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ABSTRACT

Ransomware, a form of malware that restricts access to data until a ransom is paid, accounts for
20% of all cyber crimes. Although companies and organizations often require their personnel to
take training for awareness of such bad actors, social engineering is constantly evolving and
ransomware slips through the cracks every year. In this paper, we suggest a system that would
help detect ransomware using a Smart Network Interface Card (SmartNIC) which runs machine
learning algorithms to detect ransomware before it enters the system. This relieves computers in
the network of the burden of detecting malware, freeing CPU capacity to do other work. Using
previous network data captured while running ransomware binaries, we trained models that
accurately predict whether network traffic contains ransomware using only packet payloads. Our
results suggest that payload analysis could be a valid in-network solution to malware detection.
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Chapter 1: Introduction

1.1 Motivation

Ransomware is a form of malware that threatens to expose an individual’s personal data or

permanently restricts access to it unless a ransom is provided. While basic ransomware may

merely immobilize the system without harming any files, more sophisticated malware employs a

method known as cryptoviral extortion. This method encrypts the victim's files, rendering them

unattainable, and requires a ransom in exchange for decryption. There are 2 types of ransomware

attacks that are popular. The first type is the crypto ransomware that encrypts files in a system

and has the user pay a ransom to unlock their files. The second type of ransomware is locker

ransomware which locks the user out of the system. The mouse and keyboard are left enabled so

that the user can pay to unlock the system. This malware does not delete files, but instead locks

the system until a payment is made. Ransomware is most often spread as a Trojan, a virus that is

disguised as another program. Phishing emails, scareware, and other forms of social engineering

are common ways to install ransomware on a victim's computer. As of 2022, Ransomware

accounts for 20% of all cyber crimes [1].

Existing solutions to ransomware like training personnel are always susceptible to human

error. Frequent backups can be used to prevent data loss, but it may be expensive to maintain

such storage. We use recent developments in the field of machine learning to combine machine

learning classification with SmartNIC technology to improve network security against

ransomware attacks. ProtectNIC implements a machine learning model that classifies incoming

ransomware traffic while performing well enough to run on a SmartNIC without producing

significant network latency.
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1.2 Background and Current Innovations

1.2.1 SmartNICs

Smart Network Interface Chips (SmartNICs) are programmable accelerators, often used to

offload network-related tasks off of a host server. SmartNICs are also referred to as Data

Processing Units (DPUs) and Infrastructure Processing Units (IPUs). SmartNICs are increasingly

being used in data centers to reduce large overhead tasks like network virtualization, security and

storage services that do not directly serve clients [2, 3]. In cloud architectures, these overhead

tasks take away processing power from CPUs, increasing the cost of cloud computing [3]. There

are three main types of SmartNICs.

1. ASIC based NICs are built with custom ASIC designs, which often have embedded

CPU cores to handle new functionality [3].

2. Multicore SoC based NICs provide much better programmability than ASICs at the

cost of performance. However it often has higher latency and poorer scalability. The

Nvidia BlueField (DPU) that ProtectNIC uses is an example of an SoC based NIC.

3. Field Programmable Gate Arrays (FPGAs) are integrated circuits with generic logic

blocks that can be reprogrammed after manufacturing. FPGAs can be programmed to

work as SmartNICs. FPGAs are often described as a balance between ASIC based NICs

and SoC based NICs because they combine the flexibility of SoC programmability with

the performance of custom ASIC hardware [3].

Because our project focuses on the software side of ransomware detection, we use the Nvidia

BlueField, an SoC based NIC which gives the most software flexibility.
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1.2.2 In-Network Devices and Machine Learning

There are many papers demonstrating machine learning on programmable in-network devices.

For example, Planter [5] and MAP4 [6] are frameworks that allow developers to map machine

learning models onto programmable network devices. In-network machine learning has also been

used to detect network attacks by embedding random forest classification in a programmable

switch [7]. It has also been demonstrated that high accuracy packet classification can be done on

SmartNICs with “minor performance degradation” [8].

A big motivation for machine learning on programmable network devices is network

security, and because many data centers already have such architecture in place, it could be a

cheaper solution than having dedicated hardware to perform machine learning. ProtectNIC is

similar in the way that it tries to offload ransomware detection, a security task, from the host

server it is connected to.

