
SANTA CLARA UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Date: June 15, 2023

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Lauren Xie
David Truong

Tino Theodoropoulos
Jason Vu

ENTITLED

Developing an Open-Source Tool for Systematic App Reviews for
Non-Technical Researchers

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

Thesis Advisor

Department Chair

Kai Lukoff

https://secure.na4.adobesign.com/verifier?tx=CBJCHBCAABAAjOg2O881ZNEw5LURD5hZOCG3UWQ5L6WH

Developing an Open-Source Tool for Systematic App Reviews for
Non-Technical Researchers

by

Lauren Xie
David Truong

Tino Theodoropoulos
Jason Vu

Submitted in partial fulfillment of the requirements
for the degree of

Bachelor of Science in Computer Science and Engineering
School of Engineering
Santa Clara University

Santa Clara, California
June 15, 2023

Developing an Open-Source Tool for Systematic App Reviews for
Non-Technical Researchers

Lauren Xie
David Truong

Tino Theodoropoulos
Jason Vu

Department of Computer Science and Engineering
Santa Clara University

June 15, 2023

ABSTRACT

Researchers in many fields, from psychology to privacy studies, want to understand the mobile app ecosystem. The
process of reviewing mobile apps is called a ’systematic app review’ (SAR). In a systematic app review, researchers
analyze app metadata (e.g., the description, user reviews of the app, the app’s permissions list) and/or the experience
of the app itself (e.g., the user interface, the content it contains). Unfortunately, this process does not yet have clearly
defined best practices and the process of scraping data from app stores is costly, challenging, and time-consuming for
researchers, especially ones without a technical background. Researchers lack a well-documented open-source tool
that they can use to scrape mobile app stores for app data.

The goal of this project is to develop an open-source tool that non-technical researchers can use to easily scrape
the world’s two most popular mobile app stores: Google Play and Apple App Store. This will empower non-technical
researchers to easily conduct systematic app reviews by reducing the time it takes to scrape app stores and eliminating
the need to find a third-party technical partner. To do this, we will meet and understand the needs of researchers who
wish to conduct systematic app reviews but find it costly to do so, and identify (a) what researchers are looking for in
an open-source tool and (b) best practices for conducting systematic app reviews. We then plan to develop our own
prototype of an open-source tool based on these needs. Our project will provide non-technical researchers with tools
and practices to better understand the current app ecosystem and to identify ways to improve it.

Table of Contents

1 Introduction 2
1.1 The problem . 2
1.2 Limitations of existing systems . 2
1.3 Our approach . 4

2 User Research 5
2.1 Stakeholder needs . 5
2.2 User stories . 5
2.3 Methodology . 6
2.4 Formative User Interview Results . 7

3 Design and Rationale 8
3.1 Design . 8
3.2 Functional requirements . 9
3.3 Non-functional requirements . 9
3.4 Rationale . 9

4 Technologies 10
4.1 System Components . 10
4.2 Improved Components . 11

5 System Evaluation 13
5.1 Internal Testing . 13
5.2 External Testing . 13
5.3 Testing Results . 14

6 Implementation 16
6.1 Timeline . 16
6.2 Agile software development . 17
6.3 Project Risks . 17

7 Conclusion 18
7.1 Summary . 18
7.2 Lessons Learned . 18
7.3 Next Steps . 19

8 References 20

iv

List of Figures

1.1 Google Play Store displaying only 30 apps using the search word ’magic’ 3
1.2 facundoolano Google Play scraper’s single line of installation instruction 4

2.1 Systematic App Review user stories diagram . 6

3.1 Systematic App Review C4 software architecture diagram . 8

4.1 App data output in spreadsheet format . 11
4.2 Scraper graphical user interface . 12

6.1 SAR team timeline using the agile development method . 16

v

Acknowlegements

We would like to thank our advisor Dr. Kai Lukoff for his support, guidance, and encouragement throughout project.

His guidance and advice supported us throughout all stages of this project - ideation, research, development, present-

ing, and review.

1

Chapter 1

Introduction

1.1 The problem

Researchers in many fields, from psychology to privacy studies, want to understand the mobile app ecosystem. For

example, researchers in psychology might examine adherence to clinical guidelines in apps that contain the keyword

“cognitive behavioral therapy” in the description. Or privacy researchers might check how many children’s mobile

games use third-party trackers, which is illegal in the U.S. and EU.

