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ABSTRACT

Bees are vital pollinators for numerous crops and plants, playing an essential role in maintaining the world’s
ecosystem and food security. Without bees, the global food supply would be threatened, potentially leading to food
shortages and increased food prices. Current beehive monitoring solutions in the market are often prohibitively ex-
pensive, some commercial beehive monitoring solutions can cost upwards of thousands of dollars. This makes them
inaccessible to many small-scale beekeepers. To help protect bee health and ensure the survival of thousands of plant
species worldwide, this project aims to create an accessible solution for individuals to monitor the health and activity
of bee hives. The solution would use cheap and accessible tools to capture the activity of the bees, analyze it with local
weather data, and alert the user when the actual activity is significantly different from the prediction, thus allowing
beekeepers to more effectively tend to their many hives around the world.
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Chapter 1

Introduction & Background

1.1 Motivation

Bees are more than just flying pests that sting when you get too close. They serve a far greater

role, responsible for ensuring the survival of thousands of different plant species worldwide while

producing honey. Around 80 percents of all of the crops we have are dependent on pollination by

bees, bees contribute to a significant portion of global crop yields (1). Without bees, the global

food supply would be threatened, potentially leading to food shortages and increased food prices.

bees are pollinators for more than 100 U.S.-grown crops, valued as much as 18 billion dollars (2).

As a critical element in both the ecosystem and economy, it’s important to help bees thrive.

Bee pollination has also played a significant role in the growth of our society. The process of bee

pollination helps plants to reproduce, which ultimately leads to the production of fruits, vegetables,

and seeds (3). This, in turn, provides humans with food, medicine, and fiber for clothing. In

addition, honey produced by bees is a natural sweetener and is used in various food products,

cosmetics, and medicines.

The decline of bee populations and beehive colonies has been a growing concern in recent years.

According to a study published in the Journal of Economic Entomology, honey bee colonies in the

United States declined by 42 percent from April 2014 to April 2015 due to factors such as habitat

loss, pesticide exposure, and disease (4). The decline of bee populations and beehive colonies is a

major concern as it could have significant economic and ecological consequences. The importance

of beehive monitoring cannot be overstated in addressing this issue.
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Beehive monitoring is essential to maintain the health and well-being of bees and their colonies. By

monitoring the activity of the hive and tracking bee behavior, we can detect anomalies and potential

problems, such as diseases, pests, and environmental stressors that can negatively impact the bee

population. Without beehive monitoring, diseases could even lead to colony collapse disorder.

Colony Collapse Disorder is a phenomenon where worker bees abruptly disappear from the hive,

leaving behind the queen and a few immature bees (5). It is a significant concern for beekeepers

and can lead to severe economic consequences. By identifying these issues early, we can take

actions to prevent further damage and protect the bees.

1.2 Current Solutions

Currently, beehive monitoring is available but not accessible to individuals. One of the main issues

with current beehive monitoring products on the market is their high cost and unreliability. Com-

mercial monitoring solutions cost anywhere from 250 (6) to thousands of dollars (7) while DIY

solutions often lack the capability to properly analyze and act upon the data collected. This makes

them inaccessible to small-scale beekeepers or those with limited resources. Furthermore, some of

these products are prone to technical issues or failures, which can further increase their cost and

reduce their effectiveness.

1.2.1 BuzzBox Mini

One of the beehive monitoring products in the market that has issues is the BuzzBox Mini(8), a

beehive monitoring system that promises to provide real-time information on beehive health and

activity. They claimed to use artificial intelligence to inspect a beehive’s health and continually

report updates to a mobile app throughout the day. There are several features that BuzzBox Mini

promises to offer. One of the features is its ability to detect a range of hive conditions such as

swarming, missing queen, healthy, sick, or collapsed hives in real-time. This feature allows bee-

keepers to quickly respond to any issues that arise and take action to prevent any further damage

to their hives.

Another feature that BuzzBox mini promises to provide is its ability to monitor temperature, local
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weather conditions, and humidity (8). This allows beekeepers to understand how external factors

affect the behavior of their hives and take necessary steps to ensure their hives are healthy and

thriving. The BuzzBox mini also claims to contain anti-theft systems that alert you when your hive

is disturbed. This feature is useful for beekeepers who keep their hives in remote locations and

want to ensure that their hives are protected from theft.

However, there is a fatal problem with the transmission test of this product, which is a critical

step in ensuring that the product is functioning properly. Without proper transmission, the product

is essentially useless, as it cannot accurately monitor the beehive or provide useful data to the

beekeeper (9).

