SANTA CLARA UNIVERSITY

Department of Computer Science and Engineering

Date: June 7, 2022

I HEREBY RECOMMEND THAT THE THESIS PREPARED
UNDER MY SUPERVISION BY

Shivangi Kar
Stephanie Lu

ENTITLED

ORIENT: Teaching Object Oriented Programming with Augmented Reality

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

“ Ihan Hsiao
) e N g 06/08/2022
Thesis Advisor

N Ling

N. Ling (Jur%, 2022 11:35PDT)

Department Chair

Sharon Hsiao
Ihan Hsiao
06/08/2022

https://na2.documents.adobe.com/verifier?tx=CBJCHBCAABAAbs3Nl8iay3QOUdFnyttGEBWWknupIP4g

ORIENT: Teaching Object Oriented Programming with
Augmented Reality

By

Shivangi Kar
Stephanie Lu

SENIOR DESIGN PROJECT REPORT

Submitted to

the Department of Computer Science and Engineering

of
SANTA CLARA UNIVERSITY
in Partial Fulfillment of the Requirements

for the degree of

Bachelor of Science in Computer Science and Engineering

Santa Clara, California

June 7, 2022

ORIENT: Teaching Object Oriented Programming with Augmented Reality

Shivangi Kar
Stephanie Lu

Department of Computer Science and Engineering
Santa Clara University

June 7, 2022

ABSTRACT

In our technologically advanced society, computational thinking is a critical skill for students to
develop. Our project, ORIENT, is a mobile application that uses augmented reality to teach
object-oriented programming (OOP), a fundamental concept in computer science. ORIENT is
designed for novice programmers from the middle school level up, and it consists of a three-part
tutorial series that teaches class creation, inheritance, and polymorphism—three of the most
important tenets of object-oriented programming. ORIENT, which was built in Unity and made
specifically for the iPad, includes a series of interactive tutorials with immediate feedback; it
encourages students to explore OOP in an guided environment that prioritizes learning over
gamification. Students can learn at their own pace and easily navigate between and within
tutorials. Through user testing with novice programmers in middle school, high school, and
college, we found ORIENT to be highly effective in communicating OOP concepts in an
engaging and understandable manner. We hope that ORIENT can provide insight on how
immersive technology can be used to enhance education, particularly in the field of computer
science.

ACKNOWLEDGEMENTS

We would like to thank our advisor, Dr. Sharon Hsiao, for her guidance throughout this project.
Additionally, we would like to thank the School of Engineering and the Computer Science and
Engineering department in particular for their support and recognition of our work.

Table of Contents

1

Introduction

1.1 Problem Statement ..o e

| Y, (013 121410 s S

1.3 Related WOrK ...
L3001 A e
1.3.2 OOP-AR ..o
1.3.3 0 Ogmentedo.oiniiii i

R O o) =T o1 5)

Proposed Solution

2.1 Design Rationaleooiiiiiiiiii e
2.2 Tutorial Contentot e
2.2.1 Tutorial 1: Class Creationccoueiiiiuiiieiiiie i aiiee e,
2.2.2 Tutorial 2: Inheritanceooiiiiiiiii e
2.2.3 Tutorial 3: Polymorphism ...
Technologies Used
T8 S 0111 2
Bt e
3.3 ARKI o
34 AR Foundation ... e,

Performance Evaluation

4.1 MethodOlogy ...

4.2 Empirical Resultscooiiiii
4.3 User Feedbackoouiniiiiii
Future Work

Societal Considerations

6.1 Ethical Justification i

0.2 PIIVACY ettt

6.3 Quality of EQUcationo
Conclusion

20
20
20
20
20

22
22
22
24

26
27
27
28
28

30

List of Figures

1.1
1.2
1.3
1.4
2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

Alice Programming Interfaceoooiiiiiiiiiii e 3

ViSUALS 11 AICE .. .vtiit i e 4

OOP-AR User Interfacecoooiiiiiiii e 4

Method Binding in Ogmentedoooiiiiiiiiiii e 6

Tutorial 1 Attributes EXEICISecc.viiiiiiiiii i 10
Tutorial 1 Methods EXEICiSecovoiiiiiiiiii e 11
Tutorial 1 Car InStantiationoouiiiiiii i e eaas 11
Tutorial 2 Inheritance LesSonooiuiiiiiii i e 12
Tutorial 2 Car and PoliceCar Relationship ..., 13
Tutorial 2 PoliceCar Declarationcccoiiiiiiiiiiiiii i i, 14
Tutorial 2 PoliceCar Attribute Selectionooiiiiiiiiiiiii e, 15
Tutorial 2 PoliceCar InStantiationoiuiiiniiiiiiiie it eiie e, 15
Tutorial 2 Inheritance Tree Diagramccoviiiiiiiiiiii i, 16
Tutorial 3 Polymorphism Lessonc.ooouiiiiiiiiiiii e 17
Tutorial 3 Applying Polymorphismccooiiiiiiiiii e 18
Tutorial 3 Method OVerridingoooviiiiiii e, 18