This process of reviewing mobile apps is called a ’systematic app review.’ In a systematic app review, researchers

analyze app metadata (e.g., the description, user reviews of the app, the app’s permissions list) and/or the experience

of the app itself (e.g., the user interface, the content it contains).

1.2 Limitations of existing systems

In general, the systematic app review process, unfortunately, does not yet have clearly defined best practices and the

process of scraping data from app stores is costly, challenging, and time-consuming for researchers, especially ones

without a technical background. Currently, researchers lack a well-documented open-source tool that they can use to

scrape mobile app stores for app data.

A popular scraper is the facundoolano Google Play scraper, which is an open-source scraper using Node.js to

scrape app data on the Google Play store. This scraper has two thousand stars on GitHub (similar to likes on social

media, two thousand people like this scraper) and has been used and cited in at least 10 different studies. Downloadable

from GitHub, this program allows the user to implement different functions (list, suggest, search, etc.) that retrieve

data from the given parameters outlined in the README.md. While this scraper successfully gathers data from the

Google Play store, it does have limitations that hinder its performance for non-technical researchers. For one, the

Google Play scraper, without modifications, can only scrape up to 30 apps, as seen in Figure 1.1. In Figure 1.1, we

see the lack of a next-page button on the Google Play Store indicating the 30-app limit when a user searches for an

app. While this may seem to be a reasonable amount of data, for researchers conducting a wide search of apps over

2

the entire Google Play store, the breadth of the search needs to be much wider, without having to modify the code of

the program itself.

Figure 1.1: Google Play Store displaying only 30 apps using the search word ’magic’

Second, the facundoolano Google Play scraper does not have thorough documentation instructing how to install

the program and simply provides a line of code to execute in the command line, shown in Figure 1.2. Even though we

have technical experience, we found it difficult to install the facundoolano Google Play scraper without any outside

resources. After extensive searching, we later consulted a tutorial on YouTube to correctly install the program. Fur-

thermore, since this scraper is written in Node.js, it is implied the user’s local machine requires Node.js in order for the

scraper to function properly; however, there is no indication of such a dependency on the GitHub page and for users

without experience with Node.js, they will not know to check or download Node.js for this tool. For non-technical

researchers, the lack of clear documentation for an open-source tool will set back their research and consumer more

time as they try to install and understand the tool itself.

3

Figure 1.2: facundoolano Google Play scraper’s single line of installation instruction

1.3 Our approach

Our solution was to develop an open-source tool that non-technical researchers can use to easily scrape the world’s two

most popular mobile app stores: Google Play and Apple App Store. The goal of our tool is to empower non-technical

researchers to easily conduct systematic app reviews by reducing the time it takes to scrape app stores and eliminating

the need to find a third-party technical partner.

To do this, we first understood the needs of researchers who wish to conduct systematic app reviews but find

it costly to do so by conducting interviews with researchers who were conducting app studies or with researchers

who scraped the app store in the past. We also provided consultation for researchers who have technical questions

regarding scrapers and conducting systematic app reviews. Through this, we identified what researchers are looking

for in an open-source tool. With these findings, we developed our own prototype of an open-source tool following the

agile development methodology broken into 2-week sprints. While we developed our prototype, we used feedback

from researchers to modify and improve iterations of our prototype to best incorporate the necessary functionalities to

conduct a systematic app review.

Alongside our prototype for app store scraping, we created comprehensive and detailed documentation describing

both how to install and use our tool and its functionalities in order to reduce the time and money spent on research using

systematic app reviews. Our project provides non-technical researchers with tools and practices to better understand

the current app ecosystem and to identify ways to improve it.

4

Chapter 2

User Research

2.1 Stakeholder needs

The main stakeholder we identified for our system was non-technical researchers who are interested in conducting a

systematic app review. So far, we found that non-technical researchers need a comprehensive open-source scraper tool

with clear documentation to easily execute data collection with our scraper. The scraper our main stakeholders wanted

should be able to scraper data and return results from all the apps related to the filter in an exportable and readable

format.

