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ABSTRACT

The Dominican Republic's Instituto Politécnico Loyola (IPL) needs a wirelessly connected

network of sensors for their greenhouses. Our project uses long-range (LoRa) communication to

receive data from sensors within the greenhouse on the recorded temperature, humidity, soil

moisture, and light values; stores and organizes these measurements in a database and backup

text file; and displays appropriate recordings on an interactive application. We collaborated with

a team of two General Engineering majors, with our focus on data retrieval and display

functionality. Aside from basic data senders used solely for testing purposes, our final design

serves as a central hub remotely accessible from outside the greenhouse: a Raspberry Pi serving

as processing functionality receives information sent over LoRa, logs it to an internal database,

and imports it into an HTML application displayed on an attached touchscreen tablet. While

designed with specifically IPL’s greenhouses in mind, our system serves as a framework for

expansion outside of IPL and eventually to remote farmlands in the global south. Our

architecture was designed to use frugal materials for our project to be practically implemented.
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Chapter 1: Introduction

1.1 Problem

The Dominican Republic is among the largest agricultural sectors in Latin America, growing to

be one of the greatest exporters of organic, quality, and fair trade products in the world.

Previously, agriculture supported most of the country’s economy, contributing to about 11% of

the GDP with about 15-17% employment in 2001 [1]. However, studies from 2020 show that

these numbers are declining, with its contribution to the country’s GDP dropping to about 6.04%,

and employment to 8.824% [2]. This downturn of the country’s agricultural production can be

greatly attributed to natural disasters; cyclones, storms, and droughts add further strain to

farmers' existing dilemmas of poor infrastructure and a lack of resources for improvement [3-4].

As a result, the country is currently focusing efforts towards the innovation of existing

agricultural practices, and in particular is encouraging utilizing greenhouse for greater control

over crops’ growing conditions.

1.2 Objective

Our objective is to create an automated sensor system connected to a remote central unit

displaying information on an interactable application. Due to the cost of implementing and

maintaining Wi-Fi and lithium ion batteries, more cost-efficient and eco-friendly solutions are

crucial components of this project. Additionally, we designed our solution with a greenhouse

setting in mind. While the overall problem statement focuses on agricultural practices in general,

we decided to appropriately scale down our testing environment to further promote the

popularity of greenhouse farming in the Dominican Republic.
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1.3 Solution

Our solution is a wirelessly connected network of soil quality sensors that store soil temperature

and humidity levels. This network uses LoRa communication to ensure long-distance, reliable

data transmission and solar panels to power the system efficiently. As a part of this network, an

interactable application would aim to streamline the soil data and organize it in a way that can be

displayed remotely. We aim to accomplish this through the creation of a dashboard that would

include the corresponding temperatures and soil data for both individual green houses.

Chapter 2: Background

2.1 Research

Our client, Instituto Politécnico Loyola (IPL), contacted the Frugal Innovation Hub at SCU with

their project: they have multiple greenhouses on their campus in the Dominican Republic, which

are prime testing grounds for new technologies that can later be shared with the local farmers

who are often required to use low-budget, manual solutions. If IPL could create and incorporate

advanced yet cheaply reproducible systems in their greenhouses, they could refine and share

them with the local farmers, significantly increasing their crop yield and decreasing the amount

of physical labor needed.

Greenhouses are currently one of the more reliable practices because they allow farmers to set

and cultivate desired environments for their crops. However, without the proper technology,

maintaining a greenhouse is a difficult undertaking requiring long-term commitment and

physical capability. Providing adequate support to these farmers is crucial in the recovery of

agricultural practices in the Dominican Republic.
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2.2 Hardware Used

Raspberry Pi 4 (8gb ram)

The Raspberry Pi 4 is a miniature computer capable of intense processing and projection to an

external graphical interface [6].

Raspberry Pi 4 7 inch Touchscreen

This tablet, which comes with an adapter board and touchscreen display, connects to the

Raspberry Pi 4 [6]. Its portability and intuitive control system provides user access to the

application.

Arduino Uno

The Arduino Uno is a microcontroller board connected to the soil sensors. The board sends

sensor data to the Raspberry Pi when prompted [7]-[12].

SX1278 LoRa Module 433MHz Ra-02

The LoRa module allows for LoRa communication over 433MHz between the Raspberry Pi and

the Arduino Uno boards [7], [9]-[11].