Tutorial 3 PoliceCar and Car AR Explorationcooooiiiiiiiiiiiiiiiiinnn... 19

Chapter 1

Introduction

1.1 Problem Statement

In our technologically advanced society, it is critical for students to develop an understanding of
computer science fundamentals as well as computational thinking skills. The existing availability
of computer science education does not meet demand; a Gallup poll found that although 90% of
parents would like their children to learn the subject, only 47% of high schools offer computer
science courses, and the subject is absent in most middle and elementary schools [1]. Therefore,
there is a need for accessible educational content that teaches computer science basics to young

students.

One important computer science concept in particular is object-oriented programming (OOP),
which is fundamental to programming languages like Java, C++, and Python. OOP is a crucial
topic because it enables programmers to write more flexible, concise, and reusable code.
However, understanding the relationship between parent and child classes, their interactions, and
other OOP principles has proven difficult for many students. A significant instructional
challenge is that OOP is more abstract than structured programming and more demanding in the
analysis and design processes. Thus, a visual and hands-on approach may be more effective in

teaching these programming principles.

Our senior design project investigates novel ways to utilize immersive technology in aiding
computer science education. Specifically, we explore the effectiveness of using augmented
reality to help students visualize abstract concepts in object-oriented programming, focusing

primarily on the principles of class creation, inheritance, and polymorphism.

1.2 Motivations

Our decision to utilize augmented reality (AR) for our project is rooted in the widespread

availability of AR, as well as the demonstrated effectiveness of AR as an educational tool.

Augmented reality is the modification of real-world environments through the incorporation of
computer-generated perceptual information. Technology is used to add visuals, sounds, haptic
feedback, and other sensory inputs to enhance a user’s experience of reality [2]. AR experiences
are available through most modern mobile devices, making AR increasingly accessible and
popular. Headsets—which can be cost-prohibitive—are not required to experience AR, making

AR more accessible than virtual reality.

As education becomes increasingly digitized, mobile augmented reality has emerged as a
learning tool. Its popularity is driven by two primary factors [3]. First, smartphones and tablets
have become widespread and advanced, with high resolution cameras, GPS sensors, and vibrant
displays. Educational institutions and students often already possess the mobile devices they
need to use AR. Second, the availability of AR software development kits has enabled
developers like ourselves to easily create custom AR apps. AR applications that explore a variety
of subjects are constantly being developed and released on app stores, providing plenty of

options for students and educators.

The effectiveness of AR as an educational tool has been demonstrated by numerous studies. AR
can help facilitate learning because it enables exploration and visualization in 3D space. When
compared to students who do not use AR to learn a particular topic, students who do use AR
show increased understanding, intrinsic motivation, engagement, retention, and performance [4].
As such, we are motivated to apply AR toward computer science education, such that novice
programmers may understand object-oriented programming concepts more easily and in a more

engaging manner.

1.3 Related Work

Currently, novice programmers can learn to program using popular applications like Scratch and
Kodable. Scratch is a block-based visual programming language and web app that enables early
coders to build interactive games and animations [4]. However, it is not an object-oriented
programming language and is not suitable for teaching OOP principles [5]. Kodable is an app
aimed at elementary school students that also teaches computer science concepts through visuals
and interactive games [6]. While it does utilize the OOP language JavaScript, it is restricted to
four very basic topics: classes, properties, functions, and subclasses. There are no existing
applications available to the public that teach object-oriented programming using AR technology,

which has proven effective in helping students understand biology, math, and other subjects.

Alice, OOP-AR, and Ogmented are the closest existing solutions with comparable objectives for

teaching object-oriented programming.

1.3.1 Alice

Alice is a visual based programming language commonly used in introductory computer science
classes. Students are presented with a list of objects, attributes, and logic blocks they can drag
and drop from Alice’s gallery into their virtual environment. They are able to “program”

functionality by placing these blocks together in the appropriate order.

Camera
~ Do together
uSkater W QASTeelton e

5 || Domorser Dotogether WElse Low Whle Forsimorder Foraflogether Wat jeit

Figure 1.1: Alice programming interface with drag-and-drop logic blocks [7]

While Alice is a great tool, it is not a guided learning platform. The drag and drop without
specific prompts and instructions can be confusing and overwhelming for individuals who do not
fully understand what the logic or attribute blocks entail. Additionally, the visuals are limited to
one’s computer screen. The latest version of Alice supports virtual reality integration, but

because this requires additional tools, it is not accessible to all students [8].

