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ABSTRACT

Smart home devices are becoming increasingly popular across the United States.
Unfortunately, in order to keep the cost of these devices down, manufacturers tend
to place cybersecurity measures lower on their list of priorities. As a result, these
devices have become targets for security breaches like the Mirai Botnet and dis-
tributed denial of service (DDoS) attacks. The cybersecurity solutions currently
available on the market are either expensive, difficult to set up, or follow a static
set of rules for attack detection. In this thesis, we propose a novel approach to
detecting attacks on Internet of Things (IoT) devices through the use of a forward
proxy powered by a machine learning model running on a Linux machine. The pro-
posed solution is more affordable, requires minimal configuration, and dynamically
adjusts detection rules based on prior attacks. The use of a machine learning model
in the solution allows us to take advantage of the regularity in IoT traffic patterns
to identify and isolate potentially malicious packets. The model was trained using
the IoT-23 data set, which provides a labeled set of malicious and benign packets
from IoT devices. We verified the effectiveness of the approach using a testbed of
various smart home devices set up in an isolated home network. These devices range
in price and usage context, allowing us to ensure that the solution will be effective
with the majority of smart home devices. After testing, we have determined that
the model is able to successfully identify and isolate of malicious packets sent from
a compromised IoT device if the device matches a device that was used in training
data. Moving forward, we hope to implement the solution directly onto the router
hardware using the P4 language for widespread adoption.
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Chapter 1

Introduction

1.1 Motivation

With the rise of affordable Internet of Things (IoT) devices, concerns about device

security have become increasingly common. Rapid development of IoT infrastruc-

ture has resulted in a general lack of security for the devices and networks in use.

The result is a system of networks that are vulnerable to Distributed Denial-of-

Service (DDoS) attacks. Without a solution to the present lack of security for IoT

networks, other networks are also at risk [1].

A common type of DDoS attack is a flood attack. A well-known example of

this is the Mirai Botnet attack in 2016. At its peak, the Mirai botnet controlled

over 770,000 IoT devices and launched a flood attack of over 1 Tbps [2]. Since 2016,

the Mirai source code has become available as open source code and many similar

attacks have been launched.

SAM Seamless Network is a company that provides network security statistics

on attacks in IoT networks. They tracked IoT devices and networks to discover

the commonality of DoS, DDoS, brute force, DPI signature-based, phishing, and

other attacks. They found that over one billion attacks took place in 2021. Nearly

900 million of these attacks were phishing attacks performed via IoT devices [3].

Even though awareness of IoT network security concerns is rising, attacks are still

dangerously common and successful. SAM’s primary suggestion for better IoT

1
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security is to have better general network security. This is a straightforward solution

except for the lack of network security software that sufficiently compensates for IoT

shortcomings. Therefore, there is a need for software that is dedicated to monitoring

IoT networks and dynamically respond to incoming attacks.

1.2 Attack types on smart home devices

To further highlight the need for an effective security solution, we will examine

and analyze some of the most popular types of cyberattacks. The analysis will

include the underlying protocols used, how access was gained, and notable real-

world occurrences of the attack type.

The DDoS attack and its energy-oriented counterpart are particularly effective

in disrupting the daily service operations of a device or system with the latter attack

type increasing the cost of electricity for its target [4]. These attacks are executed

by routing excessive network traffic towards a particular device or system. This

may be done on an individual scale, such as a laptop or a smart home device, or

on a larger scale, such as a cloud service provider. Ultimately, the result is the

same: high amounts of malicious traffic either overwhelm a system to cripple its

performance or inflict exceedingly high energy costs upon the system’s owner [4].

One popular type of DDoS attack vector is a reflection or amplification attack,

also known as DRDoS attack [5]. In this scenario, the attacker spoofs a request

in order to appear as if it is coming from the intended victim of the attack: the

reflection part of the attack. This request is then sent to public servers - the

amplification part - which return a response. These responses flood the victim’s

bandwidth and make it impossible for real traffic to proceed. The common protocol

for the reflection part of the attack is the User Datagram Protocol (UDP) as it lacks

2
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a proper handshake between parties [5]. Transmission Control Protocol (TCP) does

not allow for easy amplification as the TCP acknowledge (ACK) packet is not larger

than the TCP synchronize (SYN) packets. This attack has a significant impact on

the Internet Service Provider’s (ISP) upstream infrastructure as it may not be

designed to handle an overwhelming amount of traffic. As a result, a mitigation

strategy that ISPs currently use is to simply void all incoming traffic once an attack

is detected. This strategy, while beneficial to the ISP, is clearly not the ideal solution

for the customer as valid traffic is also voided. In a way, this mitigation strategy

accomplishes what the attacker originally intended: a complete disruption of all

network traffic for a service.

