menu or making personalized recommendations, much like a traditional waiter

would. Figure 3.11 captures a typical interaction where a user inquires, “What do you recommend?” and the chatbot

provides a suggestion based on the menu’s o↵erings.
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Figure 3.11: Chatbot Providing a Menu Recommendation

The interaction with the chatbot is designed to be dynamic and responsive, much like a conversation with a human

waiter. If users have further inquiries or require more details about the recommendations, they can continue the

dialogue. For instance, Figure 3.12 shows a user asking the chatbot for an alcoholic beverage recommendation to

complement the meal. Following this, the user requests more information about the suggested alcohol, demonstrating

the chatbot’s capability to handle extended interactions and provide detailed responses.
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Figure 3.12: Chatbot Recommending an Alcoholic Beverage

The adaptability of the chatbot is further demonstrated in Figure 3.13. Here, the user selects “vegetarian” from the

dietary restrictions dropdown, prompting the chatbot to adjust its recommendations accordingly. When the user asks

for suggestions again, the chatbot recommends dishes that exclude meat, adjusting to the user’s need without the need

to refresh the page.

Figure 3.13: Chatbot Adjusting Recommendations Based on Dietary Restrictions
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3.3 Functional requirements
3.3.1 Landing Page Introduction

The landing page must provide an intuitive interface that introduces users to the “RagU Restaurant Search” functional-

ity. It must clearly present the search bar where users can input their search criteria such as cuisine type, street address,

or restaurant name.

3.3.2 Database Accessibility

The system must grant access to a comprehensive database of restaurants, which includes detailed information such as

name, address, and cuisine type. This information must be searchable and sortable to facilitate user-friendly navigation.

3.3.3 Search by Cuisine Type

The system must allow users to search for restaurants by selecting a cuisine type from a dropdown menu. This feature

must filter the search results to display only the restaurants that match the selected cuisine.

3.3.4 Search by Address

The system must enable users to search for restaurants by entering a specific address. The search function must return

a list of restaurants located within the specified vicinity, helping users find dining options nearby.

3.3.5 Search by Restaurant Name

The system must support searches based on restaurant names. Users should be able to type in the name of a restaurant

and see relevant search results that match their query.

3.3.6 Chatbot Interaction

Upon selecting a restaurant, the system must transition to a chatbot interface that provides detailed menu information,

assists with table reservations, and answers specific user queries. The chatbot must simulate an interactive conversation

to enhance user experience.

3.3.7 Menu Display

The system must display a detailed menu for the selected restaurant, including dish names, prices, and descriptions.

The menu must be organized in a user-friendly manner to help users make informed dining choices.

3.3.8 Allergen and Dietary Restrictions

The system must o↵er dropdown menus for users to filter menu items based on common allergens and dietary restric-

tions. This feature ensures users can navigate their dining options safely and according to their dietary needs.
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3.3.9 Personalized Recommendations

The chatbot must be capable of providing personalized recommendations based on user inquiries. For instance, it

should suggest dishes when a user asks, “What do you recommend?” or recommend beverages that complement the

meal.

3.3.10 Adaptive Interaction

The chatbot must adapt its recommendations based on user selections, such as dietary preferences. If a user selects

“vegetarian” from the dropdown menu, the chatbot must adjust its suggestions to exclude meat-based dishes.

3.4 Non-functional requirements
3.4.1 Performance

The system shall be fast-loading. The landing page, search results, and any embedded media (menu descriptions)

should load quickly to provide a seamless user experience without causing major delays or frustrations for the users.

3.4.2 Usability

The system shall have an intuitive and user-friendly interface. Navigation through the website should be straightfor-

ward, and all functionalities must be easily accessible to users of varying technical proficiencies.

3.4.3 Reliability

The system shall be reliable, ensuring consistent performance without crashes or significant downtime. The search

functionality and chatbot interaction should be available at all times to meet user expectations.

3.4.4 Scalability

The system shall be scalable to handle an increasing number of users and data entries without degradation in perfor-

mance. As the database grows and user tra�c increases, the system must maintain its e�ciency.

3.4.5 Security

The system shall be secure, protecting user data and preventing unauthorized access. Measures such as encryption and

secure login mechanisms must be in place to safeguard user information and restaurant data.