8 startng Camera View 3}

Figure 1.2: Visuals in Alice do not incorporate the user's real-world environment [9]

1.3.2 OOP-AR

OOP-AR is an Android application with similar goals of teaching OOP concepts using
augmented reality in classroom settings. Designed by researchers at Universiti Pendidikan Sultan

Idris in Malaysia, it is intended for use by university-level students [10].

Left Movement

Target Marker [Output

&

Class : MovingLeft
Object : x= 500, y= 250
Method : actionPerformed(ActionEvent e)

A
A
N
A
-
-
A

=

Procedures Expected Output Result
Scan the target marker n AR | The output should be a 3D Failed
Camera to get the output butterfly flying to the left. (The butterfly only

faced to left and not

flying)

Figure 1.3: OOP-AR marker card and corresponding functionality [10]

In the diagram above, the left side depicts a marker, and the right side shows how the marker is
read to generate an output in AR. In this example, the target marker includes three fields: Class,
Object and Method. The Class attribute describes the direction the object should move. The
object's original position is represented by the Object attribute. The Method attribute is simply an
action event handler. Overall, the app includes 5 target markers for different directions such as up
down left right and static. If the marker card works as intended, when the user scans it, a 3D

representation of a butterfly should appear and travel in the direction indicated on the card.

However, there are some clear drawbacks with OOP-AR. First, it does not fully work as
intended. When the user scans the target marker in the diagram above, the expected output is a
3D butterfly model moving left. However, the program fails. The butterfly object is generated
and faces the specified direction but does not move. Additionally, this app was designed for
novice programmers to learn object oriented programming. However, it is restricted to just object
creation, where the user has little understanding of the various attributes or actions that an object
can have or perform. Despite the fact that the marker uses key terms such as Class, Object, and
Method, there is little description or explanation of what these terms mean and how they
contribute to the output 3D model. Furthermore, it does not cover other important OOP concepts

like inheritance or polymorphism.

1.3.3 Ogmented

Ogmented is an Android app that uses augmented reality to teach students abstract programming
topics. It explores the pedagogical effects of utilizing real-world 3D models for learning. The
two main sections of Ogmented are tutorials and exercises. Users must first complete tutorials to
become acquainted with the tool, coding concepts, and syntax. Through 3D rendering and visual
programming, tutorials are designed to help students learn programming concepts and syntax.
After completing the tutorials, users can attempt exercises designed to put their tutorial

knowledge to the test [11].

butterfiy1.fiy(); /imethod 'fly’ is binded to object butterfiyl
butterfly2.fiy(); /imethod iy’ is binded to object butterfly2

Figure 1.4: Tutorial 2 Method Binding in Ogmented [11]

The primary focus of Ogmented is object creation, method binding and method invocation. A
drawback of the app is that it does not extend to any other tenet of OOP. All classes are also
predefined, so users are not required to think critically about the different fields and methods
associated with an object. They are simply given methods to call and instructed to click on
buttons to see how they work. It is critical that novice programmers understand that objects
behave the way they do because of the code written for the object; this connection is not made

clear in Ogmented.

1.4 Objectives

Taking into consideration the drawbacks of existing applications, our app ORIENT was designed

with three key objectives in mind.
Objective 1

The first objective is to present educational content in an age-appropriate manner. This entails
making the content easy to understand and Ul easy to follow. Students are introduced to key
programming terms such as class, object, polymorphism, etc. through smaller exercises, making
the material digestible and not overwhelming. Through the use of visual components, the

application is intended to make the learning process and AR experience as simple as possible.

Objective 2

Viewing a large body of code can often be intimidating for beginner programmers, causing
frustration and distracting students from the learning process. Our second objective is to build an
intuitive AR experience where students are not bogged down with learning vocabulary or code
syntax. This entails creating exercises where a user’s interactions have clear, corresponding
impacts on an AR visualization. Students are able to follow structured tutorials in a guided

learning environment that decomposes and visualizes complex code.

Objective 3

Our final objective is to encourage students to explore OOP with learning as the primary focus.
Technology, specifically augmented reality, can be distracting. While seeing an object appear in
one’s real world environment is exciting, the addition of such virtual features can cause students
to become engrossed in a game and addicted to it. This may lead to information overload and
overreliance on technology. Instead of perceiving an educational AR experience as an addicting
game, students’ primary focus should be on learning. Thus, our application is designed to avoid
taking the user’s attention away from important environmental or real-world cues. ORIENT
encourages its users to keep learning in a healthy, non-distracting way by providing digestible

content and a positive feedback cycle.