One notable example of a DDoS attack vector to disrupt service is the use of the

Mirai botnet to target OVHcloud, a French internet service company [6]. This was

the first use of the botnet and the publication of its code has led to a spike in similar

DDoS attacks. The Mirai botnet was built by attempting to brute force access into

IoT devices by exploiting weak, default, and commonly used security credentials [7].

By scanning through large ranges of IP addresses and using a predefined list of

62 security credentials [8], Mirai quickly amassed between 200,000 and 300,000

infected devices [9]. In particular, Mirai spread by sending TCP SYN probes to

potential victims through pseudo-random IP addresses. Upon a successful login,

Mirai reported the IP and associated credentials to a report server. Importantly,

Mirai also killed other processes bound to the ports TCP/22 or TCP/23 on the

infected devices. This is an important pattern of behavior which can be used for

detection of similar attacks [9]. The botnet was used to carry out volumetric, TCP

state exhaustion, and application-layer attacks [9]. In these attacks, the smart home

devices were used as amplifiers to overwhelm the targets of attacks.

The Man-in-the-Middle (MitM) attack is effective at intercepting sensitive or
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otherwise valuable data while it is in transit. The attacker sits between the client

and the server and is able to monitor and modify the data that is exchanged [10].

This type of attack vector is particularly dangerous for IoT devices in personal

homes. By gaining access to communication channels between the controller and

the device, an attacker may set a thermostat to the maximum temperature, gain

access to a live camera feed, or otherwise abuse a smart home at its owner’s expense.

One common vector for a MitM attack is by routing traffic through a malicious

server and altering the packet data. This is different from passive eavesdropping on

packets in that it requires an increased response time for the packet processing to

occur [11]. This feature of the attack vector is important as it allows for a routing

protocol focused on detecting anomalies in round trip time of packet exchanges.

The most frequently targeted communication layer of IoT devices for MitM attacks

is the transport layer, which relies on TCP. Currently, one of the most novel ways

to detect this attack is by enforcing routing between IoT devices and detecting the

anomalies in the trusted time server [11]. This allows for active monitoring and

voiding of malicious packets.

Since MitM attacks are usually done on a small scale to a targeted victim, there

is little information about large scale MitM attacks on IoT devices. Certainly, none

have occurred at the scale of the Mirai botnet. However, one notable event has

been the MitM attack on Samsung smart fridges. Due to a lack of SSL certificate

validation by the Samsung device, it was possible to spy on the unsuspecting users of

the fridge using MitM attacks [12]. The connection provided access to the victim’s

Google services, such as Gmail calendars, which were accessible via the smart fridge

[12].

4
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1.3 Existing solutions and their shortcomings

Attempting to protect IoT devices from external attacks is not a novel idea, and

solutions that accomplish similar goals are already present on the market. However,

all of the currently available solutions lack the combination of features that we

believe are essential to properly securing smart home devices. We will examine two

of the most relevant services and highlight their shortcomings in this section.

Firewalla [13] is currently the closest competitor to the project. The actual

product is a small box that is directly connected to a router, serving as a forward

proxy for the home network. This box then allows the customer to set a variety

of rule-based filters. In addition to simple filters, Firewalla also actively monitors

the network for new device connections, scans open network ports, and detects if

a user on the network has clicked a phishing/malware link. Importantly, Firewalla

is a consumer device, and it requires the consumers to have extensive knowledge of

their home networks for it to be utilized effectively.

Although a powerful solution for some use cases, Firewalla lacks the dynamic

threat detection and focus on IoT devices that we intend to implement in our

forward proxy. In particular, Firewalla uses static rules for monitoring network

traffic. If an endpoint has not been registered as malicious by either the user or

Firewalla, it will be allowed as a valid connection [13]. This is a significant issue

when considering outgoing IoT device traffic. Malicious attacks may send data

to unauthorized control servers that are unique for each attack [14]. As a result,

Firewalla would not be able to prevent novel future attacks. The use of machine

learning for dynamic threat detection would allow a solution to detect attacks from

servers that have never been seen before (and therefore have not been identified as

malicious). Lastly, Firewalla is not focused on IoT devices, as seen in their emphasis

5
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on detecting if a user interacts with a phishing link or malware online. Creating

an IoT-focused solution is critical due to the unique connection patterns of IoT

devices, such as repeating calls to the same endpoint [15], which are advantageous

for monitoring for anomalies.

Another competitor is Glasswire [16]. Rather than a physical box that con-

nects to a home router, Glasswire is a network monitoring software with a firewall.