433MHz Antenna

Each LoRa module connects to a 433MHz compatible antenna for long-ranged communication

[7], [9]-[11].
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2.3 Software Technologies Used

Python

Python is a high-level programming language. The code for the data transport system, storage of

sensor information into local storage, and parsing of sensor data files is all written in Python

[10], [13].

SQL

SQL is a programming language for storing and processing information in a database and thus

was used for our sensor data tables [13]-[15].

Javascript

JavaScript is a programming language used primarily for adding client side functionality. These

scripts are instrumental in the retrieval of data from the database for display on the HTML page

[16].

HTML

HTML is a markup language used primarily. for constructing web pages [16], used in this project

for the structure of the interactive application.

CSS

CSS is a stylesheet language used to alter the appearance of a webpage [16]. The visual

presentation of the application is completely controlled by the external CSS file.
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Chart.js

Chart.js is a JavaScript library that can be locally installed (rather than requiring an internet

connection for access by a CDN) that generates graphs for HTML pages [17]. It creates the

charts for each of the sensor values’ subpages.

Chapter 3: Use Cases

Scenarios for individual use and commercial use of our product are crucial to planning our

experience design. We considered a wide variety of potential users to account for numerous

applications of our solution. This also allowed us to cultivate extra ideas that we would not have

otherwise considered, which enhanced our final product with vital features to fulfill the requests

of IPL and countless future clients.

3.1 User Stories

The first conceptual user we considered was our original clientbase: the students, faculty, and

other residents of IPL. With the originally provided design constraints, we hypothesized that the

primary use of our system would be monitoring seasonal greenhouse crops. They access the

information through a single system located a fair distance from the sensors. Thus, they need a

communication method that maintains a strong connection from a long distance and a device to

act as a central hub for data collection and analysis.

3.2 Client Scenarios

Our client proposed the project with the intent of being able to help the greater farming

community within the Dominican Republic in order to improve their agricultural practices and
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increase their production output. The capabilities of the system would improve the accuracy of

crop monitoring, allowing all workers on the farm to have a better understanding of the different

factors that affect growth and output. In addition to farmers, this would also greatly benefit

ecologists, as it would allow them to record and analyze data for various types of produce,

providing greater understanding for fields of study such as ideal environment and growth

conditions, optimal harvesting time, ecological effects, and countless more.

Chapter 4: Requirements

In order for our solution to fulfill the use cases of our users, there are certain requirements (both

functional and non-functional) that the system must meet.

4.1 Functional Requirements

The functional requirements of our project describe the static goals that are key to the entire

system’s operation.

- The sensor data must be accessible through interactive application.

- The sensor data should be accessible at a long range (15-20 km) from the greenhouse

location.

- The sensor data must be saved to an external hardware storage.

- The interactive application must be accessible through a mobile device.

4.2 Non-Functional Requirements

Non-functional requirements are dynamic goals that describe how our system should perform.

- The data transport of sensor data must be in real time.
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- The system must have data transport that is resistant to interruption with no packet loss.

- The user interface of the application must be intuitive.

- The application must be responsive.

- The application must support Spanish and English.

4.3 Design Constraints

Design constraints limit the design of the solution in order to fit the desires of the client and work

in its intended environment.

- The system must be able to operate without an internet connection.

- The system must be able to operate without wifi.

- The system must be energy efficient and run on a local battery.

- The system hardware must collectively be inexpensive.

- The system must have a compact design.

Chapter 5: Conceptual Model

5.1 Overall Architecture

Fig. 1
Overall architecture of the proposed solution.
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The complete solution between our group and the group we worked alongside with can

tentatively be split into two sections: data sending and data reception. Our group is focused on

the aspects regarding reception of data observed and sent by the sensors. The sensors “wake up”

to a signal from the Raspberry Pi and send the current readings. The Pi unpackages the data and

stores it locally in MariaDB with each row corresponding to a specific reading and each column

as a separate measurement. Then, the data is converted into a JSON object to send to the

application to be displayed in an intuitive, interactive format, with overall readings and trend

charts for the past 24 hours.

5.2 LoRa Protocol

In order to ensure secure and stable data transfer in the network, we designed a synchronous,

client-server communication protocol. The gateway module, which in our testing we used a

Raspberry Pi, acts as the client by requesting sensor data from one or more nodes. The node(s),

represented by Arduinos in our testing, are placed within the greenhouse(s) and remain in sleep

mode until prompted by a signal received from the gateway. Figs. 2a and 2b explain these

protocols on the different types of modules.
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Fig. 2a
LoRa node protocol, using SYNs and ACKs to

exit sleep mode and send data.