Chapter 2

Proposed Solution

ORIENT is a mobile app created in Unity and designed specifically for the iPad. It consists of a
series of interactive tutorials that utilize AR to teach object-oriented programming concepts. The
app encourages students to explore OOP in a guided environment that prioritizes learning over
gamification. ORIENT's three-part tutorial series is aimed at teaching novice programmers about
the core OOP concepts of class creation, inheritance, and polymorphism. Unlike existing
solutions, our platform provides a guided learning environment with immediate feedback and
clear learning outcomes. While playing around with AR objects and interacting with the tutorial
exercises, students are introduced to actual code syntax and structure. ORIENT is designed to
encourage students to learn at their own pace by providing simple content and an easy-to-use

interface.
2.1 Design Rationale

In the current educational technology market, there are a limited number of applications with the
core objective of introducing OOP concepts to beginning programmers using AR. Unfortunately,
existing solutions do not cover all aspects of OOP, have missing features, or require a steep

learning curve to become familiar with the software.

When we first started developing ORIENT, we had to decide whether the app should be more
entertaining and engaging, with self-guided augmented reality exploration, or more structured
and focused on predefined learning exercises. While the idea was to capitalize on the novelty of
augmented reality by allowing students to experiment freely with it, we also had to ensure that
students satisfied certain learning objectives. We observed that many of the current solutions
adopted a more structured approach, because feedback and learning were easier to impart with

defined instructions. By introducing augmented reality into ORIENT, we were able to provide a

sense of play and self-directed learning. Thus, ORIENT incorporates both structured tutorials
that also enable users to experiment and interact with the AR models they create at the end of

each tutorial.

Furthermore, while inheritance and polymorphism are fundamental aspects of OOP, they are
often overlooked in existing applications. In object-oriented programming, inheritance promotes
code reusability and reduces code length. Polymorphism allows the object to choose which form
of the function to implement both at compile (overloading) and run time (overriding). For
novice programmers, understanding how inheritance and polymorphism work is critical since it
can help them establish better programming habits and generate more concise and efficient code
in the long run. As a result, ORIENT dedicates two of its tutorials to breaking down these broad
concepts into manageable chunks. Each tutorial builds on the previous, allowing users to
understand both what goes into a class or object and how it interacts with other classes and

corresponding objects.

Additionally, since ORIENT is designed for younger audiences (middle school level and up), it
centers its tutorials and exercises around a Car class and object. Because automobiles are the
most common mode of transportation in the United States, it is reasonable to assume that the
majority of users are familiar with the various characteristics and actions of a car. ORIENT

educates through an object that users are already familiar with.

2.2 Tutorial Content

Orient is divided into three tutorials, each of which builds upon the previous tutorial. The first

tutorial focuses on class creation, the second on inheritance, and the third on polymorphism.

2.2.1 Tutorial 1: Class Creation

Tutorial 1 introduces students to the concept of class creation. The goal of this lesson is to create

a Car class and instantiate a Car object. There are two primary interactive exercises that help

students understand that the characteristics of a car—such as color, make, and model—are

attributes, and that a car’s behaviors—such as driving, turning, or honking—are methods.

The first target outcome for this exercise is to declare and define a Car class. The first exercise

asks users to determine which attributes are applicable to a car.

Tutorial 1: Class Creation @ .

public Car {
String color;

String make;

Figure 2.1: Tutorial 1 Attributes Exercise

In the diagram above, the left-hand side lists a number of attributes and the right-hand side is a
declaration of the Car class. Users are prompted to select specific Car attributes or methods,
which populate the code for the Car class on the right panel. If the user’s selection is correct,
they will be given a detailed explanation of how it translates to code. For example, if the user
selects "color" as an attribute of Car, a popup will appear explaining that color represented in
code as a string. Similarly, if the user selects an incorrect characteristic, they will be redirected

after receiving a brief explanation for why they chose the incorrect response.

This exercise is replicated with specific methods as well. Users are again asked to choose
methods they believe are relevant to a car, and the process is repeated until all correct methods

have been chosen.

10

Tuibortal 1 Close Coaciion 2 | Tutool 1: Closs Crehion Tar

public Car {
String 7
q A : int year;
Correct! When this method is invoked. the String make;
car will move forward. Tap to see the code
that declares driveForward() as a method of E
Car.

driveForward();

Figure 2.2: Tutorial 1 Methods Exercise

The second target outcome is to instantiate a Car object in AR. To do this, the user will type code
to create a Car object, and that object will appear in front of them in their own environment. The
user can then interact with the Car object in augmented reality by clicking on the purple buttons

to see it driving, turning, reversing, or honking.

Tutorial 1: Class Creation o

Now, you can manipulate the car using the methods we defined! Select a method to
make the car perform the corresponding behavior. Feel free to play around!

.drive() reverse() turnRight() turnLeft() .makeSound()

Figure 2.3: Tutorial 1 Car Instantiation

11

2.2.2 Tutorial 2: Inheritance

The goal for Tutorial 2 is to teach students how to distinguish between the inherited and unique

attributes and behaviors of a subclass.