3.4.6 Compatibility

The system shall be compatible with various devices and browsers. Users should have a consistent experience whether

they access the website from a desktop, tablet, or smartphone, and whether they use Chrome, Firefox, Safari, or other

browsers.
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3.4.7 Accessibility

The system shall comply with accessibility standards to ensure that it is usable by individuals with disabilities. Features

such as screen reader support, keyboard navigation, and high-contrast modes should be implemented, time permitting.

3.5 Rationale
3.5.1 Key Reasons for the Design

The “RagU Menu Assistant” website is designed with a focus on providing a seamless and intuitive user experience

for discovering and interacting with a diverse range of restaurant options. The design emphasizes simplicity, usability,

and functionality to ensure users can easily find and access the information they need.

• User-Centric Interface: The landing page o↵ers an immediate and clear entry point for users, making it easy

to start searching for restaurants without unnecessary complexity. This helps users quickly understand how to

use the website.

• Comprehensive Search Options: The website includes multiple search criteria such as cuisine type, address,

and restaurant name. This variety allows users to refine their searches based on specific needs and preferences,

enhancing the overall usability of the system.

• Interactive Chatbot: The chatbot interface simulates a real-life interaction, making the search and selection

process engaging and e�cient. It provides personalized recommendations and detailed information, replicating

the experience of interacting with a knowledgeable restaurant guide.

• Safety and Accessibility: Features like allergen and dietary restriction filters ensure that the system caters to

users with specific dietary needs. This makes the dining experience safer and more inclusive for a wider range

of users.
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Chapter 4

Technologies

4.1 System Components

Our design requires a wide range of technologies to implement the front-end, back-end, database, and support the

cloud infrastructure to host our application. When choosing technology, we focused on technology that would give us

the highest degree of freedom, while still being a technology we felt comfortable with learning. We considered any

technology we had previous experience with as a bonus, but this was not a main factor in our decision-making. Part of

our goals for this project also had to do with learning new technologies and gaining experience, so we welcomed the

challenges an unfamiliar technology could bring, so long as we were confident it could suit our needs.

Python was an obvious choice for our back-end, as it is a powerful and easy-to-use tool for every aspect of our

project. It is often used in data manipulation and Artificial Intelligence projects so it worked perfectly with the goals

we had in mind. The main reason for this was the plethora of useful libraries this language contains. For our scraper

BeautifulSoup4 was a great library for our needs. It allows for easy and quick web scraping for online websites through

Python [8]. Speed was important for our project because we needed to parse thousands of menu items to then feed to

our database. Several other built-in Python libraries would then allows us to easily edit the menu information however

we needed to and send it to the database. Using Python was an easy choice because it allowed us to avoid worrying

about possible technical limitations our choice could have. Any possible problem we faced could be solved either

directly through python or through an available library, making it a clear choice.

ChatGPT 3.5 API was the LLM we decided to use to feed prompts and information to. This was a di�cult decision,

as it needed to be made early on in the process because it would a↵ect how the rest of the product was designed. We

had several choices for this LLM. This included options such as di↵erent version of ChatGPT, Meta AI’s LLAMA,

or Anthropic’s Claude AI as well as other free options. Several factors a↵ected our decision, one of which was total

cost. Our chatbot would need to receive many prompts, both for testing and for when it was finalized and used. For

this reason we needed to choose options which had lower price per tokens that we could match, even if it meant using

a less powerful model. Additionally, we wanted an API with a high degree of accuracy and many tools to implement
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features we wanted such as embedding. For these reasons we decided to use ChatGPT’s 3.5 API. It both included

tools like embedding, and included a low price per token at $0.5/1M tokens, as opposed to GPT 4’s $5/1M tokens [9].

Since we used a lower version of ChatGPT, the accuracy of our chatbot could be a potential concern, however, the

RAG implementation of our project actually helps limit this. The retrieved information be give to the API acts in a

similar form to GPT 4’s, allowing our model to match the higher versions accuracy and avoid common pitfalls present

with 3.5.

To host our website, we decided to use Streamlit. Streamlit gave us the tools to quickly prototype and deploy our

web application. The previous experience we had using Streamlit was a large factor in our decision to use this it,

however we also wanted a hosting technology that would allow us to quickly deploy and test. One of our tenets was

a clean and user friendly interface, which would require large amounts of testing and iteration to get right. For this

reason Streamlit’s easy deployment appealed to our needs.