Fig. 2b
LoRa gateway protocol, using SYNs and

ACKs to retrieve data every hour.

Fig. 2
LoRa Protocol Flowcharts

The gateway module engages with synchronous communication with each node after each hour

has passed. This ensures enough data is collected to make analysis while conserving energy and

processing costs. The communication protocol is designed to enable communication between

multiple nodes such that many sensors can be placed within a single greenhouse or sensors can

be placed within many greenhouses. In order to differentiate themselves and ensure proper data

is being sent, nodes add checksums and their ids for the gateway to process.

5.3 Raspberry Pi Framework

The Raspberry Pi itself uses an SX1278 LoRa Module, which is directly wired to the raspberry

pi, along with a 7 inch display. The casing for the system safely stores the hardware in an

efficient way, and allows the user to place the system in an office desk or shelves.
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Fig. 3
Wiring guide for the Raspberry Pi, tablet, and LoRa chip.

The system is designed to operate on a Raspberry Pi 4. This allows data to be stored locally and

avoid relying on WiFI to communicate with an external server. The database is created using

MariaDB, which would hold all the collected data, in addition to information on LoRa signal

strength and timestamps of when data is being received. Our database would be stored on the

raspberry pi itself, along with all the necessary process and handling protocols for LoRa and the

data.

5.4 Database Management

Fig. 4a
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The Raspberry Pi’s internal MySQL database structure, with each sensor value stored along with
the automatically generated Data ID, RSSI, time, and date.

Fig. 4b
Chart detailing the flow of database management, with three different branches for inserting

data into the database, retrieving data from the database, and optimizing search times.

The database was constructed internally using MariaDB, to allow data to be stored locally on the

system. Entries are inserted through our parser function which takes in two values: the data

received through LoRa in a string format and the signal strength as an integer. The string is then

split and stored into their respective variables within the function, along with the time and date as

measured by the Raspberry Pi system itself. The variables are then entered into their

corresponding columns (humidity, temperature, soil moisture, light intensity, date, and time)

within the database. Each entry is assigned a unique data ID, which is used for internal

organization.

Data is retrieved from the database using a series of functions for different capabilities within the

application. The get_data() function selects the most recent entry based on the time and date, the

program also has several functions hourly and weekly for each of the monitored data.

The data being packaged into a json object and being written into a json file. At the same time,

these entries are also being written into a text file which is being saved on the SD card in the Pi.
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Lastly, the program includes optimization methods to avoid the possibility of long search times

due to the growing size of the database; any data prior to the last seven days gets removed from

the database and written into the aforementioned text file.

5.5 Application Structure

Fig. 5
The general application structure, allowing users to read each most recent recorded value on the

homepage and viewing in-depth graphs of trends over the past day and week.

The application is a simple website coded in HTML, CSS, and JavaScript. It is designed for

visibility on a small screen, which in our case is 7 inches. An overall view of each sensor’s most

recent chosen measurements (temperature, humidity, soil moisture, and light) along with the

timestamp displays on the homepage, and each measurement is clickable to view graphs plotted

with recordings over two different time periods: the last 24 hours and the last 7 days.

The JavaScript code imports the provided JSON files as modules and inserts the proper values

into their respective attribute locations within the HTML. The locally-installed Chart.js library

also imports the JSON files, using them to generate the graphs for each value.
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Chapter 6: Design Rationale

6.1 LoRa vs. WiFi

Specification LoRa WiFi

Range 15-20 km 139 m2

Reliability Some packet loss Minimal packet loss

Efficiency Battery-powered 100-240V per router

Affordability $10 per module $89+ per router

Fig. 6
Comparison of LoRa vs. WiFi communication, showing that LoRa satisfies the project

requirements far better than WiFi.

The planned deployment environment greatly affected our design, including the decision of

which communication method to use for data sending. The greenhouse layout at the IPL campus

includes a greenhouse that is 38 m away from the main offices and that has no power or wifi

access. The infrastructure required to bring a large power supply along with wifi access to this

remote area violates our frugal requirement, so LoRa communication was the best option for the

solution. We needed to account for some packet loss through a checksum and client-server

network architecture.

6.2 User Interface

Application

A GUI is much more accessible than requiring syntax knowledge and program installation on a

personal device from each user. Instead of remembering the specific terminal commands to view

the values in the database, anyone can power on the tablet and view the relevant data visually.

Furthermore, HTML, CSS, and JavaScript do not need to be installed on a new device, and thus
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the code repository can be copied and replicated on other systems rather than being constrained

to systems able to install any necessary dependencies.