Another stakeholder was technical researchers; however, we decided to focus on the needs of non-technical re-

searchers since they are most directly involved and affected by the outcomes of our project. Technical researchers will

benefit from the ease and usability of our system; however, since non-technical researchers have little to no knowledge

of scrapers and Node.js, it was crucial to address non-technical researchers’ needs first.

2.2 User stories

We identified our main stakeholders to be non-technical researchers. In Figure 2.1, there are three different aspects

of our system that non-technical researchers can utilize and benefit from. The first is the physical scraping tool itself.

With the scraping tool, non-technical researchers will be able to easily collect data from apps that identify keywords

specific to their research. For example, a mental health researcher can gather all the relevant metadata from any app

that uses the keywords “mental health” to get a clearer idea of what the app ecosystem around mental health apps is.

In the next branch of Figure 2.1, we compiled a “Best Practices Guide” researchers can use as a framework to conduct

their own research, which in turn saves them time from looking at different resources to get them a similar result later.

Alongside our scraping tool and “Best Practices Guide,” we offered technical consulting to non-technical re-

searchers who are currently conducting their own systematic app reviews with scrapers they are mainly unfamiliar

with. Technical consulting gave non-technical researchers a quick and immediate resource to turn to when they have

questions rather than having to scour the Internet for hours to find a solution. Technical consulting also provided us,

5

the SAR team the space to listen and understand the needs of our users, non-technical researchers.

Figure 2.1: Systematic App Review user stories diagram

2.3 Methodology

For our tool, it is important to understand what the user wants in an open-source app scraper. To get a better idea of

what features researchers will actually use, we decided to conduct user interviews with actual researchers who have

either conducted systematic app reviews before or have done research with the Google Play Store.

To conduct user interviews, we created a user interview protocol with a list of questions to ask the researchers.

The protocol allows for similar questions to be asked across different interviews and reminds the interviewer how to

introduce ourselves to give the researchers a good idea of our mission.

In the protocol, we begin with an introduction section. This section is for us to introduce ourselves and our project

idea to the researchers so they have a better understanding of what we are trying to do. Then we asked the researcher

questions about their background like “What is your field of research?” and “Can you tell me a bit about the research

in general?” We also asked about their background in web scraping and app store scraping to get a better idea of their

technical and scraping experience. We then asked questions regarding the four different stages of a systematic app

review: scoping, data collection, analysis, and reporting. We asked questions like “How do you store your data?” or

“How do you determine the quality of the data?” to understand their process with this stage of research and to determine

what works and what does not. At the end of each stage section, we ask “What is challenging about this stage?” to

give the researchers an opportunity to reiterate any challenges that they have encountered for that stage of research

or mention any new challenges they remembered after taking some time to reflect on their research. Overall, these

questions helped us organize the researchers’ experience within these four stages of research while also identifying

the researchers’ pain points with systematic app reviews.

For our user interviews, we reached out to 4 researchers: Jae Won Kim, a Ph.D. student in Information Science at

6

the University of Washington; Konrad Kollnig, an associate professor of Law and Technology at Maastricht University;

Michael Hoefer, a Ph.D. student in Computer Science at CU Boulder; and Arthur Tham, a former Master’s student in

Computer Science at the University of California, Irvine. The researchers we interviewed all had technical knowledge

and experience with scraping, but of varying levels. Kim, Kollnig, and Hoefer are researchers we met through the

connection with our advisor, Dr. Kai Lukoff. Since we were using the facundoolano Google Play scraper as a basis

for our tool, we wanted to interview researchers who have used the facundoolano Google Play scraper before. We

contacted Tham after finding his research paper by searching the facundoolano Google Play scraper on Google Scholar.

2.4 Formative User Interview Results

From our user interviews with researchers, we found a few crucial pain points that we wanted to address in our

tool. The biggest issue we learned was that app scraping is difficult and confusing for non-technical researchers, or

researchers who were not familiar with the language the tool is written in.