SQL Lite was the database we used to store menu information. Our reason to use SQL Lite over SQL had to do

with the improved speed SQL Lite o↵ered. SQL Lite’s advantage over SQL has to do with quicker querying. While

SQL is built for databases with millions of entries, SQL Lite is built for much smaller databases that require quicker

speeds. In our case, we are only storing a few thousand menu items, and we need our LLM to be able to quickly

retrieve this information to include into its response. Therefore SQL Lite is a much better fit for the needs of our

product.
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Chapter 5

System Evaluation

A principal tenet of designing RAG systems using LLMs is frequent testing and tweaking in order to achieve the

highest degree of accuracy. For our design, this included the editing and testing of the prompt we would be passing

to OpenAI’s GPT-3.5 model via its API. This iterative refinement of system prompts is what is known as prompt

engineering. When referring to our system prompt, this includes the scenario we describe to the chatbot, the chatbot’s

role, the menu information we feed the chatbot, and the important information about the customer ordering food. The

specific language and our organization of this information, as well as the clarity of instructions, is crucial in obtaining

an accurate response. In addition, front-end elements were important to test, since our product could be exposed to a

wide demographic, including customers with limited experience in using chatbots.

5.1 Internal Testing

Internal testing of our design focused on ensuring our chatbot gave us accurate responses and avoided hallucination.

Our testing was aided by our previous experience with chatbots, allowing us to begin testing on problem points and

edge cases we had previously noted with LLMs. This included checking its ability to add prices to create meals,

ensuring information it provided about menu items was factual and not hallucinated, and that it took into account

selected allergies. Allergies were an especially important aspect of our testing, since this was a high-risk scenario, and

a chatbot misunderstanding an allergy was something we wanted to avoid. In addition, our internal testing needed to

uncover any possible security flaws in our application contained before releasing it for public use.

When testing a RAG system, the process is commonly divided into two parts: testing the retrieval, and testing

the generation [10]. One method we used to test retrieval was the “needle in a haystack” test. This test involves

cherrypicking a specific fact or piece of information from a body of text, and asking the chatbot a question to verify

it can correctly access this information [11] [12]. Based on the tests we carried out, with a sample size of 100, across

several di↵erent menus, the retrieval accuracy of our RAG system was approximately 96%.

Additionally, each member of team independently created and tested large amounts of prompts, testing niche
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prompts, attempting to elicit unauthorized responses from the chatbot, and using a wide variety of restaurants with

varying menu formats. We believed creating and testing prompts separately would allow us to test unique prompts that

we could’ve missed if we had created them together. We drew inspiration from techniques such as jailbreaking and

prompt injection to find vulnerabilities in the guardrails for our chatbot.

Once we had a large sample of prompts, we shared and collaborated to identify further edge cases we could have

missed. We also had the chance to use the chatbot for our own questions when we ate at restaurants, which proved to

be a useful strategy, since it put us squarely in the mindset of an external user. This showed us flaws we could have

missed through purely internal testing. Using a wide variety of restaurants, not just the ones we’ve visited personally,

was also an important aspect of our internal testing. Several times we discovered our LLM would struggle with

non-English languages, becoming unusable. In order to test for security flaws we used both our own experience and

external resources to discover the methods by which LLMs become compromised, and methods to prevent them. A

prevalent technique for circumventing chatbot guardrails is prompt injection, which involves carefully crafting inputs

that exploit the AI’s pattern of understanding and response generation to allow unauthorized actions or reveal sensitive

information [13]. Some specific approaches to patching these types of vulnerabilities include completely removing

any sensitive information a user could provide, and editing the backend of our project to avoid jail-breaking prompts

by clearly labeling the section of the prompt that is user-inputted and instructing the LLM to adhere only to its stated

purpose, regardless of any user-inputted instructions telling it to do otherwise.