This method of monitoring enables Glasswire to be more thorough in securing the

network traffic of the device it is running on. In addition to the same protection

offered by Firewalla, Glasswire runs malware detection on files and the device OS

itself [16]. Additionally, the user interface incorporates graphics to visualize net-

work traffic history. This particular feature empowers the user to detect anomalies

themselves.

Despite the thorough analysis that Glasswire provides for its host device, the

service lacks monitoring features for the entire home network and IoT devices in

particular. Glasswire shows what devices are connected but provides no further

information about the potential malicious interactions of these devices [16]. Of

course, this also means that no machine learning models are used to classify traffic

as healthy or unhealthy. The lack of a direct connection to the router is also a

significant downside for this service as it means that Glasswire is unable to restrict

traffic from malicious or compromised devices.

6
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Chapter 2

Related Work

In this chapter, we will examine the proposed solutions for identifying malicious

traffic and the impact these methods have on the smart device industry. As each

proposed solution examines a slightly different angle of examining traffic from smart

devices, at the end of the review we describe how we synthesized these solutions to

create our own unique approach.

2.1 Methodology

To ensure a thorough and comprehensive analysis of the available literature, we

must first establish a guiding question. For this review, the guiding question that

was used to analyze available literature was “what are the current solutions for

traffic fingerprinting?” This guiding question is particularly helpful as it ensures

that we are looking at the most recent papers, and, in particular, studies on traffic

fingerprinting rather than general smart home security.

While a breadth of resources are available on this topic, it was important to

ensure that all sources used were credible. To do so, we restricted our sources to

articles published in peer reviewed journals. Additionally, conference articles were

also included if the conference could be verified as credible by multiple other sources.

Some examples of the conferences include the Annual Conference on Information

Sciences and Systems and the International Conference on Trends in Electronics
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and Informatics. The combination of the reputable journal articles and conference

articles ensured that only credible sources with reliable information were used.

The individual papers were selected if they included mentions of traffic finger-

printing in their abstract. This was done through the manual screening of articles

using the IEEE Xplore database with search terms such as traffic fingerprinting,

IoT network security, and IoT device in network. These search terms ensured that

we found relevant articles to IoT network security and traffic fingerprinting. We

then selected sources that directly acknowledged traffic fingerprinting as a method

for managing IoT network security. Many of these sources included discussions of

the strengths and weaknesses of the particular approach being analyzed.

2.2 History and background

The earliest identification methods for traffic were network ports. These were a

fixed transmission layer which was registered by the Internet Assigned Numbers

Authority (IANA) and allowed traffic to be identified by a simple port number [17].

Of course, as networks expanded, using port numbers became unfeasible. The

identification protocol quickly evolved to keep up with the expanding number of

devices.

The next iteration of traffic fingerprinting technology, called “deep packet in-

spection,” focused on including short strings in the packet payload itself [18]. Those

strings were isolated and compared to a known list used for identification. Although

the precision of this method improved from the port signature method, it had a few

shortcomings.

When used in high speed connections, deep packet inspection became inefficient

8

DocuSign Envelope ID: 6BC5E72A-7B73-4AB8-9BDE-A813DC24A939



and expensive. Another issue of greater significance was that the analysis of the

entire payload meant that non-fingerprint-related data would be read [18]. This

created a significant legal issue as the method could illegally infringe on privacy.

This technique, although flawed, paved the way for packet identification and moved

the technology forward from static address analysis to more dynamic interpretation

of the packet itself.

A novel approach to traffic fingerprinting emerged when the application side was

considered for identifying traffic. Rather than the receiver being solely responsible

for the identification of traffic, the new solution proposed an identification plugin [19]

responsible for identifying traffic from a particular application. This framework

was particularly innovative as it suggested that each plugin would have a unique

application it was responsible for. This method yielded much greater accuracy [19]

in traffic identification when compared to more general solutions. However, this

solution was not as flexible to implement in everyday home networking solutions

as it required independent plugins for each application. While useful for certain

industrial applications and certainly having a novel approach, this solution is not

viable for smart home security.

2.3 Current innovations and research

This brings us to some of the modern approaches to traffic fingerprinting as it per-

tains to smart home devices. These approaches focus on the scalability of the solu-

tion and its impact in preventing cyberattacks. The majority of these approaches

use some combination of machine learning and packet features to create effective

models [20]. Since machine learning requires a large number of traffic features to

be accurate, modern approaches use almost every aspect of a packet to create these

9
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models. Importantly, these approaches do not look at the packet contents, elimi-

nating the privacy issues of earlier solutions.

A unique, effective approach to selecting features used autonomously generated

smart home traffic and traffic generated after direct human interaction [21]. These

two pathways for traffic generation have a drastically different packet signature,

making it important to have a substantial amount of data on both. This approach

defined four key attributes of the traffic: flow volume, flow duration, average flow

rate, and device sleep time [21]. A probability distribution was then created to

help analyze traffic patterns visually. This approach also used the port numbers,

Domain Name System (DNS) queries, and Network Time Protocol (NTP) queries.