1.2.3 Ransomware Detection

There is plenty of literature on ransomware detection, including papers that provide their datasets

and pre-trained models online for anyone to download [9]. A big issue when training machine

learning models to detect malware is the consideration of zero-day variants. Because new forms

of malware may use exploits not seen before in the training dataset, they can be difficult to

detect. Existing research has also been done to consider these risks [10]. ProtectNIC uses such

existing research and datasets to create an accurate ransomware detection model that considers

zero-day variants of ransomware.
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1.3 Proposed Solution

ProtectNIC is a SmartNIC based ransomware detector using the Nvidia BlueField DPU, which

involves training a model able to classify ransomware network traffic without significantly

impacting network latency. This solution is only possible because of recent developments in

Machine Learning and existing programmable in-network hardware. Building on top of previous

research on ransomware detection using machine learning, ProtectNIC will allow a SmartNIC to

detect anomalous activity in network traffic. This would offload work from the CPU, so it can

use more computational power on the primary workload.
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Chapter 2: Use Cases

2.1 Stakeholders

Developers: Santa Clara University Senior Design students

Customers: Companies with existing in-network devices, e.g. Cloud providers interested in

protecting customer data from ransomware attacks.

Users: Security Analysts and Network Administrators for interested companies.

2.2 Use Case Diagram

Figure 2.1: Use Case Diagram for ProtectNIC System

Figure 2.1 shows how ProtectNIC could be used in a medium to large software company that

maintains their own data servers. The ransomware detection system would be installed on

existing in-network devices such as the SmartNIC, and drop incoming packets that are
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classified as ransomware. Recorded network traffic could be used to regularly improve the

model with recent data.
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Chapter 3: Design and Rationale
ProtectNIC implements a machine learning model to detect ransomware. The trained model will

be used in the BlueField DPU to detect malicious packets in a network stream. Packets deemed

malicious by the model should be dropped while other packets should be forwarded to the host

system. Performance of the network should be evaluated with and without the packet

classification. Although increased latency is expected, ProtectNIC minimizes as much

performance overhead as possible.

3.1 Proposed Requirements

3.1.1 Functional Requirements

There are three major functional requirements for this project:

1. Ransomware detection model classifies ransomware network traffic and runs on a

SmartNIC (Bluefield DPU).

2. System detects ransomware threats before they infiltrate the network, reducing the risk of

system compromise.

3. Machine learning models are able to update its parameters to match new training data in

order to adapt to evolving ransomware threats.

3.1.2 Non-Functional Requirements

ProcectNIC has two major objectives: accurate ransomware detection, and minimal latency while

doing so. Here are some metrics that would help us achieve these goals:
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● Network speed / Latency. The slowdown caused by packet classification has to be

negligible, or at least worth the security advantages. The network speed must at least be

80% of its original value while classifying ransomware.

● Model performance. The detection model should detect ransomware packets relatively

accurately, meaning an f1-score of above 80%, given that previous research has achieved

similar numbers [9].

● Model Size. Since ProtectNIC will work on programmable network devices, which will

often have constrained resources, the model should be under 64 GB in size (memory limit

for Bluefield DPU 3).

3.2 Datasets

The training dataset consists of open repositories and contemporary research to train the

ransomware detection model. The first is the Ransomware PCAP repository [11], which provides

samples of network activity recorded during the execution of binaries of different ransomware

applications. There are a total of 39 families of ransomware in the repository, each with multiple

PCAP files of sizes from a couple hundred megabytes to several gigabytes. The total size of the

dataset approximated 120 gigabytes in size. The repository has recent data with packet captures

from 2015 to 2021. In addition, the same research also provides pre-trained models [12] that can

be used as a baseline for classification.

