
Santa Clara University Santa Clara University

Scholar Commons Scholar Commons

Computer Science and Engineering Senior
Theses Engineering Senior Theses

6-11-2024

Hiv3: An Efficient Beehive Monitoring System Hiv3: An Efficient Beehive Monitoring System

Jack Ursillo

Aneal Kuverji

Connor Merhab

Anshuman Sahu

Follow this and additional works at: https://scholarcommons.scu.edu/cseng_senior

 Part of the Computer Engineering Commons

https://scholarcommons.scu.edu/
https://scholarcommons.scu.edu/cseng_senior
https://scholarcommons.scu.edu/cseng_senior
https://scholarcommons.scu.edu/eng_senior_theses
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F285&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F285&utm_medium=PDF&utm_campaign=PDFCoverPages

SANTA CLARA UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Date: June 7, 2024

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Jack Ursillo
Aneal Kuverji

Connor Merhab
Anshuman Sahu

ENTITLED

Hiv3: An E�cient Beehive Monitoring System

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

Thesis Advisor

Thesis Advisor

Department Chair

�������������������������������
�
��������������	���
����

Hiv3: An E�cient Beehive Monitoring System

by

Jack Ursillo
Aneal Kuverji

Connor Merhab
Anshuman Sahu

Submitted in partial fulfillment of the requirements
for the degree of

Bachelor of Science in Computer Science and Engineering
School of Engineering
Santa Clara University

Santa Clara, California
June 11, 2024

Hiv3: An E�cient Beehive Monitoring System

Jack Ursillo
Aneal Kuverji

Connor Merhab
Anshuman Sahu

Department of Computer Science and Engineering
Santa Clara University

June 11, 2024

ABSTRACT

Beehive monitoring plays a major role in ensuring the health of beehives by checking for overpopulation or under-
population within a hive. Beehive monitoring provides beekeepers with the opportunity to take action and save the hive
before the problem becomes irreversible. Most solutions are too expensive for everyday beekeepers and lack elements
of sustainability, making it impractical for small scale beekeepers. In this thesis, we propose a solution to this problem,
demonstrating its sustainability and user-friendliness, which enables us to e↵ectively reach a larger consumer market.
We support these claims through the use of sustainable systems such as using a solar panel coupled with a recharge-
able battery and incorporating deep-sleep capabilities into the system’s low-power embedded system (ESP32) which is
connected to a camera. The ESP32 sends images to a Raspberry Pi, which performs image processing using a machine
learning model and transmits the processed images to the cloud. We present a system architecture diagram describing
how these systems are integrated as well as how other measures, such as security and single sign-on, are implemented
to ensure the integrity of the solution. The system tests conducted in the field show that the machine learning model
yields a mean average precision (MAP) score of 52.2, compared to the benchmark score of 53.7, ensuring accurate,
real-time monitoring utilizing a low-power system.

Table of Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Background . 2

1.2.1 External Beehive Monitoring System . 2
1.2.2 Internal Beehive Monitoring System . 2

1.3 Approach . 2
1.4 Organization . 3

2 Related Work 4
2.1 Methods . 4
2.2 Stakeholder Needs . 4
2.3 User Stories . 5

3 Design and Rationale 6
3.1 Design . 6

3.1.1 ESP32 Architecture . 7
3.1.2 Raspberry Pi Architecture . 7
3.1.3 Cloud/User Interface Architecture . 8

3.2 Functional Requirements . 9
3.3 Non-functional Requirements . 9
3.4 Rationale . 10

4 Technologies 11
4.1 React.JS . 11
4.2 Node.JS . 12
4.3 MongoDB Atlas . 12
4.4 Heroku . 13
4.5 Roboflow . 13
4.6 YOLOv8+Bytetrack . 14

4.6.1 Repulsion Loss . 15
4.7 Open Secure Socket Layer (SSL) . 16
4.8 Raspberry Pi . 16
4.9 Watchdog . 17
4.10 ESP32 . 17
4.11 Solar Panel and Rechargeable Battery . 18

5 System Evaluation 19
5.1 Internal Testing . 19

5.1.1 Security Test . 19
5.1.2 Integration Test . 20
5.1.3 Database Test . 20
5.1.4 Machine Learning . 21

5.2 External Testing . 22

iv

5.2.1 Frame Rate vs Quality Capture . 22

6 Implementation Plan 25
6.1 Timeline . 25
6.2 Agile Software Development . 25
6.3 Project Risks . 26

7 Constraints and Standards 28
7.1 Constraints . 28
7.2 Standards . 29

8 Societal Issues 31
8.1 Ethical . 31
8.2 Economic . 31
8.3 Manufacturability . 32
8.4 Sustainability . 32
8.5 Environmental Impact . 32
8.6 Usability . 32
8.7 Lifelong Learning . 33

9 Conclusion 34

10 Acknowledgments 36

11 References 37

12 Appendices 40
12.1 ESP32 Timer + Deep Sleep . 40
12.2 Image Gallery.js . 40
12.3 Frontend API Calls . 41
12.4 Machine Learning BBox Loss Function . 41

v

List of Figures

3.1 High Level Overview . 7
3.2 ESP32 Software Architecture . 7
3.3 Raspberry Pi Software Architecture . 8
3.4 Database and User Interface Architecture . 9

4.1 Initial Capture . 14
4.2 Bee crosses the border . 15
4.3 Repulsion loss annotating tight clusters of bees . 16

5.1 Resolution Quality Comparison . 22
5.2 Image Quality Ranges in Kilobytes . 23
5.3 Maximum Frame Rate Per Quality . 23
5.4 Resolution Quality Comparison . 24

6.1 Risk Analysis Chart . 27

vi

Chapter 1

Introduction

Bees play a vital role in our ecosystem, since they are essential for pollinating many crops that we consume on a

daily basis. In 2018, 1.8 million bee colonies were shipped to California to pollinate various crops; yet, during transit

around 45% of the colonies were lost [1]. The majority of these losses can be attributed to the poor health condition

of the colonies, as the state of a beehive is a large factor in how productive a colony will be. In order for beekeepers

to maintain a colony’s health, the beekeeper must keep track of the current population of each hive and frequently

check bees for varroa mites. A hive’s population can fluctuate rapidly in the spring and summer seasons, as numbers

can increase from 20,000 to 60,000 bees [2]. If the hive’s population is left unchecked, overpopulation can lead to

swarming, where an estimated half of the hive, including the queen, leaves in search of a new one. This sudden

abandonment leaves the current hive depleted of its resources and increases the risk of disease. Current methods to

prevent swarming involve weighing the hive, counting the number of unhatched eggs, and analyzing the brood pattern.

These solutions vary considerably in accuracy and will not always give the beekeeper a proper count of the hive. The

proposed solution removes the variability present in prior solutions by keeping track of the number of bees entering

and exiting the hive, providing the beekeeper with real-time updates which can be viewed on the web app. We aim to

improve this project by further by updating the software, implementing new hardware, and introducing a solar power

energy system. By incorporating these improvements, we believe that we can cut both latency and energy costs of the

system leading to a better user experience.

1.1 Problem Statement

There is a wide array of solutions to assist in a beehive’s overall health; however, many solutions are impractical due

to the expense or lack of e�ciency. We intend to remedy most of these issues, as we aim to be a small compact

system placed near the entrance of the hive. With the camera being one of the main components the overall expense

of adding more systems is much cheaper compared to other potential solutions, as a customer would only need to

purchase another camera, solar panel, and battery. This camera would be able to count the number of bees entering

1

and exiting the hive using an energy-e�cient and reliable communication system. The data collected from the camera

will be sent over the cloud to the managing Raspberry Pi and the database. The data can be easily accessed through

the web application. We will leverage data analytics to evaluate how many bees are present in the hive during the day

and track the population of the hive over a period of time.

1.2 Background

As a continuation project, we would like to mention last year’s members who worked on this project. While visiting

the apiary, we noticed that the monitoring system had a power cord running from the garage outside, and we thought

about the system’s feasibility if it was in a practical field. We drew influence from this and decided that the system

should be energy e�cient and sustainable through the use of solar energy. After speaking to the client, we received

feedback about designs and quality of life updates for the system. The objective is to create an energy-e�cient external

monitoring system. The first step we needed to understand was the power consumption and capabilities of the ESP32

camera with a sustainable power supply that consists of a solar panel and external battery. Then we would need to

figure out how to relay data to the machine learning model and find a way to store it for later use. Subsequently, we

needed to figure out how a user is able to visualize the data without impairing the quality of the live stream, while

being able to modify the camera settings.

1.2.1 External Beehive Monitoring System

We want to acknowledge a current competitor like Eyesonhives [3], as we were able to create use cases with an

external monitoring system. Eyesonhives is a solar powered external monitoring system that analyzes and makes an

inference on the supervised tra�c. This inference can be one of four patterns which has been built on over 7 Terabytes

of data. The tra�c data and inference are relayed over to the cloud, allowing an authorized user remote access to their

information through a mobile application or a website.

1.2.2 Internal Beehive Monitoring System

Another competitor we would like to acknowledge is Broodminder [4]. Broodminder’s internal beehive monitoring

system measures the internal temperature and humidity with an accuracy of 1°F which is used to determine the health

activity of the hive. Broodminder uses Bluetooth Low Energy to transmit data to the cloud free of charge and users

can access this data on their mobile application.