Using machine learning to classify test data using this approach was 99.88 percent

accurate in detecting benign IoT devices.

While the above approach focuses on traffic fingerprinting from an individual’s

perspective, it is important to also analyze the situation from the ISP’s perspective.

By shifting the security issue upstream, it may be easier to mitigate a large number

of attacks using a single solution as opposed to individual solutions in every home.

Another solution accomplishes that by conducting traffic fingerprinting between

the ISP and local networks [22]. This approach focused more closely on the timing

of packets from individual devices, one of the most distinguishing characteristics of

an IoT device. After the packet timing and other various features are extracted,

they are converted into vectors for the machine learning algorithms to learn from.

In addition to successfully distinguishing IoT traffic from other traffic, this solution

was also able to identify the number of active IoT devices on a private network

while only accessing outgoing network traffic. This is particularly significant as it

may allow the ISP to isolate IoT traffic in an ongoing attack rather than simply

voiding all traffic from a private network.

10
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2.4 Problems and opportunities for improvement

From the earliest iterations of traffic fingerprinting technology, packet privacy has

been a primary concern. It is difficult, if not impossible, to accurately determine

a packet’s origin without being able to examine the packet itself. As a result, any

time a discussion on packet sniffing or traffic fingerprinting arises, privacy issues are

also discussed. While current innovations focus heavily on distinguishing certain

devices from others, we believe that the opportunity for improvement lies within

the metrics that are used to conduct traffic fingerprinting.

A clear opportunity for improvement is a solution that allows security systems

and firewalls to filter traffic without needing to examine packet payloads. As previ-

ously mentioned, one potential solution that researchers used relied on the timing

of a packet [23]. Unfortunately, this solution was not as effective when compared

to examining the actual payload. This was due to the fact that traffic timing could

be impacted by external factors regardless of the type of traffic.

Another group of researchers proposed an evolution to the policy system that

is currently used by smart home devices. In addition to using TCP or UDP for

communication, a device would also carry an identity signature [24]. This identity

information was encoded as a set of key-value entities that described the physical

characteristics of the device. Although successful in identifying devices, this ap-

proach is not scalable. Manufacturers typically look to minimize the number of

features on IoT devices and it is unlikely that they would accept the addition of

another feature for identification.

We believe that the solution lies in the middle ground between device-agnostic

traffic features and privacy-infringing methods.

One method for traffic fingerprinting is inspecting the time delay between the

11
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sender and the receiver. It is important to note that this method is not popular.

The time delay is largely dependent on the size of a payload and the delay due

to wireless communication. If the traffic fingerprinting solution is deployed on the

same network it attempts to analyze, we can assume that the delay due to wireless

communication is a known factor. As a result, we are left with a correlation between

the payload size and the network statistics about the transaction or the payload.

With this knowledge, a device identification solution [24] can be employed for future

reference. Additionally, as previous research pointed out, machine learning could

also be extremely useful in classifying the traffic delay to the device.

The solution described above has no concrete plan for implementation and test-

ing. However, the unification between payload-agnostic data and a known database

is the next step in device fingerprinting. Importantly, this solution to device finger-

printing ensures that the process is done in an ethical manner that makes consumer

privacy a priority. The development and evolution of the traffic fingerprinting pro-

cess would be the first step to creating more secure private firewalls that protect

users from unwanted or malicious traffic on their network.

2.5 Ethical issues

When working with smart home systems, it is important to consider both the tra-

ditional network packets and the nature of the smart device. Unlike a laptop, a

smart home device facilitates a kind of social environment within a home [25]. This

becomes particularly important given that smart home devices have been proven to

facilitate companionship for those living alone [25]. As a result, successfully traffic

fingerprinting must ensure that the social interconnection facilitated by the device

is not disrupted.
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Another consideration we must keep in mind is the influence that smart home

devices have on purchasing behaviors and information consumption. Consumers

have been proven to use smart home devices as a significant source of information

on a product and even complete their purchases using the device [26]. This makes

attacks like MitM attacks even more significant as they can be used to harvest data

linked to the consumer’s purchasing behavior. As a result, traffic fingerprinting for

smart home devices must maintain anonymity of the data within the packet so that

it cannot be harvested.

2.6 Discussion

The analysis of traffic fingerprinting methodologies is crucial to the success of this

project as fingerprinting is at the core of the anti-cyberattack solution for smart

home devices. The final goal is to create a forward proxy that is able to identify,

report, and void malicious traffic that originates from a set of smart home devices.

The first step in this process is differentiating benign traffic and malicious traffic.