By the end of this tutorial, users will be able to:
1. Recognize that the PoliceCar class can use and apply the fields and methods of the Car
class.
2. Define attributes and behaviors unique to a police car.
3. Instantiate a PoliceCar in AR to test out inherited methods and methods unique to the

class.

The first learning outcome aims to guide users through creating the PoliceCar built upon the
existing Car class from Tutorial 1. The notion of inheritance is first introduced to users through a
step-by-step explanation that corresponds to the car and police car examples used throughout the
application. This way, the student is making connections with information they are already

familiar with and worked with in Tutorial 1.

Tutorial 2: Inheritance @- '
7188 2 |

Inheritance refers to the process by which one class !
Inherits the attributes and methods of another |

class.
f «"‘ ‘

The Parent class is the one from which the 1'
properties and methods are inherited.

,'_‘,"". "l!’:
LEL P F | - 8y

In our example, the Car class from Tutorial 1is the

parent.

-~

The Child class is the one that inherits the parent
class’s properties.

Here, PoliceCar Is the child.

Figure 2.4: Tutorial 2 Inheritance Explanation

12

Students may observe how properties like year, color, and model can be taken from one object
and applied to another. Specifically, the Car object can be used to make other objects like police
cars, trucks, buses, and vans due to their similarities. Thus, because a police car is a type of car,
all of the attributes and behaviors that apply to a car can also apply to a police car. In the
following exercise, students are able to see how a parent and child class relationship translates to

code.

Tutorial 2: Inheritance n

Using our car as an example. we can extract features such as year, color, and
model into another object. Because of their similarity, we can use our car object
to create other objects such as police cars, trucks, buses, or vans. In this case,
¢ because a police car is a fype of car, all of the attributes and behaviors that apply
to a car also apply to a police car.

Figure 2.5: Tutorial 2 Car and PoliceCar Relationship

Students are then asked to refer to this exercise and determine how to declare the PoliceCar class
in Figure 2.6. If users make a mistake, a pop-up feedback box prompts them to reconsider the

class being inherited in this scenario.

13

Tutorial 2: Inheritance @ .

Let's apply what we learned about inheritance to create the PoliceCar class!

Fill in the blank: public class

Input code:

Figure 2.6: Tutorial 2 PoliceCar Declaration

After declaring the PoliceCar class, students are asked to look at some of the distinct features of
a police car. This leads to the second objective, which is to help the user understand that a
PoliceCar is a subclass of Car. This means that it inherits certain fields and methods, but also has
its own unique attributes. Similar to Tutorial 1, the next exercise asks the user to select attributes
they believe correspond to a police car (Figure 2.7). If they select the correct attribute, the
corresponding code appears on the right hand side of their screen. The green feedback boxes let
them know they are correct and provide insight as to why and how this can be represented in

code. The red feedback boxes mean they were incorrect, but provide encouragement to try again.

14

Tutorial 2: Inheritance A

Great! Let's take a closer look at some distinct features of a police car. On the left, we have a

list of attributes. On the right, we have declared our PoliceCar class. Tap on the attributes
that a police car can have. If you are correct, the corresponding code will appear on your left
panel

public policeCar {

ST G ETE |]
numOfStories]
£7 PEEEF
departmentName

WAEELE L |
pitchLevel

isUndercover

Figure 2.7: Tutorial 2 PoliceCar Attribute Selection

The following exercise deals with the shared methods between Car and PoliceCar. Users are
provided with a selection of methods defined in the Car class that they can test on the PoliceCar
object in the AR environment. Since PoliceCar is a child of Car, they are able to manipulate it

using the same methods defined for Car.

Tutorial 2: Inheritance 5

Since PoliceCar is a child of Car, you can manipulate it using the same methods we
defined for car! Select a method to make the police car perform the corresponding
behavior. Feel free to play around!

.drive() .reverse() , .turnRight() sturnLeft() .makeSound()

e win,

Figure 2.8: Tutorial 2 PoliceCar Instantiation

15

The final learning outcome for tutorial 2 is to display the greater inheritance hierarchy and
briefly introduce the concept of multilevel inheritance. In this exercise, the user gets a chance to
see the visual relationship between Car and PoliceCar, and how they fit into the larger
inheritance tree with other vehicles such as Truck or SportsCar. By clicking on the parent class

box, the user will see the corresponding children appear.

Tutorial 2: Inheritance @ |

A Larger Inheritance Tree Diagram

When a single subclass inherits
from a superclass, a single layer of
inheritance is formed. Multilevel
inheritance occurs when a
superclass is inherited by an
intermediate class, which is then
inherited by a derived class,
resulting in three or more levels of
inheritance.

Click on the red parent class box
to see the children of that class!