1.3 Approach

While researching the ESP32 camera, we found an open-source camera web server which is capable of hosting a live

stream, providing the user the ability to manipulate the camera specifications, and capturing images with minimal

2

interference to the live stream. This example is an over the air (OTA) camera web server [5], which allows the camera

to connect locally to the internet by using a local internet protocol(IP) to access the server. We were suggested to

use a Raspberry Pi to manage the camera, and once we established this connection, the next step was to decide on a

way to store data. We discussed a possibility of setting up an edge device, which would eliminate the need for cloud

services, with specifications of an NVIDIA 4070 GPU and WD-Black 2 TB SSD to allow for fast machine learning

predictions. However, halfway through the process, we needed to transition to using a cloud database due to time

constraints. The GPU and the SSD we purchased would be used in a server to train the machine learning model, and

the model would be deployed and run on the images sent to the Raspberry Pi. This transition to cloud base services

introduced MongoDB, which would be the primary database for holding the data transmitted from the Raspberry Pi.

To visualize this data, we developed a React web application which we hosted on Heroku, a cloud platform that allows

for public hosting. We then secured the connections from each step through a secure socket layer (SSL) tunnel by

Cloudflare, and were successful in establishing a connection to the cloud using a Raspberry Pi [6].

1.4 Organization

In Chapter 2, we talk about the background of the proposed solution and mention competitors within the field. In Chap-

ter 3, we walk through the proposed solution’s design at a high level and the architecture of individual components.

We also mention the requirements and logic that the team had when designing the proposed solution. In Chapter 4, we

expand on each of the individual technological components used within the proposed solution. This includes a further

explanation on why certain services were selected while keeping true to the Design Rationale. In Chapter 5, we talk

about the internal and external testing of the components of the system. In Chapter 6, we talk about the timeline and

some risks of the project. In Chapter 7, we mention the challenges encountered throughout the project and highlight

incorporated industry standards. In Chapter 8, we talk about the impact of the project in respect to societal topics such

as ethics and sustainability. Finally in Chapter 9, we discuss future work and end with some final closing remarks.

3

Chapter 2

Related Work

In this section, we talk about the client’s requests as well as design inspiration for the project. We also mention

the current competitors and analyze their costs from a stakeholder’s perspective. We examined their strengths and

incorporated most of them in the design of the project, such as temperature and wind speed measurements. We

identify the target audience of the project and discuss design features aimed at enhancing the user experience. The

goal is to ensure that a customer would be more inclined to choose this solution over the current competitors.

2.1 Methods

Early within the project, the client expressed interest in simultaneous photo capture and live stream. We took this as

the foundation of the research and design process and became an essential part of the minimal viable product, as we

wanted to satisfy their requests. During the research phase, we discovered that the client might have issues with the

camera interface as there was over 15 modification options for the camera, which inspired us to make user-friendly

camera controls. These controls would only modify the relevant features such as dynamic resolution or brightness and

are located on the web application.

2.2 Stakeholder Needs

The goal of the system is to provide more information to a beekeeper about a bee’s behavior by supplying images

and tracking bees that are entering and exiting a hive. The system prioritizes e�ciency as the product incorporates

power-e�cient sleep cycles, which conserves solar energy. By utilizing a↵ordable materials such as the ESP32 camera

module, we are able to reach a larger consumer market, as the product can be used by bee farms of any size, whereas

existing solutions cannot. We prioritize reliability and security, as authorized users are able to view the live feed

whether they are connected locally or wirelessly. The user interface incorporates Google Single Sign On (SSO) [7], to

ensure validity of an email address and assigns a unique user id. This user ID is then verified with MongoDB to see if

it exists in the database. If the ID is not found in the database, then the user is granted the guest role and has limited

4

access to ensure that they are unable to tamper with the system.

To address current competitors, the proposed solution maintains its reliability with a significant reduction in cost.

External solar energy beehive monitoring systems such as Eyesonhives [3], can cost upwards of $350 per unit. Internal

monitoring systems such as BroodMinder [4], can cost around $42 a unit, but is powered by a lithium-ion battery which

will need to be replaced on a yearly basis and can be di�cult to access the sensor.

2.3 User Stories

As a new beekeeper, one would want constant supervision to ensure the hive is healthy and stable. Rather than

hindering the beekeeper, the system would capture subsequent images and provide real-time updates on the total

number of bees entering and exiting the hive with minimal downtime. Now that the beekeeper no longer needs to

hover around the hive, they can do other things and can check on their bees remotely.

As a rural beekeeper who may not be tech-savvy, one would want a system that is easy to understand. The

beekeeper would like to grasp how to use the product without the need for extensive training. The user would also

prefer to view the product and be quickly able to grasp the basic information provided by the product. They would

like a system that can operate on its own, without the need for extensive maintenance.

A beekeeper interested in beehive monitoring systems prefers a product that has the option to customize parts of

the system. The beekeeper wants to use use di↵erent resolutions and frame rates in order to get their ideal live stream.

Furthermore, the user wishes to take images captured from the stream and save them locally.

5

Chapter 3

Design and Rationale

In this section, we examine the project’s design at both a high level and at an internal system architecture level.

We describe the di↵erent methods applied to each component and compile together results within the framework of

this project. While designing the project, the team followed their requirements to ensure that the components would

function cohesively. This section dives further into the design rationale and analyzes why certain technologies were

selected, as well as how they fulfilled their respective tasks.

3.1 Design

The team came up with multiple designs for the project and Figure 3.1 shows the high-level overview of the final

design. The rationale is that the solar panel provides charge to the battery, which supplies power to the ESP32

camera. The ESP32 camera is mounted over the beehive entrance and takes continuous images, while simultaneously

transmitting over a user’s network to a LAMP server(Linux, Apache, MongoDB, and PHP), which is hosted on the

Raspberry Pi. The Raspberry Pi will utilize Watchdog scripts to move the images to another folder and then run an

externally trained machine learning model on the images as it makes predictions. After processing the last image, these

predictions are updated in and out of variables, and the variables and images are submitted to MongoDB. These images

and data variables can be pulled on the user interface with a Firebase security layer, allowing unique user identification.

Once a user logs in, they are routed to the homepage, where they can see a live stream, the most recently added data,

and a data table displaying analytics. Users can make remote modifications to the camera via the live view page by

manipulating the resolution drop-down tab or the sliders to change settings such as frame rate and brightness. These

updates are then sent over the cloud through the Raspberry Pi to the LAMP server. The camera will then receive these

changes, allowing for almost simultaneous updates.

6

Figure 3.1: High Level Overview

3.1.1 ESP32 Architecture

As shown in Figure 3.2, the ESP32 first connects to the local network using the Arduino WiFi library and gets a list

of known IPs from its IP table. If a WiFi network is known, then the ESP32 attempts to establish a connection to the

known WiFi network. After connecting to the network, the ESP32 then establishes a connection to the LAMP server

over WiFi and this is possible since the ESP32 and Raspberry Pi can verify each other’s identity through the use of

SSL certificates. Once verification is complete, the ESP32 can transmit images to the LAMP server, and the ESP32

can also receive updates from the Raspberry Pi.

Figure 3.2: ESP32 Software Architecture

3.1.2 Raspberry Pi Architecture

The Raspberry Pi is responsible for most of the functionality of the system and it is a vital piece in the architecture

since it allows for remote management, data processing, and uploading to the cloud. As shown in Figure 3.3, the

Raspberry Pi receives incoming images from the ESP32 and stores these images in the LAMP server. The LAMP

server then moves the received images to another folder where the machine learning model is run using a Python

script. The processed photos are then sent to the database through an SSL tunnel, allowing for secure communication

7

between the Raspberry Pi and the database. The Raspberry Pi also allows for remote access through reverse SSH,

which means that the Raspberry Pi only establishes outbound communication with known devices.

Figure 3.3: Raspberry Pi Software Architecture

3.1.3 Cloud/User Interface Architecture

Another crucial part of the system is the user interface, which displays quantitative and qualitative data in a user-

friendly way. As seen in Figure 3.4, the data transmitted through Cloudflare’s SSL tunnel will be stored on MongoDB.

The data stored in the database will be used for the Heroku-hosted web application. When a user is attempting to access

the project’s web application, they will go through Firebase for authentication. Depending on whether the user has

signed into the website before, the user will either be assigned a new or existing user id. Once a user is authenticated,

they will undergo authorization. The web application accesses user roles and permissions from MongoDB through

Heroku. If the user is not listed in user roles and permissions, they are automatically assigned to have default privileges.

Depending on user privileges, users will have varying access levels to certain web application features.

8

Figure 3.4: Database and User Interface Architecture

3.2 Functional Requirements

The minimum viable product must be able to track the number of worker and pollen bees going in and out of the

hive. The system will display the results from the machine learning model and the frames used as input on the web

app. Another thing that should be shown on the web app is the live stream showing the entrance of the beehive. The

web app should have a simple, yet elegant, UI for the user to easily view the photo gallery, the live stream, and the

data correlated with the beehive. The camera system should be implemented so that multiple cameras will be able to

connect to a singular access point (AP), allowing the user to manage all the cameras simultaneously.

3.3 Non-functional Requirements

The goal is for the users to be able to navigate the system regardless of their technical background. For this reason, we

need a system that is secure, reliable, easy to use, and easy to install. This also means we must incorporate fail safes

and a system architecture that protects the system against any breaches or outside attacks.

9

3.4 Rationale

When originally designing the system, we had numerous ideas and technologies that we considered but ultimately

did not implement. Initially, for the frontend, we wanted to set up a JSON server to manage the existing data. We

considered using a JSON server because a programmer in React could not modify a JSON file; instead, they would

need to use backend technologies such as a JSON server or a Node.JS server to make posts or patches to JSON files.