This requires the ability to distinguish between healthy traffic as well as malicious

traffic that is attempting to mask as normal traffic.

Methods of fingerprinting that combine multiple identification features will serve

as the base for our overall identification process. An example of this is combining

traffic signatures with data-agnostic features such as flow rate. The research done

to understand the behavior of devices from the ISP’s perspective [22] is critical as

the proposed solution is intended to be developed for and marketed to ISPs rather

than individual consumers. This approach ensures that we maximize the use and,

therefore, the benefit of our solution.

While the previously discussed approaches focus on broad cybersecurity solu-
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tions, we are aiming to isolate smart home devices in order to take advantage of

their recurring and standardized traffic patterns. Accordingly, the research that

focused on the packet timing as the main feature for identification [21] is most im-

portant for our solution. The machine learning techniques that were mentioned

by the articles will also ensure that our solution is on the cutting edge of traffic

fingerprinting technology.
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Chapter 3

System Architecture

This chapter will explore the architecture of our solution, both hardware and soft-

ware. The solution consists of three key elements: the smart home devices, the

router, and the Raspberry Pi. This section describes each of these elements and

their roles in the proposed approach for securing smart home devices.

3.1 Design Rationale

The primary objective for this project is to create a low-cost solution that can

be widely used to significantly reduce the risk of attacks that employ smart home

devices. The design for the capture and analysis of packets stemmed from this

objective.

We perform network packet analysis at the router level rather than at each smart

home device since smart home devices have minimal processing power. We also

made this decision because creating universal software for all smart home devices

is unfeasible due to the numerous different types of IoT devices. By moving the

analysis upstream of the network traffic flow, we are able to generalize the solution

and make it more adaptable. Moving the solution upstream also allows us to have

a more holistic understanding of the network patterns rather than the patterns of

a specific smart home device. This allows the machine learning model to be better

suited for a variety of attacks without being overfit to a particular device type.
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Although we expect the solution to be used at scale and installed on routers, for

the purposes of the senior design project we opted to use a Raspberry Pi to process

network traffic. This allows us to focus on the solution rather than how to access

and modify an existing router’s firmware.

3.2 Conceptual Model

The conceptual model of the final design is presented in Figure 3.1.

Fig. 3.1: Conceptual Model

The Raspberry Pi is set up as a wireless access point between the smart home

devices and the router. As shown, the packets that are sent from a smart home

device are received by the Raspberry Pi. When any given smart home device on the

network sends a message to the router, the software running on the Raspberry Pi

will scan the packet, determine if it is benign (i.e. safe/normal traffic) or malicious

(i.e. unsafe traffic), and then forward to the router or void the packet.

Under normal use, the Pi will simply forward packets to the router. However, if

an attacker attempts to use the smart home device as a component to a botnet, the

software should recognize the traffic as malicious and void packets to prevent any
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attacks the device may be attempting to launch. This functionality will be provided

via software on the Pi with no setup or intervention required by the smart home

device user.

3.3 System Sequence Diagram

To better illustrate the functionality of the solution, Figure 3.2 shows the system

sequence diagram, which highlights the approach to packet capture and analysis.

Fig. 3.2: System Sequence Diagram
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The solution to securing smart home devices has two distinct steps: training the

machine learning model on existing data and using the trained model on packets in

a live stream of network traffic.

The analysis of live traffic relies on this preliminary step to ensure efficiency

and the highest possible throughput speed. Using the IoT-23 data set [27] that

is publicly available for research use, we were able to train a machine learning

model that would then be used to classify real network packets. In the preliminary

experimentation, we identified the Decision Tree model as the most accurate in

identifying the nature of the network packet. In particular, the success rate when

tested with approximately 2,000,000 packets was 99.04%, which was significantly

higher than other methods such as Linear Discriminant Analysis, which yielded an

accuracy of 80.62%.

As shown in Figure 3.2, the model for categorizing network packets is first

trained using the predefined data set then applied to live packet capture. As live

network traffic is captured, each packet is processed to determine if it is benign or

malicious. If the threshold that has been set by the user or the ISP for malicious

traffic is reached, the rest of the malicious packets are voided to reduce the load

on the victim’s network. If the threshold is yet to be reached, traffic that has been

labeled as malicious is allowed to reach the internet and the user or the ISP is

alerted.

3.4 Architectural Diagram

The hardware requirements for the system are minimal. Figure 3.3 depicts the hard-

ware architecture with the packet analysis object abstracting the system sequence

diagram in Figure 3.2.
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Fig. 3.3: Hardware Diagram

While we envision the solution as a feature in router software, for the purpose

of the senior design project we opted for using a standalone Raspberry Pi 4 with a

gigabit Ethernet connection. When making this decision, we were considering two

important factors. First, we wanted to be able to process traffic at or above the

average household’s internet speed. Second, we wanted to be able to implement a

functional and scalable version of the solution.