Figure 2.9: Tutorial 2 Inheritance Tree Diagram

Through a series of connected and concise exercises, Tutorial 2 guides students through the

broad concept of inheritance.

2.2.3 Tutorial 3: Polymorphism

ORIENT’s third and final tutorial focuses on polymorphism. Students will use polymorphism to
change the implementation of an inherited method—specifically, they will modify the PoliceCar

class’s inherited makeSound() method so that it sounds a siren instead of honking.

By the end of Tutorial 3, students should be able to:

16

1. Understand polymorphism and method overloading, a type of polymorphism.
2. Apply polymorphism by modifying the PoliceCar class so that it has behaviors different

from the Car class.

3. Observe the difference between PoliceCar and Car behavior in AR.
Tutorial 3 begins with a series of explanations and examples, which introduce the concepts of

polymorphism and method overriding. This accomplishes the first learning outcome and

provides students with the knowledge they need to complete the upcoming exercises.

Tutorial 3: Polymorphism @

An Example of Polymorphism

Let's say we have a Rectangle, Triangle, and Circle class
all inheriting from the Shape class. The Shape class has a
draw() method that draws a shape. The Rectangle,
Triangle, and Circle classes will inherit this draw()
method, but these shapes are all drawn differently.

Figure 2.10: Tutorial 3 Polymorphism Explanation

Next, users are introduced to a task that requires them to apply polymorphism to the Car and
PoliceCar classes they have created. This fulfills the second learning objective, which is to use
polymorphism to modify the PoliceCar class. Specifically, PoliceCar inherits a makeSound()
method from the Car class, which produces a honking noise. For a police car, the sound used to
alert other drivers should be a siren instead of a normal car honk, so we explain that method

overriding can be used to complete this modification.

17

Tutorial 3: Polymorphism "y

Tap the buttons to observe the current behavior of the makeSound() method for Car
and PoliceCar objects

Car.makeSound(); ' policeCar.makeSound();

We want our PoliceCar to make a siren sound instead of honking. To

reflect this difference in behavior, we can override the makeSound()

method for the PoliceCar class so that police cars sound a siren when
makeSound()is called.

Figure 2.11: Tutorial 3 Applying Polymorphism

Tutorial 3 then guides users to write code that will override the makeSound() method for
PoliceCars. This exercise involves understanding why modifications are necessary, typing an

@Override annotation, and filling out the body of the code.

Tutorial 3: Polymorphism "y

Great — you've added the annotation that indicates an override! Now, we need to
write code to specify the behavior we want makeSound()to have. For police cars,
this method should sound a siren

public class Car { public class PoliceCar {

@Override

public void makeSound() { public void makeSound() {
honk();
}

What code should be in the body of the makeSound() method? Select
the appropriate behavior for the PoliceCar class!

squawk(); soundSiren(); revEngine();

Figure 2.12: Tutorial 3 Method Overriding

18

The final part of Tutorial 3 lets users witness their code modifications in AR. After typing code
to instantiate both a PoliceCar and a Car object, users can interact with both cars simultaneously.
In doing so, they can observe that after overriding the makeSound() method for PoliceCars, the
two cars now make different sounds—one honks and the other one sounds a siren. This exercise
fulfills Tutorial 3’s third learning objective and concludes the series; as demonstrated, each
tutorial builds on top of the previous tutorial, and the end result is that a user can create two

distinct types of cars in augmented reality.

Tutorial 3: Polymorphism)

Use the purple buttons (left) to activate the Car object's methods. Use the blue
buttons (right) to activate the PoliceCar object's methods

.drive()

.turnLeft()

Figure 2.13: Tutorial 3 PoliceCar and Car AR Exploration

19

Chapter 3

Technologies Used

In terms of technologies, ORIENT was built using Unity, C#, ARKit, and AR Foundation.

3.1 Unity

Unity is a real-time development platform for generating 2D and 3D games and simulations.
Unity gives creators the tools they need to create rich, immersive augmented reality experiences
that intelligently interact with the real world. ORIENT was created in Unity using the AR

packages described below.

32 C#

C# scripts are the code files that store behaviors in Unity and are responsible for the engine's
overall functionality. Developers can use scripts to generate custom actions and interactions
within a game environment. C# is the most compatible with Unity and is the scripting language

behind ORIENT's interactive functionality.

3.3 ARKit

ARKit is an augmented reality development platform specifically for 10S devices. ARKit
simplifies the process of creating an AR experience by combining device motion tracking,
camera scene capture, advanced scene processing, and display conveniences [12]. Since
ORIENT is built for the iPad, we used the ARKit development platform to create the AR

experience.