A React JSON server allowed us to eliminate the need of having to create a backend server. Although it was a great

tool for testing, two main issues deterred us from continuing. The two main problems were where the data was being

stored and how the data was formatted. A React JSON server stores JSON data in a user’s local storage. By storing

JSON data in local storage, the website would not only hurt the user experience by taking up their own system’s

storage space but also impairing the overall web application’s functionality. Any update to the user roles JSON file

on their local storage would not translate to another person’s user roles JSON file. Privilege escalation would also be

an issue, as any user could modify their local user roles JSON file. Another issue we noticed during testing was how

the JSON data was formatted. A benefit of creating a Node.JS server is that we can format the JSON data in whatever

way we wish; however, with a React JSON server, the data is read the same way it is displayed in the JSON file. The

formatting issue could be resolved using React.JS; however, we realized this would be too tedious with the amount of

data and di↵ering formats displayed on the web application. Having a database and a Node.JS server mitigated both

these issues, so we decided to steer the project’s direction to incorporate both of those technologies.

10

Chapter 4

Technologies

In this section, we examine the di↵erent technologies used as well as their function within the system. We start

o↵ by describing the essential frontend technologies used to develop the user interface. We follow up by providing

information about the machine learning model and its related algorithms used to classify and track bees. We then

examine the technologies present within the ESP32 camera module and the Raspberry Pi, two core components for

performing image processing and communicating with the cloud.

4.1 React.JS

React.JS [8] is a frontend library used for developing web applications. We chose to use React.JS since it e�ciently

updates and renders components. React.JS has many features that we used to meet the project’s objective. Component-

based architecture is a core feature of React.JS that allows developers to build encapsulated components that manage

di↵erent states. Each component is a particular piece that makes up the user interface. By splitting the user interface

into individual sections, we were able to organize the web application better. React.JS also allows us to call upon

these components anywhere within the web application, allowing for components to be continuously reused on other

pages. Another feature that is a part of React.JS is Virtual Dom. We needed a tool that would allow us to perform

quick updates and for those updates to be immediately reflected on the user interface. The actual Dom(Document

Object Model) holds all the elements that create the web pages. If we were to update the actual DOM, it would be

very slow and ine�cient as we would have to rerender the user interface every time the web application is updated.

The Virtual DOM is a lightweight copy of the real DOM that React keeps in memory. A better way to visualize this

would be to compare it to a sketch or blueprint of the actual web page. When a developer makes changes to their

React components, those changes are first applied to the Virtual DOM. The final determining factor that got the team

to choose React.JS was that it uses JSX files. JSX is a syntax extension that allows users to write HTML directly

within JavaScript. We found this feature useful because it provides a clear and concise way to create components by

maintaining the HTML, CSS, and Javascript within one file. These core features of React.JS are the primary reason

11

we chose to utilize React for the web application and overall senior design project.

4.2 Node.JS

While implementing the web application using React.JS, an issue arose when we attempted to modify JSON files.

We needed to be able to read a JSON file while continually updating and creating new JSON files. In order to solve

this issue, we used Node.JS [9]. Node.JS is an open-source runtime environment that uses JavaScript. We chose

Node.JS as the backend server for the web application because it can run thousands of concurrent connections with

just a single server. Node.JS can achieve this by providing a set of asynchronous I/O primitives in its standard library.

To describe the process further, during a typical one-thread-per-connection model, you would accept a connection and

then hand the request o↵ to a thread. While that thread handles the request, the thread is unable to perform any other

actions, meaning a developer would have to implement multi-threading to handle multiple concurrent connections and

requests. In order to resolve this issue, we can implement a set of asynchronous I/O primitives which would allow the

CPU to immediately process the next action. Furthermore, Node.JS works seamlessly with React.JS in that both can

access NPM libraries, which o↵er a wide array of new implementations and functionalities. Finally, another major

benefit of Node.JS is that it is able to easily connect to the desired database using a private key, allowing access to all

the information acquired from the system.

4.3 MongoDB Atlas

The team decided to use MongoDB Atlas [10] for the database. MongoDB Atlas is a cloud-based, fully managed

database service provided by MongoDB. One of the main reasons the team chose to use MongoDB Atlas as opposed

to other databases was because MongoDB Atlas is a NoSQL database. The main reason that we needed a database

was to store all of the JSON files that were initially stored locally. By storing information in flexible JSON documents,

MongoDB makes it easier for us to handle and query data. MongoDB is also highly scalable and it has reduced

overhead since it utilizes a NoSQL database. Within each database, MongoDB also allows for additional collections.

These individual collections can hold di↵erent types of data such as a sized-based or time-based collection. A sized-

based collection is a collection that holds a certain amount of data, then eliminates old data and refills that spot with a

new set of data, following the FIFO(first in first out) principle. Time-based collections will remove data depending on

the time it was added and the amount of time that has passed since it was added. These collections were essential in

increasing the overall e�ciency of the project, as we were able to add photos into a size-based collection ensuring that

the dataset would not surpass the predefined limit. We were also able to add the ML results to a time-based collection

ensuring that old data would not take up much needed storage. MongoDB provides the Atlas cloud platform, a fully

managed cloud database service that simplifies deployment, operation, and scaling of MongoDB databases. The team

12

can access the database through Atlas and review, update, or remove anything from any location with an internet

connection. Finally, MongoDB o↵ers a free service, allowing us to hold a database and not have the customer incur

any cost to maintain it.

4.4 Heroku

As mentioned before, we have set up a database to hold the information that will be displayed on the web application.

Hosting the web application on Firebase allowed for streamlines integration, as we had already deployed Firebase for

Google Single Sign On [7]. An issue that arose from this seamless integration of Firebase Hosting is that it does not

support databases like MongoDB. An example would be that the web application would function properly until it came

to the previously mentioned user roles. Banned users would not register under the banned role, admin users would not

be able to access the admin settings, and guests would have access to all pages as there would be no database from

which to pull preexisting user information. To counteract this issue, we utilized an additional platform to host the

MongoDB database. Heroku [11] is a PAAS or cloud-base platform that simplifies web development. Heroku o↵ers

a wide range of features that satisfy many of the criteria, such as simplicity, scalability, security, and support. Heroku

is perfect for making web development simple. A key feature of Heroku is its ease of integration with databases. This

simple integration allows Heroku to access and update the database in a timely manner. Another key factor that allows

for updates in quick succession is Heroku’s Dynos. Heroku Dynos are smart containers that provide a modern runtime

environment for existing applications and databases. They isolate and scale web applications by processing one or

more of a database’s features. Heroku also provides the required security needed for industry standards. This also

includes automated patching of the platform and any database associated with it. By using Heroku, we were able to

eliminate the issues of being unable to access the database, while improving the performance and security of the web

application in the process.

4.5 Roboflow

Using the machine learning algorithm, we tried to get data that allowed us to determine the current health of the hive.

This was accomplished by tracking the number of pollen bees going in and out of the hive and the number of bees not

carrying pollen going in and out. We needed to utilize computer vision to predict the number of bees going in and out

of the beehive. The first step was to create a custom dataset using the Roboflow [12] annotator. This custom dataset

contained pictures captured by the ESP32 camera, labeling each image with a ground-truth bounding box for the

di↵erent kinds of bees. The team labeled the bees as either bees carrying pollen or bees not carrying pollen. Pictures

were taken at the entrance of the beehive, replicating where the camera was meant to be placed. The machine learning

model was then be trained using the custom dataset. With this, we can get the count of bees carrying pollen and how

13

many bees were currently in the hive.

4.6 YOLOv8+Bytetrack

Once we made the dataset, we plugged it into the machine-learning model. But what model did we want to use

that allowed for fast prediction yet have a high enough accuracy to track the object properly? Because we had these

requirements we needed to satisfy, we needed to have a proper ML model structure. Due to these restrictions, YOLOv8

[13] was the best model structure to use, as it allowed us to accurately detect and classify an object with a very fast

prediction time. This object could be a bee, and the fast prediction time and accuracy allowed us to track each

individual bee’s movement. YOLOv8 worked by having the model look at the image once, then drawing prediction

bounding boxes and labeling each box as either a box containing a pollen bee or a worker bee. We then used the

Bytetrack algorithm to track each bee. The Bytetrack [14] algorithm compared previous and current predictions and

associates the di↵ering boxes together to see if the di↵ering predictions come from the same bee. This ensured that

each identifying bee would be properly tagged and tracked. Underneath are pictures showcasing how the bees are

tracked going in and out of the beehive. The white rectangle indicates the region where the entrance was located.

If the bee moved into the rectangle, then the model should track the bee as it’s going in; if the bee goes out of the

rectangle, then the model should track the bee as going out. In the pictures, when the bee went fully inside the

rectangle, the model noticed that a bee was going into the hive and updated the counter.

Figure 4.1: Initial Capture

14

Figure 4.2: Bee crosses the border

4.6.1 Repulsion Loss

A loss function is used in a model in order to train the model and penalize the model when the detection is incorrect.

The most used loss function in many detection models is Intersection Over Union (IOU). This method checks to see

how much of an overlap there is between where the bee is and where the model predicts the bee. The IOU equation

would give us a loss value, which the training portion will then use to change the model’s weights. However, the IOU

loss function is not good at detecting objects that are bundled up or close together. When objects are too close together,

it might consider the two or more objects to be one singular object. To detect the bees that are closely together, we

use repulsion loss. Repulsion loss [15] is a loss function that penalizes the model when the predictions overlap other

objects and other predictions. This ensures that when there is a crowd of bees, it can detect all the bees properly.

Repulsion loss works by considering three terms: attraction with one’s own ground truth, repulsion from other ground

truths, and repulsion from other predictions. By having an equation that takes care of all of these terms, we get a loss

value that we can use in the model to backpropagate all of the weights.