One experience with the facundoolano Google Play scraper was Tham’s difficulty using the scraper when he was

conducting research on dieting, fitness, and weight apps. For some background, Tham was a Masters’s student at the

University of California, Irvine (UCI), studying computer science and published a research paper called A content

analysis of popular diet, fitness, and weight self-tracking mobile apps on Google Play with his findings using the

facundoolano Google Play scraper. He used the facudoolano Google Play scraper to scraper diet, fitness, and weight

apps from the Google Play Store. Tham, however, found using this tool difficult because although he was a computer

science student, he was more familiar with Python and had never used Node.JS before. As a result, in order to use the

facundoolano Google Play scraper, Tham spent three weeks learning Node.js and how to use the scraper before getting

any results. Furthermore, Tham spent additional time learning JSON in order to migrate the scraper results from the

read-only command line JSON output to an editable, easy-to-use spreadsheet since the JSON output was difficult to

read and understand because of how much data was outputted. Later in the interview, Tham said “We spent a lot of

time learning Node.js (and JSON) more than we actually looked at the app stuff - like the data we got back” after

telling us that a UI for the scraper would have been helpful when he was conducting research. This experience was

just one person’s; however, we can infer that many non-technical researchers are experiencing similar difficulties due

to the necessary knowledge to know how to use Node.js.

To summarize, from our formative user research, we found that the existing facundoolano Google Play scraper is

difficult for non-technical researchers to use because it requires the user to learn a completely new language in order to

use simple commands, time they could dedicate to more important aspects of their research, and that the JSON object

as an output is complicated to use since you can’t edit the command line output.

7

Chapter 3

Design and Rationale

Figure 3.1: Systematic App Review C4 software architecture diagram

3.1 Design

We developed a scraping tool, by modifying an already existing open source tool, in order to allow non-technical

researchers to easily get all the data they need without any technical knowledge. This scraping tool pulls data from the

google play store, based on key search terms provided by the researchers, and returns the scraped data in csv format,

which is easy for non-technical researchers to use with spreadsheets. We included technical documentation describing

in detail how to use the SAR tool and its specifications, in a way that is accessible to non-technical users.

Additionally, we came up with best practices for conducting systematic app reviews (SAR), similar to those already

existing for systematic literature reviews (SLR), for researchers to be able to use together with our scraping tool to

collect the data that they need for their research in the most efficient way possible.

8

Finally, we provided technical consulting to researchers who had to perform systematic app reviews for their

research but did not have the technical skills to do it on their own, in order to understand their pain points and what

kind of tools and guidance they needed.

3.2 Functional requirements

The scraper must be able to take in a key search term from the user, then return all the apps on the app store or google

play store that contain that keyword in the title. Additionally, the scraper must be able to take all of these apps and

store them in an organized format that is easy for non-technical users to use, such as a spreadsheet.

3.3 Non-functional requirements

The scraper tool should be able to return all of the apps that fit the user’s search criteria all at once, without being held

back by app store query limits. Additionally, it should be able to return all of the results in a reasonable amount of

time, so that it is convenient for researchers to use.

3.4 Rationale

Originally, we were considering using an already existing open source scraping tool, and creating best practices for re-

searchers to use along with the tool to perform systematic app reviews. However, after trying to use the tool ourselves,

we realized that even with our technical backgrounds, it was very difficult to set it up and get it to work properly, which

means that it would be even more cumbersome and time consuming for non-technical researchers to use. Additionally,

it did not have all of the features that we were looking for in a scraping tool, such as automatically storing all of

the scraped data in a well organized spreadsheet. Therefore, we decided to create our own scraping tool, along with

technical documentation, that would be easy for non-technical researchers to understand and use, as well as have all

of the features that we were looking for, in order to allow the researchers to painlessly and conveniently get all of the

data that they need.

9

Chapter 4

Technologies

4.1 System Components

In terms of outlining our technologies and test plan, we focused our efforts on empowering non-technical researchers

to study mobile store apps. Our contributions revolved around the development of a user-friendly tool using various

technologies, including Node.js, Electron, IPC, and the Google Play API.

To create an accessible and efficient tool, we chose to utilize Node.js, a widely adopted JavaScript runtime envi-

ronment. By leveraging Node.js, we could develop the tool using JavaScript, a language familiar to many developers.

This allowed for streamlined data handling and seamless interactions with external APIs.

For the purpose of building a cross-platform desktop application, we turned to Electron, a framework that combines

the power of Node.js and Chromium. This decision enabled us to offer a consistent user experience across different

operating systems, ensuring that researchers could access the tool regardless of their device of choice.