3.4 AR Foundation

AR Foundation is an AR framework that enables cross-platform development. Developers can

deploy AR apps across numerous mobile and wearable devices. It incorporates both

20

platform-specific and Unity-specific capabilities. As a result, both Android and iOS devices
would be capable of supporting ORIENT in the future.

21

Chapter 4

Performance Evaluation

4.1 Methodology

To evaluate the effectiveness of ORIENT in teaching object-oriented programming concepts, we
performed user testing on six novice programmers. Two students were middle schoolers at the
6th grade level, one participant was a high school student, and the remaining three participants
were underclassmen in university. Performing in-depth case studies with select participants
allowed us to observe user interactions with ORIENT and collect detailed feedback. Each
participant was provided an iPad to explore ORIENT at his or her own pace; after completing all
three tutorials, participants were tasked with completing a survey, which asked about their level
of education, their familiarity with OOP, and how effective ORIENT was in communicating

OOP ideas, in addition to collecting positive and negative feedback regarding the app.
4.2 Empirical Results

In the post-test questionnaire, participants were asked to rate their familiarity with OOP prior to
using ORIENT. They were also asked to rate the helpfulness of ORIENT in teaching OOP

concepts. The results of the survey can be seen in the figures below.

Prior to testing, three users were very unfamiliar with OOP (familiarity rating of 1/10 or 2/10),
and the remaining three users were somewhat familiar (rating of 7/10 or 8/10). After using
ORIENT, all testers rated their familiarity as an 8 out of 10 or above, indicating that ORIENT

was very effective in teaching OOP concepts.

22

On a scale of 1to 10, how familiar were you with Object Orient Programming prior to this tutorial?
6 responses

1(16.7%) 1(16.7%)

0(9%) O«I)%) 0«1)%) 0((IJ%) 0(?%) 0(?%)

1 2 3 4 5 6 7 8 9 10

Figure 4.1: Familiarity with OOP before ORIENT

On a scale of 1to 10, how helpful was this app in teaching OOP concepts?
6 responses

3

2 (33.3%)
1(16.7%)

0 (0%) 0((1)%) 0(9%) 0(?%) 0(?%) o«la%) 0(?%)
0 1

1 2 3 4 5 6 7 8 9 10

Figure 4.2: Effectiveness of ORIENT in teaching OOP

We also collected data on the length of time it took users to complete the three tutorials. The two
middle school students spent 23 and 15 minutes completing ORIENT, while the four high school
and college-level testers averaged a time of 10 minutes. Tutorials 1 and 2 each took users about 4
minutes to complete, while Tutorial 3 took an average of 5 minutes and 45 seconds. This data
affirms the design of our tutorial series, whereby each tutorial builds upon the previous and

increases in level of difficulty.

23

2.3

User Feedback

To gather feedback on the effectiveness of ORIENT in communicating OOP concepts,

participants were asked “What are some things you liked about this app?” and “What are some

things you think were difficult to understand or use in the app?”

We then categorized their responses into the following groups based on the initial objectives

established prior to project implementation:

I.
2.

Present educational content in an age appropriate manner.
Build an intuitive AR experience where comprehension of OOP concepts is prioritized
over learning vocabulary or code syntax.

Encourage students to explore OOP with learning as the primary focus.

The results are summarized as below:

1.

Student testers affirmed that they “liked how the application didn’t stress too much code
verbatim and focused on user engagement.” Important words were bolded, allowing them
to “focus [their] attention to the topics” and crucial concepts. Overall, students found the
UI to be “very self explanatory and easy to use.”

Additionally, users found the “AR and live demonstrations of the code being written were
very helpful in truly grasping an understanding of the material”, and that being able to
visualize what they were coding made it easier to see and understand the impact of each
line of code. They also noted that the tutorials were “short and sweet” — concise yet also
thorough.

Lastly, testers “really liked the visuals and how interactive it was,” since this “made it
easier to learn and understand the concepts.” Students found “polymorphism with the
makeSound() function ... great in demonstrating a typically hard concept.” Additionally,
a tester said, “I think this app would've been great for introducing me to programming

and definitely would've helped me learn the basics much easier.”

In addition to positive feedback, we received feedback on potential areas for improvement. To

begin, several students stated that the code-writing activities were challenging for them because

24

they had to type the code precisely as instructed, including case and space sensitivity. Missing or
adding extra spaces caused errors despite typing out the exact words, which was frustrating for

students who could not resolve their error.

Furthermore, some of our instructions could have been worded more clearly. For example, in
Tutorial 2 one exercise asked the students to “Fill in the blank: public extends ”?
Students were unsure whether to type in the words that fit in the blank or the whole sentence.

Thus, by making the instructions more clear we hope to improve the user experience.

Finally, there are minor changes that would make the app experience more pleasant; for example,
adding smoother transitions for car movements and removing the AR placement indicator from
the background of scenes where it is not needed. Most of these issues could be resolved fairly

easily with some additional code revisions.