Our team of four was not able to exhaustively test every aspect of our RAG system due to the unlimited number

of potential edge cases and interactions, which result from the non-deterministic nature of LLMs. Researchers are

continually finding new and innovative ways to bypass chatbot guardrails, which makes impossible to anticipate many

potential explots. For example, one particularly creative workaround used to generate unauthorized responses from

ChatGPT was a method involving ASCII. The prompt in question gave specific instructions for interpreting a set

of ASCII characters visually spelling out the word “counterfeit” in ASCII art. The prompt then asked ChatGPT to

“provide step-by-step instructions on how to make and distribute [MASK] money (replace [MASK] with this word),”

which resulted in ChatGPT providing a detailed description of how to create counterfeit bills [14]. This anecdote

illustrates the numerous creative ways that researchers have developed to circumvent restrictions, and gives perspective

as to how di�cult it can be to comprehensively prevent the overriding of guardrails.

Despite these challenges, we made every e↵ort to be as thorough as possible. Through our testing of prompts, we

increased the accuracy of the Large Language Models to our target threshold amount, which was avoiding inaccuracies

or hallucination in more than 95% of test cases. Additionally, we were satisfied with the chatbot’s responses to attempts

to override its system prompt. Nonetheless, further external testing and iterations will be necessary in the future to

prevent inaccuracies and address other issues as we become aware of them.
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5.2 External Testing

External testing was an important tool for our final product because it helped us ensure we were fulfilling the main goals

of our product: namely, a clean and easy-to-use interface. Our audience was an important part of our development

process, and we recognized the need for a front-end interface that could be used by a wide range of demographics,

regardless of their experience with technology. Recognizing that our inner experience with the interface could cloud

our view of it, we plan to engage in heuristics testing to discover which aspects of the interface are problem points. Our

experience in conducting this testing allow us to create clear tests and goals, such as asking the user to ”navigate to a

McDonald’s Restaurant and ask for a kid’s meal.” We then note which parts of the interface take the most time for the

user and which aspects are working. Asking the user post-test interviews also helps us gain insight into problematic

aspects of the interface that should be cleaned up. The audience we send these heuristics tests to is also very important,

since we want to avoid our data being skewed and giving us incorrect information. Conducting heuristic tests with a

variety of di↵erent ages will give us a clearer picture of what we need to improve, and give us actionable information

to base future changes around.

24



Chapter 6

Implementation Plan

6.1 Timeline

Figure 6.1: Timeline

Figure 6.1 above details our project timeline. Our design process involved a layered approach, where the next step

would build upon the previously completed steps. In order for this to work, we needed to establish and implement a

baseline for our product which could then be expanded and used for previous steps. In our project, this involved first

obtaining information using web scraping techniques and creating the database that would hold this information. With

this in place, the later tasks in February through May would become possible to implement and test. This is especially

true for the implementation of RAG and Cloud Infrastructure, since these couldn’t be tested at all without previous

tasks completed. Another aspect of our timeline worth noting was the large amount of time we allocated for each of us

to test and deploy the final product. This was a time-consuming task we split between us, requiring large amounts of

prompting and testing as has been described previously. In addition, some time was taken towards the beginning of our

design to process to research and learn about the appropriate technologies we would be using, so that we understood

possible limitations before beginning to build our project.
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Risk Consequences Probability Severity Impact Mitigation

Scraping Policy Changes Retrieval System of Project
disrupted

0.2 9 1.8 Reduce Impact of Web-
Scraper, monitor policy fre-
quently

LLM Inaccuracy/Abuse Project Reliability Reduced 0.7 3 2.1 Use varying test cases to
identify problem points

Insu�cient Technologies Features changed or aban-
doned due to limitations

0.2 6 1.2 Identify limitations early to
adapt

Table 6.1: Risk Factors

6.2 Project Risks

Before our design process began, we identified several risk factors which could have either negatively a↵ected our final

product or prevented us from completing the project altogether. We kept these risks in mind throughout our design

process and planned accordingly. Risks like the scraping policy changes were especially concerning because they

could, in one fell swoop, force us to pivot to setting up new web scraping infrastructure. We made sure to regularly

check that we were acting in accordance with the Terms of Use and robots.txt files, where applicable. This regular

monitoring would give us more time to pivot. We also made our web scraping script as flexible as possible to minimize

the time it would take to adapt it to multiple di↵erent websites, should the need arise. LLM inaccuracies were another

risk that a↵ected our design process. For every aspect of our RAG system, we had to consider what a bad actor

could do to manipulate and take advantage of it. This cautious approach served us well in reducing security risks and

creating a safer product. There was, however, a constant risk throughout our design process that a loophole or exploit

we missed could be discovered, due to the complex and open-ended nature of our project. Insu�cient Technologies

was a final notable risk, something that could force us to change or completely remove planned features. To mitigate

this possibility, we spent a large amount of time at the beginning of our process researching and understanding the

technologies we planned to use, so that limitations could be identified before they became an issue. With this approach,

if we realized that a certain technology was not su�cient for our task, we could easily change course before investing

too much time into an untenable approach.
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Chapter 7