The average household traffic rate in the United States is 127.19 Mbps [28].

Given this information, we chose to use a Raspberry Pi 4 with an Ethernet cable

directly attached to the router. This provided us with the ability to maintain speeds

of up to 943 Mbps [29].
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3.5 Machine Learning Model

Since one of the main goals for this project was to dynamically respond to malicious

traffic to and from IoT devices, we chose to use a machine learning model for

classification. In order to avoid overfitting, we trained the model on a diverse set

of traffic from multiple sources. This also helped us create a model that could

successfully detect many types of malicious traffic.

3.5.1 Training data

We did not have the capacity to generate a substantial amount of benign and

malicious data from real IoT devices. Instead, we decided to use the IoT-23 data

set [27]. This data set was selected because it provided almost 21GB of data on

data flow from real IoT devices with both malicious and benign data.

For the initial machine learning model, we used 2,000,000 benign packets and

2,000,000 malicious packets. Table 3.1 below shows the distribution of different

packet types in the training data set. The Command and Control (C&C) malicious

packets demonstrated a connection to an external command and control server.

Packet Type Packet Count Percentage

Benign 2,000,000 50%
Malicious: Port Scan 664,000 16.6%

Malicious: Okiru Botnet 540,000 13.5%
Malicious: DDoS 480,000 12.0%
Malicious: C&C 316,000 7.9%

Table 3.1: Packet type distribution within training data.
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3.5.2 Feature selection

The .pcap files from the IoT-23 data set provided us with numerous features that we

could have used for the model. However, one of the primary concerns was overfitting

the model, which would cause poor performance in real world use. To mitigate this,

we reduced the number of features down to six. These features were selected based

on past research [30] [31] as well as testing on a subset of the IoT-23 data set.

We wanted the implementation to remain stateless to minimize overhead and

increase throughput speed so that the software would not have an impact on internet

speeds. Thus we restricted the solution to packet header values from different packet

layers. In particular, we focused on the network header and the transport layer

header. Additionally, we did not do any feature normalization in order to maintain

statelessness. Table 3.2 summarizes the features we used in the model

Feature Name Layer Description

ip v Network IPv4 or IPv6
ip length Network Length of IP header
isTCP Transport Transport layer protocol
isUDP Transport Transport layer protocol
src port Transport Source port of packet
dst port Transport Destination port of packet

Table 3.2: Model features and descriptions.

3.5.3 Model selection

The primary concern with using the machine learning approach was processing

speed. We needed to ensure that the model was able to process packets at a rate

high enough for an average American household’s network speed. Accuracy of the

model’s decision was also critical. Table 3.3 summarizes the performance of multiple

machine learning models we used as well as their test time and the theoretical
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throughput speed based on 100-byte packets.

Model Precision Recall F-1 Time (ns) Throughput

LDA 0.8145 0.7893 0.7697 219.52 455 Mbps
Naive Bayes 0.5848 0.5765 0.5799 44.63 2240 Mbps

Random Decision Tree 0.9928 0.9927 0.9927 42.93 2329 Mbps
Random Forest 0.9978 0.9978 0.9978 2736.89 36 Mbps

Table 3.3: Machine learning model performances.

Using the above data, we chose the Random Decision Tree model. Although

the model could be overfit to the training data, we chose the Random Decision Tree

approach due to its speed and the accuracy of the results. To address overfitting, we

restricted the tree depth to 10 nodes. Throughout testing, we modified the model

parameters to ensure ideal performance.

Below is a snippet of the code for the decision tree model in C++ that was used

on the Raspberry Pi.

1 char *predict(int src_port , ... , int service_ssl) {

2 if (dst_port <= 73.5)

3 if (size_bytes <= 4839312514.0)

4 return ("7435440.0 ,0.0");

5 else

6 return ("0.0 ,59161.0");

7 else if (protocol_tcp <= 0.5)

8 if (size_bytes <= 36.0)

9 return ("2101.0 ,5.0");

10 else

11 return ("1847.0 ,23.0");

12 else if (src_port <= 62335.5)

13 if (dst_port <= 717.5)

14 if (src_port <= 32811.5)

15 if (src_port <= 10366.5)

16 if (src_port <= 10301.5)
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17 return ("0.0 ,156859.0");

18 else return ("1.0 ,1002.0");

19 else return ("0.0 ,342631.0");

20 ...

3.6 Using the Raspberry Pi

Before we began testing, we first routed all packets through the Pi and ran the

machine learning algorithm on the Pi. This simulated a standalone access point for

the test bed devices to connect to, which in turn permitted us to have packet-level

insight for data collection.