This issue with the BuzzBox Mini highlights the importance of thoroughly testing and evaluat-

ing beehive monitoring products before investing in them. It also underscores the need for more

affordable and reliable solutions for small-scale beekeepers and people with limited resources.

By improving the accessibility of and reliability of beehive monitoring technology, we can bet-

ter support the health and productivity of bee populations, which are crucial for the health of our

ecosystems and agricultural systems.

1.2.2 EyesonHives

Another beehive monitoring product in the market is Eyesonhives (10). It is a hive monitoring

system that provides beekeepers with the ability to remotely monitor and track the activity of

their beehives. The system involves positioning a camera approximately two feet away from the

beehive entrance and using the camera to capture the number of bees surrounding the entrance of

the beehive.

One of the key features of EyesonHives is its real-time hive monitoring capability. The product

utilizes advanced sensors and technology to collect and analyze data from the hive, providing

beekeepers with up-to-date information about the health and activity of their bees. This real-time

monitoring allows beekeepers to stay informed about important hive metrics such as temperature,

humidity, weight, and sound levels, enabling them to take timely and proactive measures to ensure
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the well-being of their colonies.

While EyesonHiives provides a bee-monitoring solution, the price of this product may pose a

challenge for small-scale beekeepers or those operating on a tight budget. The system costs from

three hundred and eighty dollars (10), the cost may be prohibitive for beekeepers with limited

financial resources or those who are just starting in the field. Affordability is a crucial factor in

ensuring accessibility to bee monitoring technology for a wider range of beekeepers, especially

those with smaller operations or hobbyist beekeepers.

1.2.3 HM-6 Hive Monitor

HM-6 hive Monitor is another beehive monitoring solution in the market, which is offered by So-

lutionBee that enables beekeepers to monitor their beehives remotely (11). This device utilizes

scales to provide accurate hive weight data, while also delivering information on the outside tem-

perature. By gathering real-time data on these parameters, beekeepers can gain valuable insights

into the health of their beehives.

One of the features of the HM-6 Hive Monitor is its ability to measure hive weight. By accurately

measuring the weight of the hive, beekeepers can monitor the honey production and overall vitality

of the colony. This feature allows beekeepers to make informed decisions regarding hive manage-

ment, such as determining the optimal time for honey harvesting or identifying potential issues that

may require attention.

In addition to hive weight monitoring, the HM-6 Hive Monitor also provides valuable information

about the outside temperature surrounding the beehive. By continuously monitoring the outside

temperature, beekeepers can assess environmental conditions and make appropriate adjustments to

ensure the well-being of their colonies. This feature enables beekeepers to better understand the

impact of temperature on hive productivity.

Nevertheless, the price of the HM-6 Hive Monitor may cause a drawback for beekeepers. The

system costs from three hundred and fifty-nine dollars, which is a high price that limits accessibility
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for hobbyist beekeepers or those who are just starting in the field. Affordability is an important

factor to consider, as it ensures that a wider range of beekeepers can benefit from the advantage of

hive monitoring.

1.3 Project Description

This project aims at protecting bee health by creating a solution that leverages cheap cameras and

sensors as well as the scalability of the cloud, allowing users to assess the health and strength of a

bee hive and possibly monitoring bee induced activity such as initial flights, bearding and swarm

activity, all at an accessible price.

The project proposes the use of off-the-shelf webcam and Raspberry pi 4 for the hardware end, as

they are relatively cheap and accessible. The camera will be positioned at the hive entrance to take

videos of bees coming in and out of the hive, this IoT device would perform some local processing

of the video information and upload the data to the cloud. An algorithm will be used to detect the

number of bees entering and exiting a hive through the video feed, and it will run completely on

edge to reduce the amount of data that is uploaded. Simultaneously, deep learning methods will be

used to distinguish between worker and drone bees. From this initial process, we will obtain data

regarding the number of bees entering and exiting the hive and which type of bee they are. This

data will be collected, visualized through a graphic interface, and analyzed by a machine learning

algorithm for anomaly detection. This ML algorithm would predict the activity based on weather

and past records on a regular basis, and, if a mismatch is found in the prediction and actual activity,

the program would alert the beekeeper. A web server will be used to provide an intuitive interface

for beekeepers to assess the status of the hive and configure the system to their needs.