For goodware network traffic data, the UNSW-NB15 [13] dataset provides packet

captures of a mixed set of applications from regular day to day activities. USTC-TFC2016 [14]

provides packet captures recorded from applications like BitTorrent, Facetime, and World of

WarCraft. We combine portions of both datasets to create network traffic data that resembles

real-world network activity.
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3.3 Model

The ProtectNIC model attempts to detect ransomware in network packets. There is previous

work [12] that has used Neural Networks (NN) and Convolutional Neural Networks (CNN) that

provides good baselines for how well our model should perform. Previous research also [15]

suggests that decision tree models and random forests perform well to classify ransomware

traffic. Considering their previous performance, we train XGBoost and random forest models

which have been shown to have a good reputation for avoiding overfitting and producing models

that make efficient use of computing resources. Setting depth limits also helps our models

generalize to outliers like zero-day attacks, a major risk for malware detection models [10].
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Chapter 4: Technologies

4.1 Hardware

The ransomware detection models are intended to classify network traffic on a NVIDIA

BlueField-3 Data Processing Unit (DPU). Model training and testing is performed on the

Wiegand Advanced Visualization Environment (WAVE) High-Performance Computing (HPC)

cluster. This cluster comprises powerful multi-core/multi-socket servers with high-performance

storage, GPUs, and large memory, interconnected by a fast network. It is designed to support

high computation and memory-intensive programs. Complementing these, a standard laptop,

specifically the MacBook M1 Pro, serves as the primary computing platform.

4.2 Software

On the software side, Python serves as the core programming language, while machine learning

libraries such as Scikit-learn, XGBoost, and Keras are used to train and evaluate models.

Additionally, visual libraries including Seaborn and Matplotlib are employed to produce data

visualizations, enhancing the interpretability of results and insights derived from the analyses.
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Chapter 5: Implementation

5.1 Development Timeline and Risks

5.1.1 Development Phases

Phase 1: Research. Research and understand machine learning development. Read previous

work on malware and ransomware detection.

Phase 3: Design. Establish project guidelines and constraints. Decide major technologies to use

throughout the project.

Phase 4: Prototyping. Create and test prototypes for ransomware detection models.

Phase 5: Training. Build ransomware detection system based on prototypes and previous

research.

Phase 6: Evaluation. Evaluate model performance in terms of accuracy and speed.

5.1.2 Project Timeline

Figure 5.1: Project Timeline
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5.1.3 Risk Analysis

Risk Description Mitigation

Delayed Arrival of Bluefield Unable to test model on
intended SmartNIC hardware.

N/A

Data Privacy Concerns The ML model may process
sensitive information, leading
to privacy concerns.

Use data anonymization and
encryption practices.

Model Drift Ransomware attacks may
change over time, leading to a
decline in the model's
performance.

Update model regularly with
new data to adapt to changing
patterns in ransomware
attacks.

Resource Overhead Running ML models can be
resource-intensive, potentially
impacting system
performance.

Adjust model
hyperparameters to improve
model performance.

User Awareness Users may undermine the
effectiveness of the
ransomware prevention
system through risky
behavior.

Conduct regular cybersecurity
awareness training for users.
Encourage best practices such
as avoiding suspicious emails
and keeping software up to
date.

False Positives/Negatives: The ML model may
incorrectly classify benign
activities as ransomware
(false positives) or fail to
detect actual ransomware
attacks (false negatives)

Regularly update the ML
model based on new data.
Use a combination of
machine learning and
traditional rule-based
methods to reduce false
positives and negatives.

5.2 Prototyping

5.2.1 Operation Classification

This prototype attempts to reproduce the results in a previous paper [16] that trained a model to

classify computer operations as either ransomware or goodware with high accuracy. The dataset
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includes a log of computer operations, including API calls and file operations. Sample features

were generated dynamically from data obtained from VirusShare.com. Using this dataset, we

trained a model to classify ransomware operations using the default XGBClassifier from the

XGBoost API. With a 80/20 split for training and testing data, this model was able to achieve

similar accuracy to that of the paper. The table and confusion matrix below shows the resulting

performance metrics:

Metric Value

Accuracy 0.9836

Precision 0.9826

Recall 0.9741

F1-Score 0.9783

Table 5.1:Metrics for XGBoost model for operation classification

Figure 5.2: XGBoost Classifier confusion matrix for operation classification
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XGBoost performs well on all metrics and boasts a high rate of true positives and true negatives.

This helped us determine that XGBoost was a good choice for malware detection, and gave us a

preliminary idea of whether ransomware detection through network traffic would be feasible.