Inter-Process Communication (IPC) was crucial for smooth communication between the user interface and backend

components in the tool’s development. It facilitated efficient data exchange, allowing seamless retrieval of app data for

comprehensive analyses. IPC mechanisms, like those in Electron, enabled efficient communication between frontend

and backend, retrieving data from the Google Play API for a user-friendly presentation.

Furthermore, we integrated the Google Play API into our tool, using its extensive collection of mobile apps avail-

able on the Google Play Store. By utilizing this API, researchers can gain access to a better wealth of information,

including ratings, reviews, and download statistics. This rich dataset can hopefully enable them to conduct thorough

app reviews and analyses.

Throughout the development journey, we’ve remained dedicated to user-oriented design principles and adhered

to best practices. Our aim was to create a tool that was intuitive and easy to navigate for non-technical users. By

combining the aforementioned technologies and APIs, we successfully laid the foundation for a powerful and user-

friendly tool that will empower non-technical researchers to delve into the world of mobile store apps and conduct

systematic app reviews effectively.

10

4.2 Improved Components

While we made use of many pre-existing open-source tools and frameworks over the course of our project devel-

opment, we believe that our final product offers something new that was previously unavailable in the open-source

community. While various open source scraping tools already exist, our product comes in a complete, easy to use

package that requires no technical or programming knowledge to be effectively used, making it accessible to users of

all technical backgrounds who need to conduct systematic app reviews for their research.

Our product addressed several concerns that researchers had with existing open source tools. First of all, it gets

around the Google Play Store’s search limit of 30 apps per request by recursively returning recommendations of search

results, allowing the user to collect data on a much larger quantity of apps at one time. Secondly, results are returned

in a simple csv format, as opposed to JSON, so that users can easily view all of the data using a spreadsheet program

of their choice, such as Excel or Google Sheets.

Figure 4.1: App data output in spreadsheet format

Additionally, our product uses a graphical user interface, allowing users without any technical experience to easily

interact with it without needing to write any code. Finally, our entire product is contained within a single executable

11

file, so that users can launch it simply by opening the file, and don’t need to worry about having Node.js or any other

dependencies installed on their computer, or having to use npm to install the right packages and set them up properly.

Figure 4.2: Scraper graphical user interface

12

Chapter 5

System Evaluation

Our system was evaluated based on the amount and quality of data that we were able to scrape, and the ease of use

of the application. We evaluated the system based on the number of apps that it can scrape as well as how precise the

results are to the search parameters. We also then further evaluate the number of details we are able to obtain for each

app. As for ease of use, relied on feedback obtained through user testing.

5.1 Internal Testing

The app was tested internally through different iterations of the app. We ran the first set of tests after we finished

the first iteration and then further improved on areas that we deemed lacking. Afterwards, our team determined the

direction that we planned on heading next based on the results acquired. Each time we built a new version, we tested

out the app on different parameters such as speed, quantity, and quality.

5.2 External Testing

We ran external tests by having researchers and the individuals of our intended audience test out the app’s usability. To

do this, we reached out to Tham, who we interviewed before in Chapter 2 - User Research. Similar to our formative

user interviews, we developed a user testing interview guide to ensure all the external testing interviews are conducted

similarly and that we are asking similar questions. Generally, we asked the researcher to use the tool as if they were

conducting their research to understand if this tool is intuitive and can easily support the researcher in actual research.

We also asked them to go through the different functions to ensure each function page and the prompt is easy to

understand because we wanted all functions to be straightforward, even if it is not used at the moment. By conducting

these tests, we were able to determine what aspects of the tool were comprehensive and easy to use and which aspects

needed improvement. We also compared the results of external testing to the results of internal testing to determine

what aspects of the program need improvement to allow users of different technological backgrounds to have the same

results when using our app.

13

5.3 Testing Results

From the external testing, we found that our product was helpful in easily gathering the data scraped from the Google

Play Store. The new UI helped users quickly scrape data without having to learn or handle Node.js, which can get

messy. Furthermore, as an executable, our product eliminated the concern of not having Node.js installed on the

local machine. While the product is helpful, there were some points of improvement the researchers we interviewed

highlighted.