15

Figure 4.3: Repulsion loss annotating tight clusters of bees

4.7 Open Secure Socket Layer (SSL)

One of the client’s major requests was that his network was protected from outside attacks, and during a meeting

he stressed the importance of finding a secure way to accomplish this. The solution we implemented used SSL

certificates [16] to verify the user’s identity before allowing them access to the network. The way this works is

that the two users both have public keys and to confirm each other’s identity, they communicate with the certificate

authority, which acts as the authenticator and ensures that both users are actually who they claim to be. This secure

method of communication also encrypts the data before it is sent, preventing unauthorized tampering. By using SSL

certificates through SSL tunneling, a service provided by Cloudflare, we were able to secure the overall system and

HTTP requests were promoted to HTTPS requests and now communicated with the internet via a secure port. Not

only did this solution provide us with enhanced security protocols, but it also allowed us to do so without costing us

additional funds.

4.8 Raspberry Pi

During the planning phase of the project, we talked about di↵erent devices that we could use as the remote manager

for the overall system. One of the first options was the Raspberry Pi [17] as it was capable of performing multiple tasks

such as a acting as a WiFi access point, allowing us remote management capabilities through reverse SSH, providing

us the ability to run a LAMP server, and having the processing power to run the machine learning model. The best

16

part of all was that the Raspberry Pi fit well within the budget, and we felt that it was the best option to handle all of

the tasks we assigned to it. The Raspberry Pi was an integral part of the overall system, being used heavily during

the testing portion of the project and is still responsible for running the entire system. The other major benefit of the

Raspberry Pi is that with the ability to log in remotely from whitelisted devices, developers have the ability to update

the ESP32 using OTA (over the air) updates. Since the Raspberry Pi is deployed at the apiary and is on the same

network as the ESP32, it can connect to the ESP32 and provide updates through this process, providing an e�cient

method of performing maintenance without the developers needing to be physically present.

4.9 Watchdog

We ran into an issue when developing the end-to-end model for the project, the Raspberry Pi received photos from

the ESP32 camera module, but we had no way of getting those images to the machine learning model and if we ran

the machine learning model we had no way to transmit the new data to the database. Most of the technology revolves

around the Raspberry Pi and relies on detection. The project must detect when a photo is taken, what to do when it

is detected, and when it is altered. In order to accomplish this, the team implemented a public API called Watchdog.

The Watchdog API [18] is a tool designed to monitor processes and systems to ensure they operate correctly and

e�ciently. Watchdog continuously checks the status and performance of applications, servers, or other components

and if it detects any issues such as downtime, errors, or performance bottlenecks, it can trigger alerts or take corrective

actions to mitigate the problem. This helps to maintain system reliability and minimizes downtime. The API can be

integrated into existing systems to provide real-time monitoring and automated issue resolution, enhancing overall

operational stability and performance. By monitoring over certain directories and detecting changes, such as files

being added or modified, we created a script that automatically sends the contents of a directory to the ML model

once a photo is detected. The very last hurdle was to automate the script. To overcome this hurdle, we created a new

cronjob. A cronjob is a scheduled task in Unix operating systems that runs at boot. By doing this, we achieve the

desired outcome of sending photos to the ML model once they are transferred to the Raspberry Pi.

4.10 ESP32

When we were deciding what device to use to take photos for the project, we used five main criteria to determine

whether it was the right choice for the job: security, quality, programmability, environmental impact, and cost. When

we examined the ESP32 camera module [19], we found it was highly secure since it had a process known as secure

boot. What this process does is when the ESP32 first starts up or receives new code, it checks that it comes from a

verifiable source to prevent malware from being run on the device. This means the ESP32 will not run code from

developers or devices it does not trust. In addition to this secure process, the ESP32 met the team’s second criterion,

17

quality. The ESP32 is a high-quality device with an extremely powerful camera, which could provide us with the high-

quality images that we need to develop and train the machine-learning model. This was an extremely important part

of the decision process since, without high-quality images, the machine learning model would not be accurate enough

to provide reliable data to the user and would ultimately prevent us from delivering a high-quality system. Luckily,

the ESP32 passed this criterion, leading to the next one, which was programmability. The ESP32 was developed by a

company known as Espressif Systems[19] and came with many example boards to demonstrate just how programmable

the ESP32 really was. With such a vast selection of open-source libraries and its ability to run both low-level and

high-level code, the ESP32 met the requirements of being highly programmable. When we examined the ESP32’s

environmental impact, we found that this largely depended on the tasks we assigned. To reduce the ESP32’s carbon

footprint, we decided to leverage the ESP32’s programmability to implement a sleep cycle that would switch the

ESP32 into deep sleep mode [20], reducing its carbon emissions. This meant that the ESP32 passed the team’s fourth

criterion; the last criterion it needed to pass was cost. After checking di↵erent websites, we found that the lowest cost

we could purchase the ESP32 for was $13. This meant it fit well within the budget and was the best choice for the

project. Overall, the ESP32 was an integral part of the entire system, and its ability to take high-resolution images,

connect to WiFi, and have minimal environmental impact, all while being highly programmable and secure, made it

the best option to complete the assigned tasks.

4.11 Solar Panel and Rechargeable Battery

When selecting a power source to power the entire system, we wanted a renewable power source that could sustain

the system without requiring maintenance. After reviewing di↵erent power sources, we ultimately chose a solar panel

since it could charge the system in an environmentally friendly way. The team felt that the solar panel was cost-

e�cient since it would only be a one-time purchase instead of having to plug the system into an outlet, which would

be a recurring cost. We also knew this was a sustainable solution and would not require much maintenance after

installation, reducing the number of on-site visits necessary.

18

Chapter 5

System Evaluation

While testing the system, we wanted to cover all edge cases to ensure that the system was fully secure and operating

as intended. This included both internal component tests, such as checking if the database was successfully commu-

nicating with the user interface, and external tests such as capturing images at di↵erent resolutions. During testing,

we had to make an important decision on choosing stable resolutions as failing to do so would sever the connection

between the ESP32 camera and the Raspberry Pi. These tests were essential in ensuring the end-to-end system was

fully functional and secure before deployment.

5.1 Internal Testing

Before deploying the system, the team needed a way to demonstrate to the client that all components were integrated

successfully. To accomplish this task, the team designed tests for each component and ran these tests extensively to

ensure that the components would perform successfully in the field. These tests allowed the team to catch errors and

patch vulnerabilities, which provided the client with a fully functional and secure system.

5.1.1 Security Test

For the security component of the project, we tested the web app by attempting to access it using di↵erent levels

of permissions. We tested this using di↵erent accounts where we assigned one to have proper permissions, one to

have guest permissions, and one that had no permissions. We wanted to ensure that users who did not have proper

permissions only had a specific level of access to prevent unauthorized tampering with the ESP32. After using di↵erent

logins and providing di↵erent access levels to each one, we found that each user’s permissions functioned as we

expected. To ensure the overall integrity of the end-to-end system, we used Cloudflare to detect whether there were

vulnerabilities present and conducted a scan of the SSL tunnel using the service. This helped us verify the service’s

security and gave us the confidence that the system would be secure when we deployed.

19

5.1.2 Integration Test

Another important test that we conducted was ensuring the reliability of the system when integrated with other devices.

The most important integration we needed to test was the ESP32’s capability to communicate with the Raspberry Pi’s

LAMP server over a wireless network. This test was crucial because upon deployment, the Raspberry Pi would be

housed in a separate area, and the ESP32 would need to send data without a wired connection. The team tested this

by leaving the ESP32 on and allowing it to send images to the LAMP server over the course of a couple of days. This

allowed us to verify whether the ESP32 could communicate wirelessly with the Raspberry Pi for extended periods.

After conducting this test, the team was confident that the ESP32 could reliably transmit images to the Raspberry Pi’s

LAMP server when we deployed it.

5.1.3 Database Test

We needed to conduct various trials to test the database for handling data, connectivity, and collections. To test whether

the database handled data properly, we tested each way to modify data: POST, PATCH, READ, and DELETE. Initially,

the database only held the user roles and permissions collection, so we first tested to see if we could read certain users in

the user roles and permissions collection. We ran a script that connected to the database using a MongoDB private key.

Once we verified that data was being read properly, we developed similar tests for the other methods. After confirming

that all methods of modifying data were functioning correctly, the next step involved testing MongoDB’s connection

to the website. The first test involved testing whether the web application could access MongoDB locally. To test this,

we connected to MongoDB using the private key, assigned a localhost port to access MongoDB, and fetched data.

The fetched data would be read and displayed on the frontend. After accomplishing this, we then tested MongoDB’s

ability to connect to Heroku. We performed the same test but fetched data from Heroku instead of localhost as we

previously were doing. The team connected MongoDB by adding the private key to the Heroku configuration. We

ran the same script on the web application as in the previous test; however, this time, we fetched data from the given

Heroku URL. The final test involved testing di↵erent collections. MongoDB provides three additional collections

beyond the standard: capped, time series, and clustered index. The team only needed standard, capped, and time series

collections for the project. We used the standard collection in the previous tests which has no special features and is

meant to hold data. The capped collection holds data up to a certain limit and performs FIFO operations with old and

new data. The time series collection holds data for a specified amount of time. To test these collections, we created a

capped collection with a very limited size to hold data and a time series collection that would remove data after thirty

seconds. The purpose of these trials was to assess the functionality of these collections as quickly as possible. We

posted data to these collections and observed whether they behaved as intended. Once we finished these trials, the

team was confident enough to conclude that the database was functional.