Since many beehive locations are off-grid with no access to WiFi or power, there may be constraints

on the power & network usage of this system. Thus, one consideration is to run the machine

learning model completely on edge, potentially reducing the amount of network used. One problem

is doing so consumes more power. Therefore, we want to experiment with using a less powerful

Raspberry Pi model with the Coral Accelerator, an Application Specific Integrated Circuit (ASIC)
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designed to enable high speed machine learning inferencing. Another potential drawback is that

Machine Learning (ML) models running on cloud can continuously learn and improve whereas

ML models on edge do not have the capability to do so.

The source code of this project can be accessed at https://github.com/SIOTLAB/BeehiveMonitoring
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Chapter 2

Requirements

The project at hand involves the development of a beehive monitoring system that utilizes computer

vision and machine learning technologies to track and analyze the activity of bees at the entrance

of the hive. To ensure the successful implementation of this project, there are certain requirements

that must be met.

The first requirement is the development of an accurate and efficient bee-tracking algorithm. The

algorithm must be able to detect and track individual bees as they enter and exit the hive, and record

their movement patterns. This algorithm plays an important role in the system, and its accuracy

and efficiency are critical to the success of the project.

The second requirement is the implementation of an anomaly detection algorithm that can predict

the activity of the hive in the future. The anomaly detection algorithm will use the data collected

by the bee tracking algorithm to detect unusual patterns of activity, such as a sudden decrease in

the number of bees entering or exiting the hive. This will be achieved through the use of machine

learning techniques and is critical for the early detection of potential issues within the hive.

The third requirement is the integration of current and predicted weather data with the bee activity

data. The system will combine the two sets of data to gain insight into how weather conditions

affect bee activity. This will help to develop a more accurate and comprehensive understanding of

hive behavior.

The fourth requirement is the development of a user interface that allows for the visualization of

bee activity data. This will enable users to monitor hive behavior in real-time, view historical data,
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and receive alerts when unusual patterns of activity are detected. The user interface should be

intuitive and easy to use, and accessible from any device with an internet connection.

The fifth requirement is the implementation of an alert system that notifies users when an abnormal

pattern of activity is detected. The alert system should be customizable and allow users to set their

own threshold for what constitutes abnormal behavior. This will enable users to respond quickly

to any issues within the hive and prevent potential losses.

Finally, the system must be designed with scalabality in mind. As the number of hives being

monitored increases, the system must be able to handle the additional data without sacrificing

accuracy or efficiency. This will ensure that the system can grow alongside the needs of its users

and remain effective in the long term.
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Chapter 3

Project Risks

If not tested and implemented properly, there is the risk of sending false alarms or no alarms

when there should be, rendering the product entirely useless. As such, thorough testing must be

conducted to minimize the impact of mistakes. In order to remedy this, we have implemented

certain tests to ensure that our program detects activity as accurately as possible without slowing

down the detection algorithm too severely. Additionally, some checks have been added to the

anomaly detection algorithm to ensure that alarms are sent out only when necessary.

Since there are many kinds of bees, they might have different appearances and activity pattern.

Thus, while the algorithm still applies, specific training might need to be done on deployment,

which add cost. This is inevitably a part of machine learning but the only feature affected would

be detection of bee kind since abnormal activity detection, the most important feature, is trained

on a hive-to-hive basis in the first place.

As none of the members of this group are expert in expected bee activity, we can potentially

misinterpret the data or introduce false data into the system. To prevent this, we need to cooperate

closely with the external advisors who are expert bee keepers. Over the past few quarters, we

have scheduled regular meetings with our external advisors Gerhard and Lisa Eschelbeck, co-vice

presidents of the Santa Clara Valley Beekeepers Guild, who have provided important insights for

determining which factors are necessary to consider.

Additionally, performance will be dependent on WiFi connectivity. Due to the constant uploading

of data to be processed, stored, and rendered, performance might slow down. This risk will be miti-

9



gated by testing and determining the proper bandwidth required to handle all the data transmission.

While we may not be able to completely isolate our system from the internet, our system is able to

perform its most basic functions of tracking and running anomaly detection entirely on the edge.

However, the alarm system may need additional work to be done in order to ensure a functional

system even in poor network conditions, perhaps utilizing cell plans for basic alert systems and

data connection.