The application design centers around the knowledge of the tablet’s size and controls. The

information is large so as to be completely legible on a 7-inch tablet, and the navigation works

perfectly with input solely from a touchscreen rather than requiring a mouse or keyboard.

Furthermore, CSS styling ensures responsiveness on any screen size, though it is optimized for

the smaller screen size.

Data Format

Data extracted from the database for use in the application is in a JSON (JavaScript Object

Notation) format for intuitive use in JS code. However, in order to import data from other files,

the JS files must be defined as modules within the HTML.

Chapter 7: Testing & Evaluation

7.1 Unit Test: Individual Systems

LoRa Transmission

Each device communicating over LoRa needs its own module. Various libraries exist for LoRa

functionality in many different languages; for our purposes, we used the Arduino variant of C to

send test data and Python for the Raspberry Pi’s reception from the Arduino modules.

As a part of our testing, we sent a Received Signal Strength Indicator (RSSI) value along with

the sensor packet data. This value tells how strong the connection is between the node(s) and the
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gateway. During our testing, we collected 50 different RSSI values that averaged to -97.

Although RSSI values are relative to specific manufacturers, -97 generally indicates poor

communication connectivity. This is expected considering the hardware and communication

protocols implemented. The gateway protocol accepts multiple packets during the time of

communication while rejecting any garbage data. While running communication tests, we

recorded that garbage data makes up 25% of input from the sensor node.

Data Path Verification

The data was processed through brute-force building of various functions with the goal of

optimizing fast data retrieval. The system first establishes a connection to the internal database.

Once the connection is made, the parser( ) function splits the transmitted data (formatted in a

string), converts each value into floats, then inserts them into their corresponding columns within

the table using SQL instructions. When testing on MacOS, the runtime for the insertion using the

parser function is about 0.0007. In contrast on the Raspberry Pi, the time to insert into the table is

0.00508 seconds.

For data retrieval, we placed a heavy emphasis on ensuring selection of the most recent entry

from the database. The code applies the MAX( ) function to both the date and time and verifies

the SQL requests are functioning correctly. The received data is then formatted and assigned to a

Python dictionary for each corresponding field. Finally, the code transforms the dictionary into

JSON as a .js file, which can be read by the application and used to extract any necessary data.

The most time-consuming portion of this process was workshopping the file’s syntax, requiring

multiple iterations to finalize a format readable by the application. On MacOS this function takes
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about 0.00106 seconds to retrieve the most recent data. On the raspberry pi, run time was

0.00981 sec.

After receiving and formatting a single entry using the most optimal method, the next step was to

do the same for multiple entries so the application could create graphs out of points from over

the last 24 hours and the past 7 days. Our data would then request data within a 24 hour time as

well as 7 week time frame. These programs use the AVG( ) function to calculate the average of a

given variable (temp, humidity, etc) within a given hour or day. From there, we again format the

received data into JS file using the same process as before. On MacOS, the various hourly

functions took anywhere from 0.00035-0.00044 seconds to retrieve their specific data. The

weekly data, however, took 0.00033-0.000037 seconds. On pi the hourly data was produced

between 0.00418 - 0.00505 seconds and the weekly data was retrieved between 0.00294 -

0.00369 seconds.

The optimizer function’s main goal is to keep search times as short as possible. Thus, the first

step was beginning with small amounts of data, and letting the table grow. Since the data being

displayed would be within a 7 day period, the design of the optimization algorithm is to check

for data marked 7 days prior to the current date, and then remove it.

7.2 System Test: Component Integration

Data Accuracy & Range Performance

Based on the previous analysis of communication methods between LoRa and Wifi, we

acknowledged that packet loss and garbage data are more likely to occur using LoRa. As
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discussed earlier, we account for these through sending multiple messages and adding

checksums.

Information Display

Displaying the sensor values in the HTML application relied on data retrieval from the database

and thus could not be tested until this component was implemented. With the JSON files output

properly, testing consisted of ensuring the data’s proper importation from the external sources

into the JavaScript modules by checking for error messages on the browser’s console window,

then observing any visual changes on the application opened in the browser with a live server.

Should all connections be sound, the console window logs no errors, and the application displays

number values rather than the coded-in placeholder text.