20

5.1.4 Machine Learning

To evaluate the system’s machine learning section, we split the dataset and looked at three values that dictate how

optimal the machine learning model operates: training loss, validation loss, and mean average precision (mAP). The

training loss and the validation loss are calculated after every training epoch, which tells us how well the model is

learning. We split the dataset into three sections: train, validation, and test. The train data, Figure 5.1a and Figure

5.1d, is used to train the data. The validation data, Figure 5.1b and Figure 5.1e, is used after every epoch to show the

loss when the model is inputted with images it doesn’t train on. When the values decrease after every epoch, it tells us

that the machine learning model is teaching itself properly by minimizing the loss as much as possible. If the values

stay stagnant or increase, then that means that the model is not learning properly. The train and validation loss shows

how well the model works with images it is familiar with and images not familiar with. Fortunately, when we looked

at the graphs of the training and validation, we saw that as the model goes through each epoch, there is a decrease in

both loss values. However, even though the model is properly learning through the training data, we still need to see

how accurate the boxes are and how accurately they detect the di↵erent kinds of bees. To do this, we look at the mAP,

which indicates how accurate the bounding boxes are. Two mAP values are important for determining the accuracy of

the bounding boxes: mAP50-90 and mAP50. mAP50, shown in Figure 5.1f, uses an IoU threshold of 50%, calculated

by averaging the precision scores from the precision-recall curves for each class at this fixed IoU threshold. mAP50-

90, shown in Figure 5.1c, considers the averages of mAPs over multiple IoU thresholds ranging from 50% to 95% in

increments of 5% and later averages the mAPs to get a single value. This will indicate the precision and accuracy of

the bounding boxes. As seen in Figure 5.1, the mAP for validation is increasing as more epochs are being completed.

The test data is finally used to see how well the images detect, classify, and track the bees.

21

(a) Box training loss (b) Box validation loss (c) Metrics of mAP 50-95

(d) Classification training loss (e) Classification validation loss (f) Metrics of mAP 50

Figure 5.1: Resolution Quality Comparison

5.2 External Testing

During deployments, we noticed that there was an inverse correlation between the quality of the images that were

captured and the frame rate. The importance of this is that if we capture images at a lower frame rate, we can get

good images for classification but a choppy feed, which results in lower tracking accuracy. However, if we increase

the frame rate we would need to reduce the image quality and the images would have to be subsequent. This allows

for better accuracy with the tracking model, but can result in a worse accuracy for the classification model due to the

reduced quality.

5.2.1 Frame Rate vs Quality Capture

In this section, we will discuss the importance of image quality versus frame rates in more detail. As mentioned, we

can take images while simultaneously providing a live stream where the images taken are stored on a local device.

While testing with a laptop, we noticed a di↵erence in size between the di↵erent qualities, as seen in Figure 5.2. We

needed a way to quantify the size of images that we were transmitting, as a larger image/packet transmission would

take longer was causing trouble for the camera. If the transmission for the images was longer than a second, we would

lose the subsequent images as the new images would overwrite the old ones, resulting in choppy frames.

22

Figure 5.2: Image Quality Ranges in Kilobytes

Within Figure 5.2, we can see that the QVGA has the smallest file size in general, with an observed minimum file

size of 2.47 kilobytes(Kb) and a maximum of 2.8 Kb at 19 frames per second (fps). HVGA is the next smallest, with

an observed minimum file size of 3.9 Kb and a maximum of 4 Kb captured at 12 fps. VGA has an observed minimum

file size of 9 Kb and a maximum of 20 Kb captured at 10 fps. SVGA has an observed minimum file size of 10.7 Kb

and maximum of 11.5 Kb captured at 10 fps. HD has an observed minimum file size of 33.6 Kb and maximum of

145 Kb captured at 8 fps. One thing that we had to limit for the test was the maximum frame rate for each resolution,

which is displayed in Figure 5.3.

Figure 5.3: Maximum Frame Rate Per Quality

If the camera were to exceed the maximum frame rate, it would freeze, causing the web server to crash, and would

need to reboot in order to reconnect to the local network. An example of a QVGA and an HD image can be seen within

Figure 5.4.

23

(a) QVGA Resolution (b) HD Resolution

Figure 5.4: Resolution Quality Comparison

24

Chapter 6

Implementation Plan

This section describes the time frame of the project and the team’s software development process. Elements of their

time frame include research, development, and deployment. A risk diagram was developed by the team to recognize

issues of certain components and its impact on the project as a whole. The risk section can be beneficial to those who

wish to innovate the team’s design.

6.1 Timeline

During the fall quarter, we focused e↵orts on researching the ESP32 camera and tried to get sample images for the

machine learning model. We split ourselves into small teams and focused on integration for the whole end-to-end

system, with a team focused on the frontend/user interface, backend, and machine learning. With the frontend, we

started drawing up the initial website design on Figma and talked about certain implementations such as data displayed,

live stream features, etc. For the backend, we talked about how we could connect the Raspberry Pi to the ESP32

camera, using a GUI or SSH approach. For the machine learning, we talked about di↵erent models and how we could

improve from last year’s, after a couple of weeks of discussion we landed on utilizing YOLOv8. In the winter, we

began working on the frontend and backend integration. This was done by initializing a connection between the web

application to MongoDB and Google SSO. For the backend, we started implementing the sleep cycle for the ESP32

camera system and researching its deep sleep capabilities. As for the machine learning model, we did more research

and started designing a model using repulsion loss. In the spring, we were able to finish final touch ups to all of the

connections and deployed the project at the apiary.

6.2 Agile Software Development

At the start of development, we created user stories to capture the features we wanted in the project. We had a primary

user story that focused on the basic functionality of the project, along with other user stories that focused on additional

features. Breaking down the primary user story, we needed a system that would display a real-time bee count and a

25

live video feed that could be viewed remotely. Before assigning roles, we identified the basic technologies needed to

achieve these goals. We needed a camera that could maintain a stable connection, a Raspberry Pi to process photos

from the camera and run them through a machine learning model, a database to hold all necessary data, and a website

to display all the required information. We split the team into smaller groups based on their own individual experience

in specific areas. One group primarily worked on the ESP32 camera and the Raspberry Pi, another focused on the

machine learning module, and the last group concentrated on developing the web application and the database. Once

we finished the project’s basic functionality, we moved on to the other user stories. These user stories focused on

specific components of the system; for example, one user story aimed to make the project more user-friendly. The

two main components needed to achieve this were a system that could run by itself and a web application that was

user friendly. We continued to use the smaller groups to achieve this, mainly the group that focused on the ESP32

camera and the Raspberry Pi, and the group that focused on the website and database. Anyone who was not part of

those teams was assigned to help either team implement these features. The last user story focused on making the

project customizable. We needed a project that could change the resolution and frame rate of the camera from the web

application. The project also had to be able to take captured photos from the camera and provide the user the option

of storing these images on their local storage. We maintained the same groups to achieve these goals.

6.3 Project Risks

Throughout the development process we thought of di↵erent scenarios that are prevalent in the project. Since the

system incorporates solar-power, it introduced a new set of potential issues that were not present in last year’s project.

Some of the risks that we thought of are present in Figure 6.1. While field testing the CameraWebServer Arduino code,

we ran into an issue where a camera browned out using the FTDI programmer early on within the research phase. This

error could have been caused by one of many events such as the wiring to the camera not supplying a constant 5V, the

camera having an internal hardware issue, the camera not being in the right boot mode, and losing connection while

uploading were some of the main issues we encountered. To remedy this, we tried to use a di↵erent form of connection

connection, resulting in the usage of the ESP32 camera sister board and a USB-A to Micro-USB cable. This created

a stable connection, but ultimately resulted in replacing the camera as the camera that was due to tamper issues from

the breadboard connections.

26

Figure 6.1: Risk Analysis Chart

As seen in this table we have estimated the likelihood of other end-to-end issues that could arise such as unau-

thorized access to the user interface. As a result we formulated a risk rating to signify how detrimental those risks

were to the project. The likelihood value represents the frequency at which a risk could occur, while the impact value

represents the e↵ect it has on the system.

27

Chapter 7

Constraints and Standards

This section analyzes the roadblocks the team faced during the development stages of the project as well as how they

overcame these obstacles. The team describes how they needed to adapt to setbacks which required them to come up

with creative solutions to continue moving forward with the development process. The team also discusses standards

that were incorporated into the system and the importance these standards had on the system’s functionality.

7.1 Constraints

Over the course of this project, the team ran into di↵erent roadblocks each presenting with their own challenge to

overcome. While these roadblocks hindered the development of the project, we were able to overcome these obstacles

through hard work and dedication. One of the toughest constraints that we needed to address was time. In the initial

phases of the project we noticed that we would plan to accomplish certain goals by a set date but soon learned that

we were extremely optimistic. Even if we managed to complete 90 percent of the goals for that week, that remaining

10 percent would be an additional burden that would carry on to the week following. To combat this issue, the team

began to overestimate the amount of time needed for each task so that we could set aside enough time to ensure that

each task was completed in an e�cient and timely manner. This also allowed us to perform additional maintenance

and catch errors that would normally be missed by the initial way of completing tasks.

Another issue that we came across was the ESP32’s [19] inability to maintain a stable connection with the WiFi

network while providing a consistent live feed. The reason for this issue arising was due to the fact that the ESP32 had

multiple processes running on it and needed to perform di↵erent tasks simultaneously. Some of these tasks include

providing a live stream which is able to be viewed through the web app, connecting to a WiFi access point, taking

images of the bees and uploading these to the LAMP server [21], and utilizing the Cloudflare SSL tunnel [22] for

secure communication with the web app. With all of these tasks being run on the ESP32 simultaneously, the ESP32

needed frequent restarts and this increased the downtime of the system tremendously. To mitigate the total downtime

of the system, we focused e↵orts on optimizing the ESP32 in a way that it could maintain a stable connection with

28

the WiFi access point while performing all of its necessary tasks. The way that we remedied the problem was by

incorporating a sleep function where the ESP32 took a few seconds to reset, and we timed this with one of the scripts

that needed to pull images from the LAMP server, and these two processes needed to run independently of one another.