3.6.1 Parsing .pcap files

Before using packets generated in real time, we first used a subset of the IoT-23

data set and ingested the data directly from a .pcap file into the Pi. For this,

we used PcapPlusPlus [32]. This C++ library allowed us to rapidly iterate on

the implementation by abstracting lower level network logic in the switch. Using

the PcapFileReaderDevice class provided by PcapPlusPlus, opening a .pcap file

was similar to ingesting a file with IO Stream. Using the acquired RawPacket and

Packet objects, we extracted the necessary features covered in Section 3.5.2.

Once we were able to read and display information from .pcap files as a proof

of concept, we proceeded to implement live packet capture. PcapPlusPlus also

provided the PcapLiveDevice class, which could ingest incoming packet flow to an

Ethernet interface. The packets were then processed with the same RawPacket and

Packet objects.
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PcapPlusPlus also made it easy to implement the Decision Tree machine learn-

ing model. After parsing the rules and generating effective C++ code for the model,

we were able to directly insert the decision tree model into the PcapPlusPlus packet

processing function. This enabled us to successfully validate the results of the De-

cision Tree machine learning model.

3.6.2 Pi as an access point

Utilizing the Raspberry Pi 4 as an access point allowed us to focus development on

creating an effective machine learning solution rather then spending a time config-

uring router hardware.

Following the architecture diagram from Section 3.4, we connected the Pi using

an Ethernet cable directly to a household modem. We ran the Raspberry Pi OS

Lite firmware on the board and configured the network manager to create a wireless

hotspot. It was important for us that packet flow was entirely managed by the

machine learning model and PcapPlusPlus. To do so, PcapPlusPlus wrapped the

Raspberry Pi’s DPDK-enabled network interface which permitted us to have full

control over the packet flow.
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Chapter 4

Evaluation

In this chapter, the solution using a Raspberry Pi running PcapPlusPlus and the

Decision Tree machine learning model is evaluated.

4.1 Testbed Set-up

In order to fully evaluate our program’s capabilities, we first created two separate

versions of the program with two different physical testbeds. The first version was

tailored for functional evaluation. This installation wrote the packet data and model

result to a Comma Separated Value (CSV) file without affecting the flow of traffic.

This data could then be displayed on a web based dashboard created in Python

using Streamlit. Using this CSV data we evaluated the effectiveness of the system.

The second version was tailored for the performance evaluation. This installation

controlled the flow of traffic without writing any data. The confidence level was set

to zero so that any packet would pass the filter so that max throughput could be

measured.

4.2 Functional Evaluation

For the functional evaluation, we used 4 different smart home devices and collected

100 packets worth of traffic from each one as well as 100 packets worth of traffic from
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a simulated DoS attack using TCPreplay. For each of these collections we performed

a two sample z test with the significance level being .05, meaning a critical value of

1.645, and the null hypothesis being a system that randomly guesses will be correct

half the time. We evaluated each model at confidence levels of .5, .7, and .9 for

determining the maliciousness of a packet.

4.3 Performance Evaluation

For performance evaluation we used TCPreplay to send Amazon Echo data into a

dummy network interface which fed into the program at various rates. We then

utilized Htop to monitor the memory and CPU usage and Iftop to monitor the

data rate through the Ethernet interface while the program was under load. This

allowed us to see the maximum data rate the system was capable of along with its

utilization. For each data rate, we recorded the 10 second averages after they had

stabilized.

4.4 Optimization

In order to optimize the machine learning model we ran the functional evaluation

and then did analysis on the various features. These changes had no influence on the

performance of the system since the only the model is changing not the program.

4.5 Challenges

Many of the devices we had originally planned to test on refused to connect to

the Pi’s hot spot. We are unsure if this was due to the Pi’s configuration or the
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devices themselves, although we did attempt multiple configurations of the hot spot

with no success which suggests it was the devices. The devices included the Apple

HomePod Mini, Google Home Mini, Nest Wireless Camera, Hamilton Beach Smart

Coffee Maker, Nest Smoke Detector, and Blink Camera. The thermostat proved

difficult to setup as we could not physically install it, but we were able to power it

on using a 24V AC adapter and skip through the setup.

4.6 Outcomes

4.6.1 Pre-optimization functional evaluation

The first attempt went fairly well for the devices; however, this model did not

perform well when it came to the DoS attack. A pattern we quickly noticed was

that packets were either entirely blocked or entirely unblocked. After analysis of the

results, we determined this was due to the machine learning model’s heavy usage

of each packet’s port as a key feature for determining chance of maliciousness. For

the optimization we decided to focus on the DoS attack since this was a necessary

functionality for the solution.