5.2.2 Per-Packet Classification

As a first attempt to classify network traffic, we trained a random forest classifier that predicts

whether a packet is part of a ransomware attack based on its fields. For the sake of practicality, a

small set of packet capture (.pcap) files was used:

File Name Source Dataset

Hive_06082021.pcap Ransomware PCAP Repository

CryptoFortress_12032015.pcap Ransomware PCAP Repository

client_normal_1_210110.pcap UNSW-NB15

Gmail.pcap USTC-TFC2016
Table 5.2: list of .pcap files used to train per-packet classifier

Because a majority of the network traffic followed the TCP protocol, we limited our dataset to

TCP packets. Tshark was used to extract packet fields from the TCP packets, which includes

fields from TCP protocol, Ethernet, and the IP protocol. Each sample of the resulting dataset

represents a TCP packet with features representing packet fields. Each packet was also labeled as

ransomware or goodware according to their source file.

Using default parameters, Scikit-learn was used to train a random forest classifier on a

80/20 train test split. The graph below shows the feature importances of each packet field. Packet

fields are labeled by their filter name in Wireshark.
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Figure 5.3: Random Forest Feature Importances (Per-packet Classification)

Although the model achieves both an accuracy and f1-score of 1.0, the feature importances

shown in Figure 5.3 show us that the packet fields with the greatest importances are usually

client specific. The model mainly uses differences in network speed (frame.time_delta and

tcp.analysis.initial_rtt), port numbers (tcp.srcport and tcp.dstport) and raw sequence numbers

(tcp.seq_raw) to make predictions. Since we only have a few clients in our dataset, this makes it

easier for the model to rely on client specific features. Per-packet classification does not provide

the generalized approach needed to classify real-world network traffic.
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5.2.3 Cosine Similarity of Packet Flows

Instead of fields of individual packets, much previous work [17-18] classifies network traffic by

looking at the characteristics of packet flows. The first advantage of this is that packet flows give

the bigger picture of network activity and have features that can be more easily generalized. The

second advantage is that classification needs to be done only once per packet flow, meaning less

time is spent on prediction for each packet.

In this prototype, we take inspiration from both packet flows and tokenization used in

natural language processing to vectorize network traffic data. For the same reasons as mentioned

before, we only use packets following the TCP protocol. First, we define a packet flow as a set of

packets with the same source IP address (ip.src), destination IP address (ip.dst), source TCP port

(tcp.srcport), and destination TCP port (tcp.dstport). In addition, the relative sequence numbers

(tcp.seq) must be sequential. If relative sequence numbers are not sequential, we assume a new

packet flow is started.

Once packets are split into flows, 4 bytes are taken from the end of the TCP payload of

each packet. We count the frequency of each unique 4 byte sequence and place these values into

a vector representing a single packet flow. The order of each vector is kept consistent, and each

unique 4 byte chunk’s frequency is represented by a unique index in the vector.

Finally, the cosine similarity is calculated between the vectors representing the longest

flows from each .pcap file. Given the vectors are represented by A and B, the cosine similarity is

calculated between each pair of vectors as follows:
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The cosine similarity between every pair of vectors for the files in our dataset is shown in Figure

5.4.

Figure 5.4: Cosine similarity between representative flows of each .pcap file

Filenames of ransomware and goodware are highlighted in blue and yellow respectively.

Similarities closer to 1 are highlighted in green while similarities closer to 0 are highlighted in

red. The average similarity between any two ransomware applications was 0.84, while the

average similarity between any two goodware and ransomware applications was 0.0003. From

these results, it is clear that a representative packet flow of ransomware applications is likely to

be more similar to that of other ransomware applications. One outlier is Cryptoshield, which has

relatively lower similarities with other ransomware. We also see some similarities between

goodware, but this should not affect our model performance. We use the results from this

prototype as the basis for our final ransomware detection models.
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5.3 System Design

Figure 5.5: System Architecture for Model Training

Figure 5.5 is a high level visual representation of how the final XGBoost classifier and random

forest classifier are trained. More detail on each step is provided in the following sections.

5.4 Data Preprocessing

We use 30 Gigabytes of packet capture files from public datasets [11], [13] and [14] as our input

data. A list of the files we use and their sources can be found in Appendix B.