By splitting up these two processes in this way, we were able to reduce the downtime of the system significantly and

this meant that the analytics were closer to real-time while still being extremely accurate. In the end, the ESP32 was

able to provide a live feed while maintaining a WiFi connection and performing its necessary tasks, all with minimal

downtime of only 10 seconds to perform a system reboot.

An ethical constraint that we ran into while building the system was the matter of preserving the customer’s internet

safety by not exposing network ports to the open internet. During meetings with the client, he expressed that he did not

want to open any ports on his network as this would expose his internet to attackers. As a result, he prohibited the use

of port forwarding which we had been using during initial tests. At first, we experimented with SSL certificates, which

would be self-signed and then shared between the devices that needed to communicate with one another. We later

discovered that Cloudflare provided this service as well as SSL tunneling, which became part of the proposed solution.

By using Cloudflare, we were able to provide internet security to the client while still having the functionality that we

desired. Another way that we ensured the client’s internet safety was by having the Raspberry Pi, which was left at

the apiary, establish a connection with the database. By setting up the Raspberry Pi in this way, we ensured that only

outbound communication was possible from the Raspberry Pi which further protected the client’s internet privacy.

Another issue that we came across was attempting to use the previous year’s system at the beginning of the

development process. When we first accessed the code base and hardware, we found that much of the system was

no longer functional and there was little documentation for us to go o↵ of. As a result, we needed to rebuild the

system using new materials and implement a completely new code base. This presented a major issue since we

now needed to rebuild the system and add the new features that the client requested. While the previous team had

a dataset consisting of images that could be used to train the machine learning model, we found that the resolution

was not high enough, which would a↵ect its accuracy, meaning we would have to collect an entirely new dataset.

However, despite these setbacks, we worked to build a more e�cient system with a brand new machine learning

model along with documentation to assist future teams in setting up and accessing the system. With hard work and

careful documentation, we were able to overcome this setback and provide the client with a system that had all of the

features requested and more.

7.2 Standards

During the course of the project, we implemented many di↵erent systems that each had their own practices and testing

methods. An example of a system that we chose to implement is Cloudflare (ISO 27001) [22] since it is a vital part

29

of securing the end-to-end system, and it is an industry-standard solution. Cloudflare is a standardized service that

many companies use for handling SSL tunneling (ISO 27001) [23] and securing their systems. We chose to use it in

the project to gain hands-on experience with the service and because it is trusted by many other industry leaders. By

using Cloudflare, we were also able to maximize security while mitigating both risk and cost. As outlined in the risk

analysis section, the likelihood of Cloudflare going o✏ine is very low as it is a trusted industry standard solution and

has a reputation for being extremely reliable. This made it an ideal choice for the system as it ensured reliable and

secure communication between the devices and cost the team nothing since the service is free.

Another standard that we included throughout the project is C++ (ISO 14882) [24] which was used to develop

the backend. We chose C++ for the backend because it provides the advantages of both high-level and low-level

programming, o↵ering flexibility during development. C++ is also an industry-standard language and is a popular

choice among many industry leaders due to its versatility. We also decided that C++ was easier to document and

paired well with the hardware since the ESP32 uses C/C++ libraries, which allowed us to implement more features on

the ESP32.

As mentioned earlier, we also integrated an industry standard verification system Google SSO. By using Google

SSO verification (ISO 27001) [25], we were able to increase the security around the user interface while reducing

the potential for spam attacks. We used Google SSO to assign users a unique User ID, which is then verified with

MongoDB to see if the user had visited before. If the user had visited before they were given their assigned roles,

otherwise they were given the guest role. Similar to CloudFlare, this verification method provided the system with an

additional layer of security and was completely free to use.

Another important standard that allows for direct communication between the ESP32 and Raspberry Pi is Wi-Fi

(IEEE 802.11ac) [26]. Wi-Fi allows devices to communicate over a wireless local area network (WLAN) and this

standard is crucial for maintaining remote connections. Without the incorporation of Wi-Fi, the system’s devices

would not have been able to communicate with one another without having a wired connection making it extremely

di�cult to deploy. The standard also encrypts communication between devices making it di�cult for attackers to

decrypt messages using brute-force methods. By incorporating this standard, we were able to ensure the integrity of

the system and have devices communicate with one another remotely.

When fulfilling the client’s needs, an important protocol that we needed to implement was HTTPS [27] to help

ensure the client’s internet security, and this would not have been possible without the use of the standard TLS (ISO

20648) [28]. TLS is a secure way of transmitting data between devices over the open internet and it uses cryptography

to protect the transmitted data from being read by attackers. Without the standard TLS, the system would not be able

to communicate across the open internet using HTTPS, leaving the client’s internet vulnerable to outside attacks. By

incorporating TLS, we were able to increase the level of security of the system and fulfill the client’s needs.

30

Chapter 8

Societal Issues

When designing a project, it is important to understand its intended or unintended consequences. We evaluate di↵erent

societal issues such as ethics and manufacturability to respond to some of the issues the team deemed important. The

team also delves deeper into the sustainability and environmental impact of the project by including power measure-

ments. In this section, we also include what we took away from developing the end-to-end system.

8.1 Ethical

Reviewing the whole end to end system, the proposed solution follows the IEEE Code of Ethics for Software Engineers

[29]. The solution consists of open-source material and the code that is utilized will be accessible on a public GitHub

repository [6] under the MIT license. Within the repository, we have included specific instructions on how to set up

the camera system module, ensuring that all interested parties, no matter their level of expertise, will be able to use

the proposed solution. We ensure security for client by utilizing secure communication and transmission throughout

the system. All captured images are relayed to the database where the private camera IP address will be stored. The

application incorporates a management system, that records and allows authorized users to make modifications while

guests have limited restrictions. The web application will be as responsive as the domain, and so long as the domain

is up and running, the application is accessible as well as other services within the domain.

8.2 Economic

The proposed solution strives to be a low-cost beehive monitoring system that utilizes solar energy. Aside from the

raw materials, we ensure that the users are only charged for the recurring cost of hosting their web applications. This

pay-as-you-go method allows the user to ensure that they are content with the system.

31

8.3 Manufacturability

The proposed solution utilizes accessible materials and open sourced code, allowing other interested parties to innovate

the project in the coming years. We also have documentation [30] discussing the challenges as well as solutions to those

subsequent challenges. The documentation also includes a process on how to set up and ensure a stable connection

between the internal systems.

8.4 Sustainability

The proposed solution uses the ESP32 camera’s deep sleep capabilities to conserve energy, resulting in an energy

e�cient, sustainable solution. These power cycles coupled with the solar panel allow for e�cient power consumption,

ensuring that the camera does not overheat or drain too much power from the battery. The solar panel has a 6 Watt

power rating and a maximum charging rate of 1.2 Amps and 5 Volts. As for the battery, it’s rated for 10Ah and can

supply the ESP32 camera module with 5V from 160-260 mA with the LED module o↵ to 310 mA with the LED

module on. Utilizing the ESP32 camera’s deep sleep capabilities, the camera only draws 10-25 µA during inactive

hours allowing the product to be energy e�cient and sustainable.

8.5 Environmental Impact

Bees play an important role in the ecosystem, as they make up a significant percentage of the global agriculture.

The proposed solution utilizes solar energy to power an e�cient external beehive monitor system that is capable of

ensuring the health of a hive. The impact of this system allows beekeepers know about the health of the surrounding

environment and ensure the health of their hive. As mentioned earlier, if more bees are entering rather than exiting,

swarming may be occurring causing the bees to abandon their hives. On the other hand, if there are lots of bees exiting

but not returning, an underlying environmental issue may be causing the death of those bees.

8.6 Usability

The user interface was designed with a simplistic nature to ensure six di↵erent pages that have di↵erent purposes. The

landing page is intuitive, with a description of the project and a button that allows a user to sign in with their Google

account. When a user logs in they are routed to the landing page which holds some of the other services, such as a live

feed of the connected camera and data about recently tracked bees. The ”Live View” page has a scroll bar that allows

easier modifications of certain settings and a drop-down menu for di↵erent resolutions. These modifications are made

in real-time and are visible on the live stream when modified. The ”Manage Cameras” page prompts the user with two

buttons: an add camera button and remove camera button which redirects users to their desired instruction. The ”View

32

Data” page is split in two with the left side being an array of oldest existing images and the right side displaying a pie

chart with the total number of bees in and out for the day as well as the most recently added values.

8.7 Lifelong Learning

Throughout this project, by incorporating industry standard solutions into the proposed solution, the team has gained

a more complex understanding of various technologies. To construct the user interface, we had to learn the standards

of web development. The development process required us to not only understand technologies such as React.JS

and Heroku, but also proper security measures for web applications. Learning how to better secure websites from

potential intrusions helped members with their own individual projects and tests for cybersecurity. By incorporating

MongoDB into the project, we learned how to better manage and maintain a cloud database. Managing a cloud

database also inspired us to incorporate similar technologies into other projects. Learning new concepts and practices

from a new technology would be a trend for each component of the system. The team’s knowledge grew not only from

understanding specific components of the project but also from developing system architecture diagrams. Creating a

system architecture diagram gave the team a stronger understanding of the functionalities of the end-to-end system,

while also enhancing how each individual technology functions within the system.