Confidence Level .5 .7 .9
Device Name % Blocked Z-Score % Blocked Z-Score % Blocked Z-Score

August Lock 0 10 0 10 0 10
Ecobee Thermostat 0 10 0 10 0 10

Ring Doorbell 100 -10 100 -10 100 -10
Echo Show 3 2 9.6 0 10 0 10

Table 4.1: Functional Evaluation of IoT Devices Before Optimization.

Confidence Level .5 .7 .9
Attack Name % Blocked Z-Score % Blocked Z-Score % Blocked Z-Score

DoS 0 10 0 10 0 10

Table 4.2: Functional Evaluation of Simulated Attacks Before Optimization.
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4.6.2 Post-optimization functional evaluation

Interestingly, after optimization, every result flipped from the pre-optimization eval-

uation. This initially seemed like a bug, but investigation revealed it to be correct.

Like the pre-optimization evaluation, each device or attack was, for the most part,

entirely blocked or entirely unblocked. The new model did successfully block the

attack. The reversal of results from the old model to the new model suggests that

it is difficult to build a single general purpose model for all devices and attacks.

Confidence Level .5 .7 .9
Device Name % Blocked Z-Score % Blocked Z-Score % Blocked Z-Score

August Lock 100 -10 100 -10 100 -10
Ecobee Thermostat 100 -10 100 -10 100 -10

Ring Doorbell 0 10 0 10 0 10
Echo Show 3 99 -9.8 99 -9.8 99 -9.8

Table 4.3: Functional Evaluation of IoT Devices After Optimization.

Confidence Level .5 .7 .9
Attack Name % Blocked Z-Score % Blocked Z-Score % Blocked Z-Score

DoS 100 -10 100 -10 100 -10

Table 4.4: Functional Evaluation of Simulated Attacks After Optimization.

4.6.3 Performance evaluation

Although the maximum throughput of 430 Mbps is much less than the model’s

theoretical maximum of 2329 Mbps and the Raspberry Pi 4’s theoretical maximum

of 943 Mbps [29], we are happy with this performance as it is much higher than the

average US traffic rate of 127.19 Mbps [28]. Based on the CPU usage being at the

maximum while the memory usage is minimal, we can conclude that the system is

bottle-necked by the Raspberry Pi 4’s CPU.
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Data Rate In Data Rate Out CPU Usage Memory Usage
1Mbps 1Mbps 100% 0.2%
10Mbps 10Mbps 102% 0.2%
100Mbps 100Mbps 104% 0.2%
250Mbps 250Mbps 104% 0.2%
500Mbps 430Mbps 106% 0.2%

Table 4.5: Performance Evaluation.
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Chapter 5

Conclusion and Future Work

5.1 Design Improvements

Based on the findings of the model making the majority of its decision by inspecting

the ports used by the devices, which resulted in it either blocking all or none of the

packets, it is clear that a one size fits all model paradigm does not work. A future

approach would be to fingerprint individual devices then create different models for

each different device. Fingerprinting could be done by the user, but this increases

friction and potential complications. Instead, the ideal system would actively learn

from a devices traffic over time to create the model on the fly. However, this could

lead to problems if a device is updated and its traffic patterns drastically change.

5.2 Commercial Viability

The system, utilizing a synthetic workload, was able to reach 430 Mbps throughput

at maximum CPU utilization. Considering the average US traffic rate of 127.19

Mbps a less powerful CPU could be used in the vast majority of cases [28]. Further

testing on various devices would be required to determine the best CPU for various

use cases. If this system is to be built directly into routers then testing may be

complicated by the routers need to perform other functions while the Pi 4 can

dedicate an entire core to the program. Furthermore, integrating a C++ program
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into a router may prove difficult, costly, or impossible. The program could be ported

to P4 which would increase ease of integration; however, this would take substantial

work. Additionally, work would need to be done to monitor and push updates to

the system if it were put into production.

5.3 Project Takeaways

Although the final results were not exactly what we envisioned when we started,

the discovery that individual models need to be created for individual devices is

valuable. Furthermore, we laid out the ground work for what a system like this

would look like by demonstrating an implementation of a general model. The pro-

liferation of insecure IoT devices will only grow in scale. We have taken one step

towards protecting the World Wide Web from infected devices, but more must be

done or else attacks will grow in scale equal to the devices themselves.

5.4 Personal Takeaways

For all of us, this was the longest continuous project we have worked on. Besides

learning technical skills in building machine learning in Python, packet capture tool-

ing through C++, and data analysis through purpose built dashboards, we gained

a wealth of knowledge in planning and executing a long term project. Throughout

research, design, and implementation we constantly collaborated to build a project

we are proud of. In the end, we built a project we can point to with pride as a

testament to our hard work and determination.
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