Poor weather is another factor that might hinder performance. In the case that it is cloudy or

raining, visibility might be reduced, which will impact the the ability to monitor the beehive and

its activity. One way to mitigate this risk is to put a structure around the hive to protect it without

disturbing the usual activity or simply sending users an alert that visibility is low and the beehive

can’t be adequately monitored. However, more effective solutions were developed after in-person

visits to the hive and more thorough analysis of the environment. This issue is difficult to fix on the

software end considering the unpredictability of weather conditions we may face. To supplement

the technical limitations of our software, this issue is being mitigated on the hardware end through

effective weatherproofing of the hive entrance. Installation of a spindle that allows the camera to

move horizontally could be another possible solution.
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Chapter 4

Design & Implementation

4.1 Design Rationale

In order to monitor beehive activity, there are a few criteria that must be fulfilled. The first con-

sideration is how to collect the data. After some discussion with the hardware team, we quickly

settled on modifying the entrance of the beehive and setting up a camera to count the bees’ move-

ment. The camera needs to be calibrated since we want to determine the number of bees passing

by, where the size of bees and location of the entrance are some of the most important factors for

ensuring this is done accurately. The image passes through an OpenCV pipeline for object detec-

tion and another algorithm to perform anomaly detection. Because this requires a good amount of

training data, we would need to collect them and interpret them correctly, which as for some ex-

pertise in beekeeping, our external advisors have been invaluable in supporting our understanding

of these events.

This measured bee activity would be referred to as raw activity. It would be processed by some

conventional statistical method to form a normalized activity to account for the change in bee hive

population. This activity would then be fed into the anomaly detection algorithm that is a ML

model which takes local weather, beehive sensor, and past activity to predict future activities. It is

a prediction model but used in the assumption that, if a hive’s behavior is significantly different to

the prediction, it indicates an anomaly.
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Figure 4.1: Conceptual Model of the System

4.2 Conceptual Model

Figure 4.1 above represents the conceptual model of the project focused on how data is collected

and analyzed. As shown, the data is collected using cameras and sensors to be preprocessed within

the edge, reducing the amount of data that needs to be sent to the database. This preprocessed

data will be sent to a database, where it will be stored for some period of time before getting

deleted. Using the Amazon Elastic Compute Cloud (EC2), this data will be further analyzed to

obtain more information on beehive activity, such as the type of bee and whether it is entering or

exiting the hive. This processed data will be stored in the database which will then be accessed

by user though a web frontend. It will also be used in conjunction with the weather conditions to

detect abnormal activity. If an anomaly is found, an alert will be logged in the database and sent to

the user, alerting the beekeeper to unusual patterns in behavior and possibly take action to prevent

a potential problem.

As this project is done in conjunction with other teams, this report will not include details about

hardware and web front-end. As an overview, Figure 4.2 below outlines the interconnection be-

tween various components of the system. One team researched and developed aspects of the hard-

ware and webcam streaming. They focused on ensuring that the system is resilient to a variety of

weather conditions and that cameras placed at the hive entrance are capable of streaming video

feed for user to view.
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Another team developed the web front-end components, creating an intuitive user interface capable

of allowing users to securely input their credentials and access the status of their hives. We have

been working extensively with this group to ensure that data is sent correctly from the Pi to the

server. As a part of this work, a set of APIs are negotiated to exchange data between the edge and

the cloud.

Figure 4.2: interconnection of system modules

Our machine learning model makes use of the Keras API, the high-level API of TensorFlow. It pro-

vides an approachable, highly-productive interface for solving machine learning (ML) problems,

with a focus on modern deep learning. Keras covers every step of the machine learning workflow,

from data processing to hyperparameter tuning to deployment(12). For this project, a ML model

is used to predict bee activities and standard statistical method, such as standard distribution and

deviation, is used for evaluating the prediction and future data points. Since the ML model outputs

the beehive activity (a pair of integers), a linear layer is added before the output layer. At this

end, a size of 16 is chosen to reflect the reasonable range of bee activities. On the other end, the

input consists of 7 numbers including past activities and weather data. Thus, a layer size of 128

is chosen. and Fully connected dense layers are added in between to emulate any interactions. A

number of past data would be used to train this model specifically to the hive before a prediction
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are performed, eliminating hive-to-hive differences.

4.3 Technologies Used

The technologies used in this project include the Raspberry Pi 4B, a baseline single-board com-

puter used for acquiring and preprocessing data, the Nvidia Jetson Xavier NX, an alternative and

more powerful option to the Raspberry Pi specialized in performing AI inferencing, the Google

Coral USB Accelerator, a hardware accelerator that adds an edge Tensorflow coprocessor to more

efficiently run tensorflow-based ML methods, and a USB-C Power meter, a standard voltage meter

used for measuring the power usage of devices while running programs.