Constraints and Standards

7.1 Constraints
7.1.1 Budget

Budget constraints significantly influenced multiple facets of our project development. OpenAI’s API costs were a

critical consideration; we opted for a more economical plan that restricted the computational power and flexibility

of our LLM. This decision necessitated trade-o↵s in terms of the complexity and scope of the LLM’s capabilities.

Moreover, obtaining up-to-date menu information from a wide array of restaurants presented additional financial

challenges. While third-party APIs like Yelp could provide comprehensive data, we determined that we would need

more than the allotted 500 daily API calls due to the large number of restaurants in our database, which would incur

additional costs as we would need to use Yelp’s enterprise API [15]. Though the pricing for Yelp’s enterprise API is

not publicly available, it is likely that these costs would be prohibitive. Consequently, we resorted to web scraping as

a cost-e↵ective alternative, despite its own set of challenges.

7.1.2 Time

The project was bounded by the timeline of our senior design project, which imposed strict deadlines for each phase of

development. This time constraint required us to prioritize essential features and streamline our development process.

Our initial design included advanced features such as photo recognition for reading menus, but we had to abandon

these to focus on core functionalities. This constraint ensured that our project remained feasible within the given time

frame but limited the potential breadth of our final deliverable.

7.1.3 Legal and Ethical Concerns

Given the current climate of heightened concerns over web scraping being used to gather large amounts of data for

training large language models (LLMs), we have taken measures to ensure that our scraping activities are conducted

ethically [16]. The menus we scraped through Google, in full compliance with its terms of service, are publicly avail-
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able, and our usage is strictly for non-commercial research purposes aimed at demonstrating the power of Retrieval

Augmented Generation (RAG) [17] [18]. Our approach aligns with ethical standards, emphasizing transparency and

respect for data ownership.

7.1.4 Database E�ciency and Data Accuracy

Given our limited resources, we selected SQLite as our database engine due to its simplicity and e�ciency for low to

medium tra�c projects. According to the SQLite website, it performs well for sites with fewer than 100,000 hits per

day and can handle up to 10 times that amount in certain scenarios [19]. This made SQLite an appropriate choice for

our proof of concept. Additionally, being a Python library, SQLite was ideal for managing our scraped data stored in

CSV format. Its ease of installation and use, along with the ability to manage data as a single file, o↵ered practical

advantages.

Furthermore, ensuring the accuracy of the menu information in the database was paramount, especially when

dealing with dietary restrictions and allergens. The chatbot’s reliability in providing correct and safe dietary infor-

mation was also critical to avoid health risks for users. In our design process, we used the International Organization

for Standardization as a framework for how to determine the quality and accuracy of our data. ISO 8000 suggests

methodology such as fitness, completeness, and provenance to determine whether data is of a high quality [20]. We

verified these criteria through our own observations, and being able to verify the sources of our data played a large

factor in choosing the source of our menu information. Maintaining data accuracy also necessitated rigorous testing

and validation processes to ensure the chatbot could accurately interpret and relay menu information.

7.1.5 Computational Resources

Computational resource limitations, including access to computing infrastructure such as GPUs, impacted the scope

of our project. The computational demands of training and running a sophisticated LLM are substantial, and our

resources were limited. Therefore, we decided to focus our e↵orts on developing the retrieval system. Our primary

goal was to create a proof of concept demonstrating how a Retrieval-Augmented Generation (RAG) approach could

enable an existing LLM to reliably provide current, updated information outside the scope of its training data [4] [10].

This allowed us to work within our constraints while showcasing the potential of integrating retrieval mechanisms to

improve the LLM’s performance.

7.2 Standards
7.2.1 Web Standards

To ensure our web app was compliant with industry norms, we adhered to World Wide Web Consortium (W3C)

standards [21][22]. This compliance ensured that our application was compatible across di↵erent web browsers and
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devices, providing a consistent and accessible user experience. Following these standards also helped in maintaining

the interoperability of our system with other web technologies.