Some researchers were surprised when the tool immediately downloaded a csv of the results after clicking the

’search’ button on any of the function pages. This is because the term ’search’ as the button text implied an interface

or interaction similar to a search engine that would show a preview of the results or show the results on the page. This

was confusing at first for the researchers. It was suggested to change the text from ’search’ to ’download’ if we plan

to have the user download the csv immediately. It was also suggested to add text to inform the user that by clicking

the button, it will download a csv or that a csv is the format the data will be in. Another suggestion was to include a

sample of the csv header on the page to let the user know what kind of data they will be scraping from the function.

The researchers also suggested including loading text to let the user know that the csv is downloading. This

feedback was most received when testing the ’reviews’ function since the reviews function usually takes more time

to compile the data because there are thousands of reviews the program is scraping. While the reviews function is

helpful, without loading text, the user will be confused as to whether the tool is broken or not. In fact, in a couple

of the external testing interviews, researchers closed the program thinking the program had crashed since there was

no indication of whether the reviews function was simply taking more time to retrieve the reviews of an app or if it

stopped working.

Similarly, we received feedback on including an error message when there is no data to be retrieved. For example,

if a new app had just come out on the Google Play Store, it will not have any written reviews yet. If a user were to

try and scrape the reviews of the new app, the tool would simply erase the search parameters, not informing the user

that there was no information to scrape. The error message implementation would be important to improving the user

experience of the tool.

Another suggestion was to include an easier method to search for apps. The search function is simple since it

simply uses key terms; however, many other functions like ’reviews’ and ’permissions’ require an app id, which is

confusing and cumbersome to retrieve if the research is scraping data on multiple apps. It was suggested to implement

some method to easily copy the app id from the Google Play Store or to simply input the app URL since the beginning

of the app page on the website is the same.

The user experience of our scraper is crucial to the helpfulness of our product to non-technical researchers because

if the product’s user experience is poor, researchers will not use the product. All the feedback listed above is important

14

to the further development and improvement of our program for non-technical researchers. We want non-technical

researchers to easily scrape app data from the Google Play Store without having to learn complicated coding languages.

15

Chapter 6

Implementation

6.1 Timeline

The first quarter was mainly focused on planning and information gathering. For us, this meant gathering information

on the existing market of scraper tools, identifying the limitations of each tool and aspects we would like to implement

in our own prototype, and understanding the goals for the project. We also interviewed one researcher who is currently

working on a systematic app review.

In the second quarter, we continued to conduct user interviews to get a better understanding of the hardships of

conducting systematic app reviews and what aspects of the facundoolano Google Play scraper researchers like, and

what was difficult. Additionally, during the second quarter, we began the actual development of our open-source

tool. During this quarter, we had our breakthrough with the 30-app limit discussed in Chapter 1 as well as product

directional shifts as a result of new implementation ideas.

In our third quarter, we focused on further developing our UI of the Google Play scraper. This mainly meant

designing a UI and mapping out the flow for how users would interact with the product, integrating all important

features from the facundoolano Google Play scraper, and compiling the JSON results previously obtained into a csv

that is easier for researchers to read and use. We also conducted user tests to receive feedback on what aspects of our

tool are helpful and what needs to be improved upon for a polished user experience.

Figure 6.1: SAR team timeline using the agile development method

16

6.2 Agile software development

For our project, we used the agile software development methodology. This means that we divided the project into

multiple different 2-week sprints and completed tasks within those given 2 weeks. We chose to work using the agile

method because with this method, we can work on multiple epics (as seen in Figure 2.1) at the same time. For example,

one person can work towards completing epic 3 by conducting an interview with a non-technical researcher whereas

another can work on epic 1 by working on the code for the scraper.

The agile methodology allowed us to work on many aspects of the project in parallel with each other. An important

aspect of the agile method is the reflection at the end of each sprint. After each sprint, as a team, we discussed what

went well, what needs improvement, and our plans for improvement towards the next sprint. This allowed us to reflect

not only on the actual work we produced but our process, communication, and collaboration as a whole.