To analyze the performance of the application, we reloaded the page 10 times in a row on both

the Raspberry Pi’s Chromium browser and a fresh install of Google Chrome on Windows and

compared the load times given by the browser’s console. On Windows, the browser finished

requesting content in 34.3ms on average; fully loaded the requested HTML and CSS content in

37.7ms on average; and loaded all of the DOM content in 38.2ms on average. The ranges of

these values were extremely small: 15ms, 12ms, and 13ms respectively. In contrast, the

Raspberry Pi finished requesting content in 380.1ms on average; fully loaded the requested

HTML and CSS content in 46.9ms on average, and loaded all of the DOM content in 473.9ms on

average, with ranges of 239ms, 29ms, and 293ms. It is clear that the performance of our

application on the Windows machine is about 10 times faster than when it is loaded onto the

Raspberry Pi. The variation in load times is also significantly larger on the Raspberry Pi than on
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the Windows machine. Although it is clear that the hardware of the Pi is a harsh limiter to the

performance of the software, the load times are short enough to not interfere significantly with

the user experience.

7.3 System Test: End-to-End

After incorporating each component into a full system, we did various tests to simulate

real-world behavior. While working on the project, we designed a generic system to suit any kind

of hardware for the sake of a more general deliverable. In order to deliver a complete solution to

our client, however, we made slight adjustments for increased compatibility with the sensors

developed by the general engineers. This involved some data conversions and different

communication methods due to different electronic modules. For example, we tested our central

hub sending a series of floats in a string over C-to-Python communication, but the finished

sensor was coded in Python and was only able to communicate with integers. Thus, we edited

our code to convert the integers into floats with a tenths-place digit of 0.

7.4 Ethical Considerations

While designing our solution, we kept in mind the major issues of food insecurity and economic

development. As of 2019, 9% of the economically active population in the Dominican Republic

works under the agricultural sector [1]. These farmers have been struggling over the past 5 years

as climate change and fluctuations of the global economy limit their land availability and their

returns on labor. We hope that our solution will allow these farmers to gain valuable insight on

their crops, improve yields, and increase productivity.
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In order to best suit the needs of these farmers, we designed our solution to be frugal and

reliable, while also consuming low amounts of energy. Large power consumption has accelerated

the effects of climate change, which has impacted the livelihoods of everyone worldwide and

particularly workers in underdeveloped countries. Our solution attempts to reduce our

contribution to this issue by sending the sensor data with low-power radio communication and

powering our system with solar powered batteries.

Chapter 8: Conclusion

8.1 Summary

Our final deliverable consists of a Raspberry Pi tablet display capable of cross-device LoRa

communication, MySQL database storage, and interactive data display. The overall cost of the

hardware components is significantly cheaper than current commercially available systems, the

latter of which also usually require expensive pre-existing infrastructure typically unavailable in

the global south. In order to best support IPL’s use of the device, aspects such as the values read

and retrieval frequency currently optimized for their university greenhouses. Even so, the general

framework of both the hardware and software provides the groundwork to potentially iterate,

develop, and implement a future revision for widespread usage in agricultural work beyond the

scope of a single university.

8.2 Obstacles Encountered

One of the biggest obstacles we faced in the process was designing and building the hardware for

our testbed. We were not fully prepared for the level of hardware knowledge required to set up a

Raspberry Pi with a tablet and LoRa chip. This lack of experience ended up being an obstacle in
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the path to reaching our greater area of expertise: software programming. Thus, we needed to

spend time studying, researching, and experimenting with techniques such as wiring and

soldering before we could dive deeply into coding. This barrier, however, was not a setback, and

was in fact useful in rounding out our overall skill and knowledge of computer science as a field.

This experience ultimately promoted our learning for not only this project but also for our

futures.

8.3 Experience Gained

When we decided to work on this project, we understood that we took on a challenge that would

test the limits of our previously held knowledge. We worked with new technologies, such as

LoRa communication, and learned new ways to design databases and parse different data types.

Along with new software skills, we also gained valuable experience working with hardware

modules such as the Raspberry Pi and Arduino Uno.

Working on this project also involved creating academic presentations and formal write-ups,

which provided irreplaceable industry experience. Thanks to this, we gained the ability to

effectively communicate engineering solutions to customers and experts alike. We also have

proper documentation of our process easily accessible to all.

8.4 Future Work

Our goal for this project was to provide a viable solution to the client, IPL, as well as to farmers

in the Dominican Republic and other areas. We must build an instruction and data manual for the

students at IPL that both give more specific details of the solution. After these are made, we will
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send them along with the hardware and software of the system to the Dominican Republic where

the IPL students can implement the solution in their environment.
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