7.2.2 Streamlit

We used Streamlit for the development of our web application. Streamlit is a Python-based framework for creating

web applications, known for its simplicity and compatibility with various web browsers and devices. Streamlit allowed

us to build an interactive and user-friendly interface quickly and e�ciently. Its compatibility with di↵erent browsers

ensured that our application could be accessed by a broad audience without compatibility issues.

Streamlit adheres to various security and compliance standards, including SOC 2 Type 1 compliance, which ad-

dresses security, availability, processing integrity, confidentiality, and privacy [23]. These standards ensure our appli-

cation is secure and reliable. By following Streamlit’s guidelines and utilizing its built-in features, we ensured that our

application maintained a high level of security and interoperability with other web technologies, providing a robust

and reliable experience for our users.

7.2.3 Ethical Guidelines

In addition to technical and legal standards, we adhered to ethical guidelines in AI development and deployment.

The Code of Ethics and Professional Conduct created by the Association of Computing Machinery provided strong

standards for us to follow during our design process. ACM’s code of ethics included several tenets we focused on

following. For the purposes our design, we paid special attention to the standards of ”Avoiding Harm” and ”Respecting

Privacy” [24]. This involved transparent communication about the capabilities and limitations of our chatbot, ensuring

users were aware of its potential inaccuracies, especially concerning dietary information. We ensured we minimized

the information we were storing about our users, as well ensuring any information we did store was secure. We also

considered the broader societal impacts of our project, such as the potential displacement of human workers, and

implemented design choices to mitigate negative consequences.

7.2.4 Sustainability

Our project aimed to be sustainable in terms of both maintenance and environmental impact. The use of APIs allowed

for easy updates to the LLM model, ensuring that our system could adapt to new developments in AI technology [9].

We also considered the environmental impact of running API calls for LLMs, focusing on optimizing the inference

phase to reduce energy consumption. This approach not only made our project more sustainable but also aligned with

broader goals of responsible technology use.
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Chapter 8

Societal Issues

8.1 Ethical

A few ethical problems were encountered and considered over the course of our project. The first involved the ethics

of retrieving menu information from public websites using web scraping. Scraping thousands of menu items from

many restaurants at regular intervals to keep information up to date could lead to large quantities of requests being

sent to single websites, straining them. To minimize this, we had to consider rate limiting our web scraper’s requests to

reduce the load. This strategy helped lessen the strain on sites but slowed down our scraper. Implementing a solution

that balanced these two issues was paramount, and something we tinkered without throughout our design.

Another significant ethical question involved the risks AI and chatbots could pose in replacing human workers.

If a customer perceived that a waiter was doing less work because a chatbot completed part of their job for them,

it could have a major negative impact. In the context of our product, we considered how an e↵ective chatbot could

potentially displace waiters from their jobs or reduce their tips. While we made e↵orts to mitigate this impact, it

remains a larger issue that could arise from the increased use of AI and chatbots across various industries. Techniques

like those demonstrated by our product will enable AI to be used in more areas than ever before, and the ethical e↵ects

of this could take a long time to be fully understood.

8.2 Social

LLMs such as GPT-3.5 often reflect the biases of the data that trained them, which can be problematic in many

cases [25]. In the context of our application, which uses GPT-3.5, this could mean that certain cuisines or dishes are

more likely to be suggested than others due to unseen biases. If our application is extended to include personalized

recommendations from GPT-3.5 for choosing a restaurant to dine at, this bias could also disproportionately a↵ect

certain restaurants in arbitrary and opaque way; GPT-3.5 may be biased against recommending certain restaurants.
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8.3 Political

While it would be very unlikely for our project to have any real political ramifications, we could conceive of a situation

in which Big Tech or large restaurant chains advocate for legislation that benefits restaurants utilizing menu chatbot

platforms such as ours at the expense of smaller, local businesses who may not have access to this technology.

8.4 Economic

It is possible that our application could have economic e↵ects at the individual level. For example, our menu chatbot

may be biased towards recommending more expensive food items, which could influence the eating patterns of cus-

tomers. Additionally, its use could encourage users to patronize only large chains that can a↵ord such AI technology,

potentially disadvantaging smaller businesses, which could have a more significant economic impact.