6.3 Project Risks

Our tool currently has a recursive workaround for the 30-app limit the Google Play Store has on their web version. A

risk to this is if Google makes any changes to their app limits that block our recursive method which would then hinder

any function that uses this method from retrieving the full data. For the time being, we believe there will not be any

major changes in Google’s app limit policies so we consider this as a low risk, for now. Another risk is the possibility

of malicious users abusing our tool’s data scraping capabilities to collect app data and develop their own app. Because

our program is made with the intention for research purposes only, the possibility to use our product for anything else

is a risk we are taking. One way to hinder malicious users is to limit the number of times they can scrape app data and

to incorporate user accounts and authentication so that users can only use the program if they have a .edu email, an

email domain extension that is reserved for academic and educational institutions. Luckily, we are not scraping actual

user data, like passwords and addresses, and everything our tool scrapes can be found on the Google Play Store.

17

Chapter 7

Conclusion

7.1 Summary

In the 21st Century, apps are increasingly integrating into our lives. Not only are there apps for games and social media,

but also mental health tools and fitness; there are apps for essentially everything. With the increasing development

of apps, researchers want to better understand how these apps are influencing our daily lives by studying the app

ecosystem. The facundoolano Google Play scraper is a popular open-source tool that researchers used in the past to

scrape app data from the Google Play Store; however, this tool is difficult to use for non-technical researchers. Our

solution was to create an easy-to-use open-source scraper with a UI that researchers can easily interact with, without

having to learn the complicated nuances of Node.js and JSON. Our tool allows researchers, non-technical or technical,

to scrape thousands of app data on the Google Play Store with a click of a button while storing the data in a simple

and clean csv format that researchers can make notes and modify at will and with ease.

7.2 Lessons Learned

Being a year-long project, developing our open-source Google Play scraper taught us many lessons. For many of us,

this project was the first project we had to navigate on our own. Prior to this, in-class projects provided some level

of direction and implementation plans in order to easily complete in the span of 10 weeks. This project, however,

was different. We only had a prompt to help non-technical researchers better scrape app data and were to figure out

how to develop a tool from the beginning. Because of this, we learned about project management, the agile software

development methodology, and effective communication between team members but also for external involvement,

like the researchers we interviewed. We learned how to lead a project on our own and how to decide the direction

we wanted to develop in. There were moments where our vision and plans were misaligned with each other’s which

created confusion in our next steps. During these times, we paused development to realign ourselves, ensuring that

everyone was able to voice their ideas, rationales, and concerns. After these meetings, we all had one vision and moved

forward to bring that vision to life. Regarding lessons with user experience interviews, we learned how to develop an

18

effective interview guide that asks the questions we want the answers to while refraining from guiding the researcher to

answer a certain way. This is important because we wanted unbiased answers and genuine feedback when conducting

our research so it was important that we presented no bias. Because the users of our product are researchers, it was

crucial to receive genuine feedback on both our formative and evaluative user interviews.

7.3 Next Steps

Looking into the future, the next steps for the open-source tool could be to implement user accounts to save their

search history and data, in addition to being a method of authentication to restrict and block malicious intent. This

would require more development to work with storing data like search data or user profiles on servers. This feature

would also highly require the migration of the tool as a downloadable executable to a web-based application for easy

access and user accounts. Furthermore, more user tests could be conducted since we weren’t able to interview too

many researchers due to the time constraint of the final quarter. More user feedback would provide a clearer idea of

what are the most important features of the tool to be improved on. Our tool currently only allows users to select one

function to retrieve app data; however, the ability to further filter the search parameters is a strong possibility for future

improvements as well since researchers will want to scrape more specific queries.

19

Chapter 8

References

1. Tham, A., Kim, L., Victory, S., Chen, Y., Zheng, K., &; Eikey, E. V. (2020, March 23). A content analy-

sis of popular diet, fitness, and weight self-tracking mobile apps on Google Play. iConference 2020 Proceedings.

https://www.ideals.illinois.edu/items/114127

20

	Introduction
	The problem
	Limitations of existing systems
	Our approach

	User Research
	Stakeholder needs
	User stories
	Methodology
	Formative User Interview Results

	Design and Rationale
	Design
	Functional requirements
	Non-functional requirements
	Rationale

	Technologies
	System Components
	Improved Components

	System Evaluation
	Internal Testing
	External Testing
	Testing Results

	Implementation
	Timeline
	Agile software development
	Project Risks

	Conclusion
	Summary
	Lessons Learned
	Next Steps

	References

		2023-06-17T22:59:26-0700
	Agreement certified by Adobe Acrobat Sign