4.4 Use Cases

Our system will provide users with access to live footage of their beehive, the ability to analyze the

population of bees entering and departing the beehive, an analysis of the beehive environment such

as temperature, humidity, light, and activity, and detection of any unusual behavior with an alert

being sent to the beekeepers. From the user’s point of view, there is not much direct interaction

with our program, which focuses on the back-end implementation of the system.

4.4.1 Setting Up

With our current implementation, one of the few use cases that beekeepers should be aware of is

the need to set up key components manually. This entails downloading the source code and the

necessary libraries, then assigning entrance and threshold coordinates along with size threshold

for tracked objects by editing values in the code directly. More detailed setup instructions are

available on GitHub. It should run automatically at startup but it can be restarted manually should

any unexpected errors occur, after which it would run indefinitely.

4.4.2 Modifications

Given that our project is open source, users are free to modify or add features as well, which can

be done by editing source files in the Bee-Tracking-main directory. This can be done at the user’s
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discretion and doesn’t require much further explanation.

4.5 Data transmission

4.5.1 Current Research

We researched the factors affecting the bandwidth and speed of data transmission on a Raspberry

Pi. It’s important to keep in mind the differences between bandwidth and speed, although at times

they can affect one another. Bandwidth refers to how much data can be transmitted in a given

period of time. One factor that can determine the bandwidth is the medium on which data is

transmitted. Speed on the other hand is an indicator of the rate at which data moves from point a

to point b. Some factors that can affect speed are the quantity and type of devices connected, the

amount of traffic, uploading vs downloading, etc.

4.5.2 Implementation

For the implementation, we started by experimenting with different settings such as the frequency

of performing anomaly detection and size thresholds of bees and the hive entrance after moving the

raspberry pi on site. This was critical for identifying the best way to increase the bandwidth and

speed of its data transmission, as well as improving the performance of the program as a whole.

Although physical connections may have better performance, we focused on Wifi as our medium

due to its ease of use in most scenarios.

In order to obtain images for local use, we implemented a Python program to stream video

from the Raspberry Pi camera to the local computer. The program consists of two parts: the server

and the client. The client code runs on the Raspberry Pi, while the server code runs on the local

computer. The server starts a socket on the local host and listens for connections. The client

will connect to the socket and sends a continual stream of images to the server. The client was

able to send around 1000 images of size 640x480 in 60 seconds, corresponding to a rate of 16fps.

However, when a movement took place, there was a 5-second delay before it could be observed
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on the server’s side (the local computer). Below is the chart measuring the rate in frames per

second that the client was able to send for different image resolutions, as well as the outputs for

the server.py and client.py code using an image resolution of 640x480.

Figure 4.3: Observed Rates of Images Sent

server.py code outoput:

C:\Users\admin\Documents\Code>python server.py

Image is 640 x 480

Image is verified

Image is 640 x 480

Image is verified

Image is 640 x 480

Image is verified

...

client.py code output:

admin@raspberrypi:˜/VideoStreaming $ python client.py

Sent 1007 images in 60 seconds at 16.58 fps

admin@raspberrypi:˜/VideoStreaming $ python client.py

Sent 978 images in 60 seconds at 16.28 fps
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admin@raspberrypi:˜/VideoStreaming $ python client.py

Sent 1009 images in 60 seconds at 16.74 fps

admin@raspberrypi:˜/VideoStreaming $ python client.py

Sent 1006 images in 60 seconds at 16.75 fps

...
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Chapter 5

Test Plan & Performance Evaluation

5.1 Test Plan

This system has 3 main components in which data is collected and analyzed, which includes cam-

era, computer vision (CV) pipeline, and machine learning (ML) model. To fully evaluate the

system it either need to be tested end-to-end or per component. As end-to-end testing requires

beehive in various conditions, which is not easily accessible to us, component tests are used.

5.2 Experimentation

In practice, we acquired segmented recordings at the entrance of the hive and ran them through

the bee tracking and anomaly detection algorithms. For bee tracking, we are using the OpenCV li-

brary, which is a computer vision library that can be used to implement object-tracking algorithms.

By using OpenCV, we can track bees’movements and collect data on their behavior, such as the

number of bees entering and leaving the hive. Once a bee is detected, OpenCV can draw a box

around it to highlight its location and track its path to determine whether it is entering or exiting

the hive. From this method, we were able to verify that the bee tracking was functional and output

data in a format usable by the anomaly detection algorithm.