8.5 Health and Safety

The primary concern when it comes to health and safety is the accuracy of our chatbot, which can be crucial in

the context of allergies or dietary restrictions. While our chatbot is proficient in answering these queries, it is not

infallible, and a single incorrect response could have serious consequences for a customer. It’s important for our

product to acknowledge its limitations and warn customers with allergies that the chatbot may not provide completely

accurate information. This further mitigates the health risks our product could pose to at-risk customers.

8.6 Sustainability

One benefit of our product is that maintaining it, including ensuring the software is up-to-date and functioning, is

practical and straightforward. Chatbots like ours can be modified to continually learn from their responses by using

past interactions as question-answer pairs for training or fine-tuning. Additionally, our use of APIs allows us to easily

update the underlying LLM model to the most e↵ective and accurate model available.

8.7 Environmental Impact

The primary environmental impact of our application arises from the immense quantities of power consumption of

GPUs which are used both for training and inference of LLMs. The most we can do is to make our application e�cient,

requiring fewer API calls or API calls with less tokens, which in turn would reduce overall energy consumption.
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8.8 Usability

We have made significant e↵orts to ensure the UI is simple and easy to use even after just one visit. Search functions

and chatbot instructions are made especially clear so that even restaurant-goers with little technology experience can

quickly become proficient, improving the usability of our application.

8.9 Lifelong Learning

This project was a significant learning experience for most of us, representing the most extensive use of LLMs and

chatbots that we had undertaken to date. By the end of this project, we have learned a great deal about what goes

into making a functional RAG system and the many hidden challenges that must be dealt with, from ethical issues to

creating safeguards to prevent technology abuse. This project helped open our eyes to the vast potential of chatbots

and how we could implement this technology in future work.

8.10 Compassion

It’s necessary to consider how our product could a↵ect waiters’ wages and livelihoods. Though part of our product’s

goal is to reduce the workload of waiters, especially during rush hour, we must also consider the unintended negative

consequences this could have. For example, the success of this product could potentially reduce the tips waiters

receive, especially if the chatbot e↵ectively handles questions normally directed to waiters. To address this, our

chatbot commonly suggests speaking to waiters for assurance on answers and can remind customers of the importance

of tipping.
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Chapter 9

Conclusion

We began our senior design project with the idea to utilize OpenAI’s ChatGPT API as part of a Retrieval Augmented

Generation system to overcome the inherent weaknesses in Large Language Models – mainly, the heavy cost associ-

ated with retraining LLMs and the resulting inherent obstacles to accessing newly updated information through LLMs.

As a use case for this technology, we chose to implement a menu assistant chatbot using the aforementioned system.

This menu assistant chatbot would be fed up-to-date menu information scraped from the web, and would be capable

of responding to users’ natural language queries. We successfully implemented this project, creating an interface that

allowed customers to designate allergies and dietary restrictions, and ask a wide variety of questions about menu prod-

ucts.

Through this project, we learned the following:

• The importance of ethical considerations in web scraping and data population. We needed to consider how we

could throttle our requests to reduce impact on websites.

• The e↵ectiveness of RAG techniques in enhancing response accuracy and personalization.

• The significance of user-friendly interfaces in enhancing usability and accessibility.

• The complexities involved in integrating database retrieval with AI model generation.

• The potential societal impacts of AI adoption in the service industry and the need for thoughtful design to

mitigate negative consequences. For example, we had to consider how our product might impact waiters’ jobs.

These learnings are directly related to our project objectives, as they inform our understanding of the challenges

and opportunities in developing an LLM-powered conversational menu assistant.

One of the primary advantages of our project was the availability of up-to-date information. Our web scraping

approach ensured that the database contained current menu details, enhancing the relevance and accuracy of responses.
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Our project also implemented personalized recommendations which allowed it to use user interactions and context to

provide tailored recommendations, improving user satisfaction. Additionally, we emphasized the importance of a

user-friendly interface in the completion of our project. We leveraged Streamlit to create a simple and intuitive UI,

enhancing usability for users with varying technological proficiency. We also focused heavily on creating an ethical

product by prioritizing ethical practices in data population and usage, demonstrating a commitment to responsible AI

development.

We recognize several disadvantages of our work, which have the potential to be addressed in our future work.