During the data preprocessing step, all .pcap files are first fed into Tshark, which extracts

the source IP address (ip.src), destination IP address (ip.dst), TCP source port (tcp.srcport), TCP
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destination port (tcp.dstport), raw sequence number (tcp.seq_raw), relative sequence number

(tcp.seq), and TCP payload (tcp.payload) from each TCP packet. These features are then used to

split the packets into flows as defined in the cosine similarity section, and duplicate packet flows

are removed to prevent data leakage. Finally, the payloads of each packet flow is placed on

separate rows of a .csv file. Because some files may be too large to load into memory, the dataset

is split into chunks smaller than system memory. 80% of dataset chunks are placed in the training

dataset, and 20% is used for the testing dataset.

5.4.1 Class Imbalance

Figure 5.6: Pie chart illustrating class imbalance of .pcap dataset

Despite having larger file sizes, the .pcap files for ransomware binaries often had fewer packet

flows with more packets in a single flow. On the other hand, goodware tended to have a large

number of shorter packet flows. In addition to ransomware network traffic being more difficult to
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find, this resulted in a class imbalance of mostly goodware flows. Out of a total of 33385 packet

flows, only 2355 were ransomware flows.

5.5 Model Training

Both the XGBoost and random forest classifiers were trained on the same dataset produced by

the dataset preprocessing step.

5.5.1 XGBoost

Since the built-in XGBoostClassifier does not support incremental learning, a custom XGBoost

model was built using the XGBoost API. The hyperparameters are listed in Appendix A. Our

model uses hinge loss for binary classification, and incrementally trains on chunked dataset files

from the training dataset. 13 separate training sessions are performed, each adding 10 estimators

to the previous model (resulting in a total of 130 estimators). To prevent overfitting, a max depth

of 6 is also provided.

Figure 5.7 shows the accuracy improvement after each incremental training session.

Accuracy is calculated for each .pcap file in the testing dataset.
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Figure 5.7: Accuracy scores of XGBoost Classifier after every incremental training session

After the seventh training iteration, model predictions do not change even with additional data.

We also see outliers like Spora, that perform poorly even after additional training. A possible

reason for this result is both a lack of data, and shorter packet flows in Spora having similarities

with goodware. Nevertheless, the increasing accuracy shows that this is a promising approach to

updating existing models with contemporary data.

5.5.2 Random Forest

With the WAVE system, we were able to fit the entire dataset into memory and train a random

forest model on the entire dataset. Scikit-learn’s implementation of random forest does not

support incremental training, and workarounds like Dask Dataframes must be used to chunk

larger datasets. However, this still means that the model needs to be retrained on the entire
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dataset when the model needs to be updated. Our model uses 100 estimators, and model

hyperparameters are provided in the Appendix A.
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Chapter 6: Results and System Evaluation
The final models are evaluated against the testing dataset, which contains a total of 6677 packet

flows. More specifically, the testing dataset contains 6206 goodware and 471 ransomware packet

flows.

6.1 Metrics

We evaluate the classification performance of both models using standard metrics provided by

scikit-learn. Cumulative f1-score and accuracy are calculated using the testing dataset, and

training error is calculated using the training dataset. Metrics for both models are shown in figure

5.8.

Figure 5.8: Visualized metrics for final XGBoost and random forest classifiers
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Random Forest performs slightly better than XGBoost in both f1-score (0.95) and cumulative

accuracy (0.99). We hypothesize that this could partially be attributed to the class imbalance of

the dataset.

6.2 Confusion Matrices

Figure 5.9: Confusion matrices for final models for packet flow classification

Goodware and ransomware samples are labeled “False” and “True” respectively. Figure 5.9

illustrates that ransom forest and XGBoost both boast a high rate of true positives and true

negatives, demonstrating that the high accuracy of the models is not a result of class imbalance.