Analyzing bee activity data is a crucial step in understanding the behavior of a beehive. By using

OpenCV, we can track and detect movement-based bee activity at the entrance of the hive. This data

can then be accumulated over a specific time frame, such as 1, 30, or 60 minutes, and combined

with current and predicted weather data. By custom-fitting the model to the historical data, we can
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make inferences about the activity of the hive.

Figure 5.1: tracking system testing

Figure 5.1 above includes a few screenshots of our program used on one of many pre-recorded

videos, where bees are detected and tracked as they move around the frame. Two rectangles are

drawn to indicate the entrance of the hive and the threshold which bees must cross to be counted.

For testing purposes, we included a counter for the number of bees entering or exiting the hive. At

one minute intervals, we ran the script that performs anomaly detection and uploads relevant data

to the web server, as shown in the top right image. Afterwards, the counters are cleared and the

object detection program gathers information for the next iteration.

5.3 Results

5.3.1 Camera and CV pipeline

The camera used in this system gives a 1920x1080 stream at 30fps. After manual review of the

footage as well as comparing it to the tracking result, it is deemed that the camera and CV pipeline

are able to track bees reliably. Unfortunately, not enough footage have been manually reviewed to

give a precise conclusion as to how accurate this part is.
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5.3.2 Machine Learning Accuracy

Since the ML program outputs a z-score as a description of how significant the data point collected

is, thus how abnormal it is. It can also be used to evaluate the accuracy of itself. Using synthesized

date generated from a random linear correlation between weather and bee activity, as shown in Fig

5.2, the model would mark a data point abnormal 80% of time if a abnormal boundary of z > 2

is used. While this isn’t impressive, it is based on non-sequential data where as actual bee data

would have more sequential characteristics which the model is optimized for. Non-sequential test

data is intentionally used to avoid testing the model with what is essentially a generative model of

the same structure.

Figure 5.2: ML Prediction Accuracy

5.3.3 CPU Usage and Power Consumption

For testing, we ran the program with prerecorded camera footage at varying frame rates, specifi-

cally 10, 15, and 30 frames per second while evaluating a few key statistics. To measure the costs

of our computer vision and anomaly detection pipeline, we measured the duration that it took to

completely parse through every frame, the average CPU usage of the program, and the overall

19



power consumption as it was running. CPU usage was measured using the top command, which

displays the processing power used by each program, while power consumption was measured

using a USB-C power meter. For our control test, we measured the power consumption of the

Pi while it was idle. From these factors, we were able to compare the average power and CPU

usage of our program against the idle state and determine the general resource consumption of our

computer vision and anomaly detection module over an extended period. Our estimates for energy

were formed by subtracting idle power from power consumption while running the program to

isolate the power consumption of our program, then multiplying it by the time it would take to

process one second of video to find an estimate of energy per second video processed in units of

J/s.

During these tests, we also noted a few factors that affect the overall performance of the program

in different tests. For one, the number of pixels being read by the camera directly affects the

performance, where down-scaling the size of the video input produced noticeable improvements.

Additionally, individual hardware or software differences between Pi’s may affect the overall be-

havior of the program.
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Figure 5.3: Power and Energy Readings
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Figure 5.4: CPU Usage at Different Frame rates

From these tests, we observed that the CPU usage and power consumption of the raspberry pi

were consistent regardless of the frame rate of the video itself. Rather, because we were using

pre-recorded videos, the program would always be reading through each frame at the same speed.

From this, we noticed that the time it took for the process to parse through each frame was different

from the length of the video, so while the CPU usage and power consumption were consistent

throughout, the energy usage for the different videos was vastly different. Unexpectedly, the energy

consumption was found to not be directly proportional to the frame rate of the video. This may

have to do with a variety of reasons, such as the number of frames that don’t have information

being read or modified. Nonetheless, it is useful to know that parsing videos at higher frame

rates causes a less-than-proportional increase in energy consumption. Additionally, using higher

frame rates provides markedly improved program behavior, allowing the computer vision pipeline

to more effectively track bees moving at faster speeds.

While energy usage is an important takeaway from these measurements, it may not prove as useful

as our findings of the power consumption and CPU usage depending on how we choose to run

it. Unlike going through a video frame-by-frame until the end, the scale of time becomes less
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relevant as we continuously read from the camera until the process is terminated. Either way, an

improvement in power consumption would lead to a direct decrease in energy consumption, so our

focus lies in improving the program’s efficiency regardless.
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Chapter 6

Conclusion & Future Works

Through the collective efforts of multiple teams, we were able to create a baseline for an open

source system capable of alleviating the burden of beekeepers around the world through the assis-

tance of computer vision and machine learning. Starting from a Raspberry Pi and a small camera

positioned in front of the hive, we ended with a framework that allows beekeepers greater access to

important hive data at a much more affordable price than solutions available on the market. With

many of our main objectives achieved, we hope that future groups can focus on providing more

depth to the project than we were able to in the span of our senior year.