33

Chapter 9

Conclusion

Over the course of the project, we successfully designed a new end-to-end system capable of tracking how many bees

enter and leave the hive in a given period of time. The system created consists of a backend that processes requests sent

by the frontend and allows user control of the ESP32 camera, a Raspberry Pi, with remote management capabilities,

that processes the images through the machine learning model and then forwards the processed data to the database, a

user interface that is user friendly and requires Google SSO to gain access, and a cloud security platform to protect all

of these components from outside attacks. On top of constructing the overall system, we also implemented di↵erent

metrics that can be viewed on the web app and provides beekeepers with important metrics such as temperature and

bee count. These metrics can be used to gauge the health of the hive and can indicate whether there are problems

within the hive. We also developed a machine learning model using a custom dataset which was gathered using the

ESP32 while at the apiary. This custom dataset was then curated to filter out blurry images or images that did not have

the best lighting and then each image was hand-boxed to outline each bee in the image. We then trained the model

using the hand-boxed images and the result was an extremely accurate machine-learning model that could relay useful

information to the frontend.

The project objective was to create an e�cient and secure beehive monitoring system that could accurately track

bees entering and leaving the hive and display the information to beekeepers in a user-friendly way. By the end of the

project, we had fulfilled the task of creating an e�cient and secure beehive monitoring system, and we were not only

able to track the bees entering and leaving the hive, but we were also able to provide real-time access to the beehive

through a live feed configured on the ESP32. We also fulfilled all of the requests given to us by the client and ensured

that the system could not be accessed by outside users without the proper permissions. We also ensured that the system

was fully sustainable and environmentally friendly, and this was done by using a rechargeable battery along with a

solar panel, providing the system with a reusable power supply. On top of this, we also implemented a sleep cycle that

would turn the ESP32 o↵ during the night to save energy and turn it back on at dawn.

After completing this project, the team gained a better understanding of incorporating industry standard practices

34

into their work and got the opportunity to do so in a real-world setting. We learned how to construct system architecture

diagrams and integrate di↵erent systems using the diagrams we constructed. We learned how to delegate di↵erent tasks

amongst the team and pooled resources towards certain systems when necessary. We gained experience in technical

writing when logging documentation and made sure to explain the current thought process at each stage of the project.

The beehive monitoring system provides beekeepers with an e↵ective yet inexpensive way to monitor their bee-

hives remotely while having a reduced carbon footprint and a much greater impact on maintaining the health of the

beehive. An advantage that the system provides is the benefit of real-time data that can be used by beekeepers to

gauge the level of activity in the hive and can tell them whether there are complications or not by analyzing the bee

count over time. The system also has the advantage of being fully self-sustainable requiring little to no maintenance

as the entire system can be controlled remotely. An area for growth in the system would be to incorporate additional

ESP32 devices as this would allow multiple beehives to be monitored simultaneously and would also demonstrate the

scalability of the system as a whole.

Future goals for this project would be to see the system functioning with additional ESP32 devices, as stated

earlier, as we believe this would be more beneficial to beekeepers who need to monitor the health of multiple hives.

Another hope for the project would be to find a more powerful, yet still inexpensive, camera as this would allow for

higher resolution images along with the ability to handle more processes with reduced latency. While the ESP32 is a

powerful device, we found that it can only run so many processes at a given time and for the system’s purposes, we

would need a device that is capable of doing so more consistently. Even though we found a way to make the ESP32 run

consistently, we became concerned that additional processes that would be added in the future would be too much for

the ESP32 to handle. It is for this reason that we believe finding a more powerful camera is imperative to developing

the project further. Another future goal that we have for this project is improving the web app as we still believe there

is much that can be added to provide a better user experience. While the web app has security protocols in place to

prevent unauthorized user access and allow the user to control the ESP32 remotely, we believe that some more styling

can be done to provide a better user experience to those using the app. We would also hope to transition to using the

edge device to host the server as well as using an x86 machine to store data as this would eliminate recurring costs

and would reduce the amount of processes running on the Raspberry Pi. We believe that this would allow for more

flexibility as it would open up space on the Raspberry Pi to handle new tasks and would allow it to run more e�ciently.

As for the recurring costs, by transitioning to a hardware approach, we would no longer need to pay for a server as the

edge device could host both the web app and process the images as they pass through the machine learning model. The

benefit of this is that the machine learning model would be able to run more e�ciently and more accurately providing

better metrics about the health of the hive. The other benefit of hardware is it is more e�cient since latency no longer

becomes an issue. This allows for a faster overall system that is no longer reliant on a subscription model. Overall, the

team believes that these changes would help with optimization and would provide a better user experience.

35

Chapter 10

Acknowledgments

We have worked vigorously on the Beehive Monitoring Project, learning new skills and adopting new practices to be

applied elsewhere in the engineering field. However, the team was not able to achieve these accomplishments alone.

We want to express the sincerest gratitude to all those who assisted us in these endeavors. Behnam Dezfouli, one of

the project’s advisors and an Associate Professor in Santa Clara’s Department of Computer Science and Engineering,

greatly contributed to the project, o↵ering valuable insight that assisted the overall project. Furthermore, Professor

Dezfouli was the originator of the idea for the Beehive Monitoring Project. Shiva Jahangiri, another advisor and a

Professor in the Department of Computer Science and Engineering provided much-needed support in times of need

for the team. Professor Jahangiri always believed in and supported the team. We o↵er the most sincere gratitude for

her taking time out of her day to attend the team’s senior design presentation. We also want to thank the family of

Mr. and Mrs. Eschelbeck. The Eschelbeck family was kind enough to lend us their home and beehive farm to test

the project. Finally, we thank the School of Engineering for providing us with the funds and education required to

complete the Beehive Monitoring Project.

36

Chapter 11

References

1. A. LaSorda, ”In-Hive Sensors Could Help Ailing Bee Colonies,” Scientific American, 31-Aug-2021. [Online].

Available: https://www.scientificamerican.com/article/in-hive-sensors-could-help-ailing-bee-colonies/.

2. F. Mortimer, ”Beekeeping Basics,” CALS. [Online].

Available: https://cals.cornell.edu/pollinator-network/beekeeping/beekeeping-basics.

3. Eyesonhives, ”Shop - Eyesonhives,” 17-Jan-2019. [Online].

Available: https://www.eyesonhives.com/shop/.

4. BroodMinder, ”Hive Sensors,” [Online].

Available: https://broodminder.com/collections/sensors.

5. wjsanek, “wjsanek/wjsanek,” GitHub, Jan. 30, 2024. [Online].

Available: https://github.com/wjsanek/wjsanek

6. “SIOTLAB/Hiv3-An-E�cient-Beehive-Monitoring-System,” GitHub, Jun. 06, 2024. [Online].

Available https://github.com/SIOTLAB/Hiv3-An-E�cient-Beehive-Monitoring-System

7. “Integrating Google Sign-In into your web app,” Google Developers. [Online].

Available: https://developers.google.com/identity/sign-in/web/sign-in

8. Meta Open Source, ”React,” React.dev, 2024. [Online].

Available: https://react.dev/.

9. Node.js, ”Index — Node.js V20.2.0 Documentation,” [Online].

Available: https://nodejs.org/docs/latest/api/.

10. MongoDB, Inc., ”Get Started with Atlas — MongoDB Atlas,” [Online].

Available: https://www.mongodb.com/docs/atlas/getting-started/.

37

11. Heroku Dev Center, ”Documentation — Heroku Dev Center,” [Online].

Available: https://devcenter.heroku.com/categories/reference.

12. Roboflow, ”Overview - Roboflow,” 2022. [Online].

Available: https://docs.roboflow.com/.

13. Ultralytics, ”YOLOv8 Documentation,” 18-May-2020. [Online].

Available: https://docs.ultralytics.com/.

14. Ultralytics, ”Byte tracker,” [Online].

Available: https://docs.ultralytics.com/reference/trackers/byte tracker/.

15. X. Wang et al., ”Repulsion Loss: Detecting Pedestrians in a Crowd,” ArXiv.org, 26-Mar-2018. [Online].

Available: https://arxiv.org/abs/1711.07752.

16. OpenSSL, ”Open SSL Cryptography and SSL/TLS Toolkit Documentation,” [Online].

Available: https://www.openssl.org/docs/.

17. Raspberry Pi Foundation, ”Raspberry Pi Documentation,” [Online].

Available: https://www.raspberrypi.com/documentation/.

18. Python-Watchdog, ”Watchdog — Watchdog 2.1.5 Documentation,” [Online].

Available: https://python-watchdog.readthedocs.io/en/stable/.

19. Espressif Systems, ”ESP32 Technical Reference Manual,” 2022. [Online]. Available:

https://www.espressif.com/sites/default/files/documentation/esp32 technical reference manual en.pdf

20. Voltaic Systems, ”How to Put an ESP32 into Deep Sleep — Voltaic Systems Blog,” Blog.voltaicsystems.com,

30-Jan-2022. [Online].

Available: https://blog.voltaicsystems.com/how-to-put-an-esp32-into-deep-sleep/.

21. “What is LAMP Stack? - LAMP Stack - AWS,” Amazon Web Services, Inc. [Online].

Available: https://aws.amazon.com/what-is/lamp-stack/

22. “How does SSL work with HTTPS?,” ISO 27001 Guide, Dec. 05, 2020. [Online].

Available: https://iso27001guide.com/how-does-ssl-work-with-https-iso27001-guide-iso27001-guide.html

23. “Certifications and Compliance Resources,” www.cloudflare.com. [Online].

Available: https://www.cloudflare.com/trust-hub/compliance-resources/

38

24. “The Standard : Standard C++,” isocpp.org. [Online].

Available: https://isocpp.org/std/the-standard

25. “ISO/IEC 27001 - Compliance,” Google Cloud. [Online].

Available: https://cloud.google.com/security/compliance/iso-27001

26. “IEEE SA - IEEE 802.11ac-2013,” IEEE Standards Association. [Online].

Available: https://standards.ieee.org/ieee/802.11ac/4473/

27. Cloudflare, “What is HTTPS?,” Cloudflare, 2024. [Online].

Available: https://www.cloudflare.com/learning/ssl/what-is-https/

28. “ISO/IEC 20648:2016,” International Organization for Standardization, Mar. 2016. [Online].