6.3 Inference Times

Other than accurate classification of ransomware packet flows, our model needs to perform well

on in-network devices without significantly affecting network latency. Inference times of random

forest and XGBoost were measured on a Macbook M1 Pro. These times were measured for

making predictions on the testing dataset, a total of 6677 packet flows.
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Figure 5.10: Inference times on testing dataset for final XGBoost classifier

Figure 5.10 shows the inference times for the XGBoost model at different stages of incremental

training. Where XGBoost performs most accurately (80 to 130 estimators), the models have an

average of 0.109 second inference times. Random forest makes the same predictions in 3.127

seconds, about 31 times slower.
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Chapter 7: Constraints and Standards

7.1 Constraints

Our project faces several constraints that shape our development process. Firstly, time is a

significant constraint, with approximately 30 weeks allocated for project development. This

duration must be balanced alongside the academic commitments and job search activities of

three student team members. Moreover, due to data sensitivity concerns, access to normal packet

captures of medium to large corporations is restricted, which limits us to public datasets for

development.

Hardware limitations constrain our model training, as we are restricted to personal

computers and WAVE, limiting our ability to train on larger datasets. Additionally, issues with

purchasing and the 16-week estimated shipping time of the Bluefield 3 DPU prevent us from

testing the model on our own SmartNIC. A significant constraint is the necessity to preprocess

data to ensure compatibility with machine learning libraries and frameworks, primarily those

available in Python, which we have chosen as our development environment.

7.2 Standards

Code for training and testing the ransomware detection model is written and interpreted in

Python 3.12.0 [19] because of personal familiarity and Python’s popularity in machine learning.

Our code generally follows the PEP (Python Enhancement Proposals) 8 style guide [20], which

provides conventions to keep our code readable and consistent. In addition, we use standard

machine learning libraries like Scikit-learn [21] and XGBoost [22] which implement APIs in

multiple programming languages so that trained models can be easily ported to other systems
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Our project uses Conda [23], a command line tool to manage Python dependencies and

environments. We use Jupyter Notebook (.ipynb) [24] files that combine rich text with code and

execution output, allowing us to record results and document model training and evaluation.

Standard metrics like accuracy and f1-score were imported from Sci-kit learn to ensure fair

evaluation of models, and the recommended 80% training 20% testing split was used to partition

the network traffic dataset.
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Chapter 8: Societal Issues

8.1 Ethical

In the development of the ransomware detection model, several ethical issues arise,

predominantly concerning data privacy and security. One significant ethical concern is the

potential violation of personal and corporate privacy. During the process of training the model,

normal network traffic is recorded, which inherently contains sensitive information. Although the

analysis is restricted to network headers within PCAP files, the mere act of collecting this data

can still pose privacy risks. These ethical dilemmas highlight the need for careful consideration

and management of data to ensure that privacy and security are not compromised during the

development and deployment of the detection model.

8.2 Economic

The primary economic consideration for this project is the cost of the SmartNIC. Apart from this

significant expense, the remainder of the project relies entirely on software, incurring no

additional costs. During our research, we explored alternative options for the SmartNIC, such as

FPGAs and ASICs. However, because we wanted to focus on the software side of development,

SoC emerged as the most suitable option. While our models are trained with the Bluefield DPU

in mind, ProtectNIC hopes to reduce the cost of businesses like cloud providers by offloading

security tasks onto a range of existing in-network devices. This could also help reduce the cost of

cloud services to end users and the general public.
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8.3 Compassion

Compassion is central to our project, as we are acutely aware of the suffering caused by

ransomware attacks, particularly in healthcare settings. In 2023 alone, 46 hospital systems were

targeted, affecting 141 hospitals and disrupting access to vital IT systems and patient records

[25]. This disruption forces emergency departments to redirect patients to other facilities,

straining regional healthcare resources and negatively impacting the treatment of time-sensitive

conditions such as acute strokes. Tragically, it is estimated that ransomware attacks led to the

deaths of 42 to 67 Medicare patients between 2016 and 2021 [25]. By developing a robust

ransomware detection model, we aim to alleviate this suffering by enhancing the security of

healthcare systems, ensuring continuous access to critical patient data, and ultimately

safeguarding human lives. This project is driven by a desire to relieve the suffering caused by

cyberattacks, reflecting our commitment to compassion in engineering.

8.4 Sustainability

A major sustainability issue with malware detection models is whether they can keep up with

evolving cyberattacks. In order for machine learning to keep up with the latest ransomware,

models need to be updated with the newest data. Recording ransomware traffic has to be an

ongoing effort to prevent models from becoming obsolete when faced with new ransomware

threats.