While we have established a solid foundation for this project, there remain a multitude of unex-

plored avenues to pursue. The possibilities for refinement of existing code and the integration of

new features are quite promising. In the future, changes and optimizations can be made to improve

the tracking system’s resiliency. For instance, the tracking system can be further optimized to work

in more cases and avoid getting confused by shadows or blur. Another potential change would be

to allow the program to determine the appropriate size threshold for bee tracking and fit the en-

trance size, which may be more complicated but could save beekeepers the time needed to adjust

the settings for each hive. The power draw should also be validated, and the system can potentially

be migrated to platforms with lower power draw and cost.

We were also considering using bee size or other distinguishing factors to determine the type of

bee, whether drone or worker. However, this provided a few constraints that we were unable to

work out amid the higher priority objectives. In terms of the algorithm, further experimentation is
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needed to determine whether we will use OpenCV image classifier or do we need to build a new

model in, for example, Tensorflow. Furthermore, a significant amount of training data would be

required for it to classify bees of all shapes and sizes at different angles, so this objective has yet

to be pursued.

When parsing bee activity data, size should also be considered to avoid inconsistencies caused by

camera position and shape, particularly when a grid is not added to the entrance. While we have a

basic framework for distinguishing bees based on size, more data is required to validate and train

the system to account for these inconsistencies. Future work will also involve testing the model

with live data and refining it further to account for variables such as temperature, humidity, and

weather patterns. As machine learning continues to gain prominence in modern software, we can

expect significant advancements to our system in the foreseeable future.
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Appendix A

Appendix

This is a selection of key part of the source code, full source can be found at

https://github.com/SIOTLAB/BeehiveMonitoring.

A.1 Sample code for calling python script with parameters hourly

time_t currentTime = time(0);

tm current;

localtime_s(&current, &currentTime);

if (current.tm_hour != hour) {

string cmd = "python process_data_dev.py " + to_string(in) + " " + to_string(out);

// number of bees going entering as argv[1], exiting as argv[2]

system(cmd.c_str()); // call python script

// Update variables

hour = current.tm_hour;

in = 0;

out = 0;

}

A.2 Sample code for handling tracked objects

for (int i = 0; i < contours.size(); i++) {

// for objects on screen, add to currentObjects if above size threshold

if (((boundingRect(contours[i]).height) < 50 || (boundingRect(contours[i]).width)

< 50)) continue;

Object newObject(contours[i]);

currentObjects.push_back(newObject);

}

if (firstFrame == true) {

for (auto& currentObject : currentObjects) {

objects.push_back(currentObject);

}
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}

else {

matchCurrentFrameToExisting(objects, currentObjects, frame);

}

}

A.3 Source Code for activity prediction model

# Weather: temp, humidity, windspeed

# Activity: numIn, numOut

# model input: 2 previous activity pair & next weather

# model output: predicted activity pair

# model trained on last 360 data

def create_model():

model = tf.keras.Sequential()

model.add(tf.keras.layers.Dense(128, input_shape=(7,), activation=’relu’))

model.add(tf.keras.layers.Dense(64, activation=’relu’))

model.add(tf.keras.layers.Dense(32, activation=’relu’))

model.add(tf.keras.layers.Dense(16, activation=’relu’))

model.add(tf.keras.layers.Dense(2, activation=’linear’))

model.compile(optimizer=’adam’, loss=’mean_squared_error’, metrics=[’mae’])

return model

# Generate testing data

temperature = np.random.normal(20,10,size=(100,1))

humidity = np.random.normal(60,10,size=(100,1))

windspeed = np.abs(np.random.normal(10,10,size=(100,1)))

weathers = np.concatenate((temperature,humidity,windspeed),axis=1)

some_correlation = np.random.normal(2,1,size=(3,2))

activities = weathers @ some_correlation

X_train = np.concatenate((activities[-39:-3],activities[-38:-2],weathers[-37:-1]),

axis=1)

Y_train = activities[-37:-1]

X_test = np.concatenate((activities[-4:-2],activities[-3:-1],weathers[-2:]),axis=1)