Available: https://www.iso.org/standard/68622.html

29. “Code of Ethics — IEEE Computer Society,” Computer.org, 2017.

Available: https://www.computer.org/education/code-of-ethics

30. A. Kuverji, J. Ursillo, C. Merhab, and A. Sahu, “Senior Design Notes for Future members,” Google Docs.

[Online].

Available: https://docs.google.com/document/d/1ObM5-dQ-IdqjVWn9XLgOmZXwsfn8XT0NiZ0EckTgeTs/

31. H. Sahota, ”The History of YOLO Object Detection Models from YOLOv1 to YOLOv8,” Deci, 5-Jun-2023.

[Online].

Available: https://deci.ai/blog/history-yolo-object-detection-models-from-yolov1-yolov8/.

32. R. Santos and S. Santos, ”How to Program / Upload Code to ESP32-CAM AI-Thinker (Arduino IDE) — Ran-

dom Nerd Tutorials,” 4-Feb-2020. [Online].

Available: https://randomnerdtutorials.com/program-upload-code-esp32-cam/.

33. J. Solawetz, ”The Train, Validation, Test Split and Why You Need It,” Roboflow Blog, 4-Sep-2020. [Online].

Available: https://blog.roboflow.com/train-test-split/.

39

Chapter 12

Appendices

This is a selection of key parts from the source code. The full source code is accessible at:

https://github.com/SIOTLAB/BeehiveMonitoring.

12.1 ESP32 Timer + Deep Sleep
void loop() {

struct tm timeinfo;

getLocalTime(&timeinfo);

if (timeinfo.tm_hour >= 8 && timeinfo.tm_hour <= 19) {

unsigned long currentMillis = millis();

for (int i = 0; i < 60; ++i) {

sendPhoto();

delay(500);

}

} else {

esp_deep_sleep(10000);

delay(60000);

}

}

12.2 Image Gallery.js
import React, { useEffect, useState } from ’react’;

import ".././styles/ImageGallery.css"

function ImageGallery() {

const [images, setImages] = useState([]);

useEffect(() => {

fetch(’https://hiv3-app-1abe045e0a88.herokuapp.com/images’)

.then(response => {

if (!response.ok) {

throw new Error(’Network response was not ok’);

}

return response.json();

})

.then(data => {

40

console.log(’Data:’, data); // Check what exactly is being returned

if (Array.isArray(data)) {

setImages(data);

} else {

throw new Error(’Data is not an array’);

}

})

.catch(error => {

console.error(’Error fetching images:’, error);

setImages([]); // Fallback to an empty array

});

}, []);

return (

<div>

<h1>Image Gallery</h1>

<div className = "containerrr">

{ images?.map((img, index) => (

))}

</div>

</div>

);

}

export default ImageGallery;

12.3 Frontend API Calls
const checkMembersInRole = (role, userEmail) => {

return fetch(‘https://hiv3-app-1abe045e0a88.herokuapp.com/findmember?role=

${encodeURIComponent(role)}¤t_user=${encodeURIComponent(userEmail)}‘)

.then(response => response.json())

.then(data=> {

console.log(data.message);

return data.message.includes("Member exists in role");

})

.catch(error => {

console.error(’Error’, error);

return false;

});

}

12.4 Machine Learning BBox Loss Function
class BboxLoss(nn.Module):

"""Criterion class for computing training losses during training."""

def __init__(self, reg_max, use_dfl=False):

"""Initialize the BboxLoss module with regularization maximum and DFL settings."""

super().__init__()

41

self.reg_max = reg_max

self.use_dfl = use_dfl

self.eps = 1e-7

self.sigma = 0.5

def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores,

target_scores_sum, fg_mask):

"""IoU loss."""

weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)

iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True)

loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum

DFL loss

if self.use_dfl:

target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)

loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1),

target_ltrb[fg_mask]) * weight

loss_dfl = loss_dfl.sum() / target_scores_sum

else:

loss_dfl = torch.tensor(0.0).to(pred_dist.device)

return loss_iou, loss_dfl

def rep_loss(self, pred_box, ground_truth_boxes):

Assume pred_box and ground_truth_boxes are of shape [batch_size, number, xyxy(4)]

batch_size = pred_box.shape[0]

RepGT_losses = []

RepBox_losses = []

for j in range(batch_size):

Get relevant data for the current batch

pred_boxes = pred_box[j] # Predicted bounding boxes for this batch

gt_boxes = ground_truth_boxes[j] # Ground truth bounding boxes for this batch

Filter out invalid annotations (class label -1)

#pred_boxes = pred_boxes[pred_boxes[:, 4] != -1]

#gt_boxes = gt_boxes[gt_boxes[:, 4] != -1]

if gt_boxes.shape[0] == 0:

RepGT_losses.append(torch.tensor(0.0)) # No ground truth boxes, so no loss

RepBox_losses.append(torch.tensor(0.0)) # No ground truth boxes, so no loss

continue

Assume ignore_flags are randomly generated for each batch

ignore_flags = torch.randint(0, 2, (gt_boxes.shape[0],)).bool()

Compute RepGT losses

IoG_to_minimize = self.IoG(gt_boxes, pred_boxes)

RepGT_loss = self.smooth_ln(IoG_to_minimize, 0.5).mean()

RepGT_losses.append(RepGT_loss)

Sample predicted boxes for RepBox losses

predict_boxes_sampled = []

42

for gt_box in gt_boxes:

Randomly sample a predicted box

index = random.choice(range(pred_boxes.shape[0]))

predict_boxes_sampled.append(pred_boxes[index, :4])

predict_boxes_sampled = torch.stack(predict_boxes_sampled)

Compute RepBox losses

iou_repbox = self.calc_iou(predict_boxes_sampled, predict_boxes_sampled)

mask = torch.lt(iou_repbox, 1.0).float()

iou_repbox = iou_repbox * mask

RepBox_loss = self.smooth_ln(iou_repbox, 0.5).sum()

/ max(torch.sum(torch.gt(iou_repbox, 0)).float(), 1.0)

RepBox_losses.append(RepBox_loss)

Return the mean of RepGT and RepBox losses over all batches

return torch.mean(torch.stack(RepGT_losses)), torch.mean(torch.stack(RepBox_losses))

@staticmethod

def _df_loss(pred_dist, target):

"""

Return sum of left and right DFL losses.

Distribution Focal Loss (DFL) proposed in Generalized Focal Loss

https://ieeexplore.ieee.org/document/9792391

"""

tl = target.long() # target left

tr = tl + 1 # target right

wl = tr - target # weight left

wr = 1 - wl # weight right

return (

F.cross_entropy(pred_dist, tl.view(-1), reduction="none").view(tl.shape) * wl

+ F.cross_entropy(pred_dist, tr.view(-1), reduction="none").view(tl.shape) * wr

).mean(-1, keepdim=True)

def repulsion_loss_torch(self, pbox, gtbox, deta=0.5, pnms=0.1, gtnms=0.1, x1y1x2y2=True):

repgt_loss = 0.0

repbox_loss = 0.0

print(pbox.shape)

print(gtbox.shape)

Compute IoU between predicted and ground truth boxes

pgiou = rep_bbox_iou(pbox, gtbox)

ppiou = ret_bbox_iou(pbox, pbox)

print(pgiou.shape)

print(ppiou.shape)

Initialize repulsion losses

repgt_loss = torch.zeros(pbox.shape[0]).cuda()

repbox_loss = torch.zeros(pbox.shape[0]).cuda()

Iterate over each example

for i in range(pbox.shape[0]):

43

IOG = self.IoG(gtbox[i], pgiou[i])

repgt_loss[i] = torch.mean(self.smooth_ln(IOG, deta))

mask = ˜torch.isnan(ppiou[i]) # Filter out NaN values

repbox_loss[i] = torch.mean(self.smooth_ln(ppiou[i], deta))

return repgt_loss.mean(), repbox_loss.mean()

def calc_iou(a, b):

area_b = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1])

iw = torch.min(torch.unsqueeze(a[:, 2], dim=2), b[:, 2]) - torch.max(torch

.unsqueeze(a[:, 0], dim=2), b[:, 0])

ih = torch.min(torch.unsqueeze(a[:, 3], dim=2), b[:, 3]) - torch.max(torch

.unsqueeze(a[:, 1], dim=2), b[:, 1])

iw = torch.clamp(iw, min=0)

ih = torch.clamp(ih, min=0)

ua = torch.unsqueeze((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), dim=2) + area_b - iw * ih

ua = torch.clamp(ua, min=1e-8)

intersection = iw * ih

IoU = intersection / ua

return IoU

def IoG(self, gt_box, pre_box):

inter_xmin = torch.max(gt_box[:, 0], pre_box[:, 0])

inter_ymin = torch.max(gt_box[:, 1], pre_box[:, 1])

inter_xmax = torch.min(gt_box[:, 2], pre_box[:, 2])

inter_ymax = torch.min(gt_box[:, 3], pre_box[:, 3])

Iw = torch.clamp(inter_xmax - inter_xmin, min=0)

Ih = torch.clamp(inter_ymax - inter_ymin, min=0)

I = Iw * Ih

G = ((gt_box[:, 2] - gt_box[:, 0]) * (gt_box[:, 3] - gt_box[:, 1])).clamp(self.eps)

return I / G

def smooth_ln(self, x, deta=0.5):

return torch.where(

torch.le(x, deta),

-torch.log(1 - x),

((x - deta) / (1 - deta)) - np.log(1 - deta))

44

	Hiv3: An Efficient Beehive Monitoring System
	Senior_Design_Thesis_Template___Santa_Clara_University (4) (1)