8.5 Lifelong Learning

Machine learning development is often a process of trial and error. However, we can guide our

prototyping with the help of the insights of more experienced engineers. Building the final
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models for ProtectNIC required inspiration from previous prototypes, advice from our faculty

advisor, and knowledge of previous research. We needed to explore XGBoost’s API ourselves in

order to build a classifier that could perform incremental training. This project has helped us

explore outside of what coursework has taught us, and has been a reminder that there is often no

“correct” answer when creating real world solutions. We hope this serves as a first step of

converting theory into practice, from students to engineers.
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Chapter 9: Conclusions
In this paper, we presented a novel approach to ransomware detection that may help offload

security tasks to in-network devices like the SmartNIC. The models presented use the TCP

payload to make inferences at high accuracies, and show that payload analysis of packet flows

can be a promising approach to detecting ransomware. While we saw that random forest

outperforms XGBoost in terms of metrics, XGBoost provides a resource-efficient solution to

ransomware detection and a convenient way to improve an existing model with contemporary

data. Our results provide insights on how machine learning models might be used for lower

latency network security and we demonstrate how small, lightweight models can be trained for

packet flow analysis.

Both our models achieve our goals in terms of f1-score and model size, but we have not

performed performance testing on their intended hardware due to issues with purchasing the

Bluefield DPU. In addition, while we evaluate the model against the testing dataset, the model

needs to be generalized to work against unseen threats like zero-day attacks. Finally, a big

disadvantage of the random forest model is that it must be retrained for every update, which is a

lengthy process when working with large datasets. Even the XGBoost model, which supports

incremental training, must be adjusted so it can scale more effectively without significantly

increasing the number of estimators.

Much work needs to be done to test and improve model performance on zero-day attacks

and outliers like Spora. Possible solutions include increasing training data from the Ransomware

PCAP repository to fix class imbalance and adjusting model hyperparameters to improve model

scaling and accuracy. We also hope to build a working system on a SmartNIC so network latency

can be measured in real-world situations.
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Appendices

Appendix A: Final Hyperparameters for Resulting Models

XGBoost Hyperparameters

booster='gbtree'
device=cpu
validate_parameters=True
nthread=None
disable_default_eval_metric=False
eta=0.3
gamma=0
max_depth=6
min_child_weight=1
max_delta_step=0
subsample=1
sampling_method='uniform'
colsample_bytree=1
colsample_bylevel=1
colsample_bynode=1
lambda=1
alpha=0
tree_method='auto'
scale_pos_weight=1
refresh_leaf=1
process_type='default'
grow_policy='depthwise'
max_leaves=0
max_bin=256
num_parallel_tree=1
multi_strategy=one_output_per_tree
max_cached_hist_node=65536
objective=binary:hinge
seed=0
seed_per_iteration=False

Scikit-learn Random Forest Hyperparameters

n_estimators=100
criterion=”gini”
max_depthi=None
min_samples_split=2
min_samples_leaf=1
min_weight_fraction_leaf=0.0
max_features=”sqrt”
max_leaf_nodes=None
min_impurity_decrease=0.0
bootstrap=True
oob_scoreb=False
n_jobs=None
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random_state=0
warm_start=False
class_weight=None
ccp_alpha=0.0
max_samples=None
monotonic_cst=None
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Appendix B: Table of .pcap files used and their Sources

Filename Source

cerber_04102016.pcap
cerber_03102016.pcap
cerber_05102016.pcap
cerber_06022017.pcap
cerber_10082016.pcap
CryLock_24012021.pcap
CryptoFortress_12032015.pcap
CryptoShield_31012017.pcap
Hive_06082021.pcap
maktub_12042018.pcap
MRCR_15012017.pcap
netwalker_21012021.pcap
RansomX_28062020.pcap
Scarab_18102019.pcap
Spora_17052017.pcap

Ransomware PCAP Repository [11]

Gmail.pcap
BitTorrent.pcap
WorldOfWarcraft.pcap

USTC-TFC2016 [14]

client_normal_1_210110.pcap
client_normal_2_210111.pcap
client_normal_3_210111.pcap
normal_IoT_3.pcap

UNSW-NB15 [13]
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