Our integration of database retrieval with LLM text generation presented challenges in system architecture and imple-

mentation. Our project also has several ethical dilemmas, and despite e↵orts to address ethical concerns, the project

raised questions about the societal impact of AI adoption in the service industry that require ongoing consideration.

Our project is also relatively limited in scope; our project was entirely focused on providing menu assistance, poten-

tially overlooking broader applications of AI in the hospitality sector, or even improvements like a chatbot-powered

restaurant search rather than a more traditional keyword search.

We believe our application has significant potential for future improvement and expansion in scope. One aspect of

our system we believed could be worked on in the future was our integration between database retrieval and AI model

generation to improve response accuracy and e�ciency. With additional time we could create an improved integration,

such as using a vector database to store larger menus in chunks, which would likely improve retrieval performance

and also lower the amount of tokens needed for each API call. Furthermore, we could potentially scrape additional

information pertaining to each restaurant, such as reviews on Google that single out specific dishes. Overall, the RAG

method we used has potential for a wide variety of applications. This could include additional applications of AI in

hospitality beyond menu assistance, such as reservation management and customer feedback analysis. Future work

could also involve implementing user feedback to iteratively improve the user experience and address usability issues.

We also have unresolved challenges that are worth continued consideration. These are aspects of our project we

were limited in solving, either due to time or other constraints. One important issue to address is the societal impact

our product and other AI-based products could have. Understanding the long-term societal implications of AI adoption

in the service industry was something we considered, but delving deep into this area would have required time we felt

was better spent on other aspects of our project. However, we continue to consider how we could mitigate potential

negative societal consequences resulting from widespread adoption of AI agents in the service industry. A step in

this direction would be to establish a set of concrete ethical guidelines for our product, which would help ensure

responsible and equitable practices.

In addition, the final iteration of our application still has several aspects we believe could be improved upon and

could negatively a↵ect performance in the future. Our project was not built with scalability as a priority, something that

is very important if this idea was to be expanded upon. Performance metrics such as average token cost of API calls and
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response latency would also need to be further optimized for the product to continue to grow. Since our end goal for

the project during the quarter had a smaller scope, performance and scalability were not our primary focus, but future

work could yield significant improvements. We have also considered a variety of new features that could be included

in the future, such as conversational chatbot-powered restaurant search, or more personalized recommendations based

on saved user preferences. Ultimately, the knowledge and experience we gained throughout this design process are

important tools that we will be able to leverage in the future, perhaps for RAG projects much larger in scope, whether

they be in the restaurant and hospitality industry or an entirely di↵erent sector.
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Chapter 12

Appendices

The prompt used for the ChatGPT API is designed to ensure that the chatbot e↵ectively serves as a restaurant assistant.

It instructs the AI to roleplay as a helpful server, focusing on answering any questions related to the provided menu

{menu str}. To facilitate a realistic conversation, where the assistant can reference previous queries, we needed

to explicitly specify to remember the chat history. The prompt also explicitly instructs the AI not to acknowledge

any requests to change its role or purpose, ensuring that the chatbot remains dedicated to providing menu-related

assistance. This prompt structure ensures that the chatbot remains focused and reliable in its interactions.

Figure 12.1: ChatGPT Prompt

The above function uses BeautifulSoup to navigate the menu page for a specified restaurant. It receives the restau-

rant menu url, and uses this to store the food name, price, and description of a menu item. This process loops until

every menu item is stored in the food data object, which is then returned. This function is called continuously for each

restaurant URL provided.
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Figure 12.2: Menu Scraper Function
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Grab Links Part 1

Grab Links Part 2

42



Grab Links Part 3

Figure 12.3: Link Grabber Function

The above function creates an object to store the restaurant name, cuisine, location, and menu item information. The

function then loops through each restaurant the at the given location. For our purposes, this included restaurants in

Santa Clara, San Jose, and San Francisco. For each restaurant, the function scrape menu is called, which stores all of

the menu food information for each restaurant. This menu data is then added to the larger food item object, which

stores the menu item information, in addition to all of the information for the restaurant itself. All of these restaurant

items are then finally combined to the larger object which stores every menu item for every restaurant at the location.

Finally, this object writes to restaurant menu csv, which is added to the database to allow the chatbot to parse.
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