Y_test = activities[-2:]

model.fit(X_train, Y_train, epochs=50, batch_size=64, validation_data=(X_test, Y_test))

prediction = model.predict(X_test)

np.max(np.abs((prediction-Y_test)/np.std(Y_train, axis=0)))

%%capture

test_results = np.zeros(100)

for i in range(100):

model = create_model()

temperature = np.random.normal(20,10,size=(50,1))

humidity = np.random.normal(60,10,size=(50,1))

windspeed = np.abs(np.random.normal(10,10,size=(50,1)))

weathers = np.concatenate((temperature,humidity,windspeed),axis=1)

some_correlation = np.random.normal(2,1,size=(3,2))
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activities = weathers @ some_correlation

X_train = np.concatenate((activities[-39:-3],activities[-38:-2],weathers[-37:-1]),axis=1)

Y_train = activities[-37:-1]

X_test = np.concatenate((activities[-4:-2],activities[-3:-1],weathers[-2:]),axis=1)

Y_test = activities[-2:]

model.fit(X_train, Y_train, epochs=50, batch_size=64, validation_data=(X_test, Y_test))

prediction = model.predict(X_test)

test_results[i]=np.max(np.abs((prediction-Y_test)/np.std(Y_train, axis=0)))

A.4 Source Code for startup script

#!/bin/bash

# output logging

echo "\n\n"

echo "[INFO] Service Started at $(date)"

# setup pwd

cd /home/pi/Downloads/Bee-Tracking-main

# setup env variables

export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python

if [[ ! -e env.sh ]]; then

# default env file

cp env.sh.template env.sh

serial=$(uuid)

printf "export SDP_DEVICE_SERIAL=$serial\n" >> env.sh

printf "[INFO] Configuration file not found, new config created with serial number

$serial\n\n"

fi

source env.sh

# start CV program

/home/pi/Downloads/Bee-Tracking-main/Webcam

A.5 Server code

# server.py

import io

import socket

import struct

from PIL import Image

import matplotlib.pyplot as pl

server_socket = socket.socket()

port = 8000
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server_socket.bind((’169.254.241.227’, port))

server_socket.listen(0)

connection = server_socket.accept()[0].makefile(’rb’)

try:

img = None

while True:

# Read the length of the image as a 32-bit unsigned int. If the length

# is zero, exit the loop

image_len = struct.unpack(’<L’, connection.read(struct.calcsize(’<L’)))[0]

if not image_len:

break

# Construct a stream to hold the image data and read the image data

# from the connection

image_stream = io.BytesIO()

image_stream.write(connection.read(image_len))

# Rewind the stream, open it as an image with PIL and do some

# processing on it

image_stream.seek(0)

image = Image.open(image_stream)

if img is None:

img = pl.imshow(image)

else:

img.set_data(image)

pl.pause(0.01)

pl.draw()

print(’Image is %dx%d’ % image.size)

image.verify()

print(’Image is verified’)

finally:

connection.close()

server_socket.close()

A.6 Client code

# client.py

import io

import socket

import struct

import time

import picamera

class SplitFrames(object):

def __init__(self, connection):

self.connection = connection

self.stream = io.BytesIO()

self.count = 0
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def write(self, buf):

if buf.startswith(b’\xff\xd8’):

# Start of new frame; send the old one’s length then the data

size = self.stream.tell()

if size > 0:

self.connection.write(struct.pack(’<L’, size))

self.connection.flush()

self.stream.seek(0)

self.connection.write(self.stream.read(size))

self.count += 1

self.stream.seek(0)

self.stream.write(buf)

# Connect a client socket to my_server:8000

client_socket = socket.socket()

port = 8000

client_socket.connect((’169.254.241.227’, port))

# Make a file-like object out of the connection

connection = client_socket.makefile(’wb’)

try:

output = SplitFrames(connection)

with picamera.PiCamera(resolution=’VGA’, framerate=30) as camera:

# Let the camera warm up for 2 seconds

time.sleep(2)

# Note the start time and construct a stream to hold image data temporarily

start = time.time()

# Recording for 60 seconds

camera.start_recording(output, format=’mjpeg’)

camera.wait_recording(60)

camera.stop_recording()

# Write the terminating 0-length to the connection to let the

# server know we’re done

connection.write(struct.pack(’<L’, 0))

finally:

connection.close()

client_socket.close()

finish = time.time()

print(’Sent %d images in %d seconds at %.2ffps’ % (

output.count, finish-start, output.count / (finish-start)))
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