25

Chapter 5

Future Work

ORIENT currently includes tutorials focused on class creation, inheritance, and polymorphism,
but it does not cover abstraction and encapsulation—two additional major principles in
object-oriented programming. Abstraction is used to manage complexity by hiding unnecessary
information from the user. This allows the user to build more complicated logic on top of the
offered abstraction without having to understand or consider all of the hidden complexity.
Encapsulation is the idea of grouping together attributes and methods that work on specific data
into a single entity, similar to a Java class. It is often used for information hiding, which refers to
the idea of hiding the object’s internal structure and characteristics. Currently, there are no
tutorials or exercises available on ORIENT to teach students about the remaining two pillars of
OOP. In the future, we hope to expand ORIENT to incorporate tutorials specific to abstraction
and encapsulation. This would enable students to complete their introduction to all four tenets of

object-oriented programming.

Furthermore, ORIENT can benefit from giving users more creative power. Ideally, users will be
able to modify more of an object’s attributes, such as color, number of wheels, size, or the sounds
it can generate. This would pique users' attention in the app and allow them to experiment with
the endless possibilities of OOP beyond the structured tutorials. This option would most likely be
offered after users complete the guided learning tutorials, so as to guarantee that students are still

focused on comprehending the various OOP principles of object creation, inheritance, etc.

Finally, by collaborating with local schools and computer science programs, the application can
be better aligned with the material covered in a beginning computer science course. Students can
benefit from ORIENT’s simplicity and use its visualizations to comprehend difficult concepts.
User profiles and login capabilities could also be included in the app, allowing users to track

their progress and personalize their learning.

26

Chapter 6

Societal Considerations

6.1 Ethical Justification

Our rationale for creating ORIENT is supported by two primary ethical frameworks: rights and
the common good [13]. As an educational tool, ORIENT promotes the right to education and
contributes to the public good by fostering an understanding of how technology in our world

works, as well as how it can be created.

Article 26 of the Universal Declaration of Human Rights states that “Everyone has the right to
education,” and that “Technical and professional education shall be made generally available”
[14]. As such, the availability of computer science education—and educational tools to support
it—are critical in our current technology-driven world. As a proof of concept for a mobile
application intended to be free on app store platforms, ORIENT makes computer science
education more attainable to the public; its use is not limited to classroom settings and can be

adopted by any individual interested in learning OOP.

Furthermore, ORIENT’s existence is supported by the Association for Computer Machinery’s
Code of Ethics. Section 1.1 states that computing professionals must “Contribute to society and
to human well-being, acknowledging that all people are stakeholders in computing” [15].
ORIENT contributes to society by improving the quality and effectiveness of computer science
education; learning OOP enables students to pursue computing as a hobby or profession,
whereby they may create products that benefit human well-being in numerous ways.
Additionally, Section 2.7 notes that a responsibility of computing professionals is to “Foster
public awareness and understanding of computing, related technologies, and their consequences”
[15]. ORIENT helps novice programmers understand how code works and the effect it can have,

thus furthering their understanding of technology’s inner workings.

27

6.2 Privacy

The expanding use of AR in classroom settings comes with important ethical considerations,
especially regarding privacy and data collection. AR applications and devices can track users’
locations, movements, and voice, with multiple sensors and cameras; if this information is
captured and/or shared, serious breaches of privacy can occur. Although most AR applications in
education use mobile devices, the same concerns apply. Cameras can record both the student and
the surroundings, so the possibility of surveillance exists. The collection of other data—such as
the personal information of young children—also presents a danger. In the United States, the
most relevant regulation is the Children’s Online Privacy Protection Act (COPPA), which
prevents the collection of personal information for children under 13 without parental consent
[16]. But while there are laws protecting user privacy, they are by no means comprehensive, and

there is a lack of standard policy regarding the development and use of immersive education.

As an AR application, ORIENT does utilize the device camera. However, it does not store any
imagery captured by the camera, nor does it support user profiles in its current implementation.
If future work were to expand ORIENT, user profiles may be added to support personalized
learning and to track progress. In this event, it will be necessary to ensure that user data is
handled in a responsible manner and is not shared or used for purposes other than ORIENT’s

functionality.

6.3 Quality of Education

The use of augmented reality in education is complicated by the unequal availability of
technology. Since AR has been shown to be an effective educational tool, those who lack the
resources to use it may be at a disadvantage. Schools with more funding can afford fast, reliable
Internet and enough smartphone or tablet devices to run AR applications on. Their students have
access to innovative AR experiences and tools that may benefit their learning. However, many

other students will not have access to such technology [3]. Educational AR applications like

28

ORIENT have the potential to further the digital divide, making quality of education more
closely linked to economic status. However, mobile devices supporting AR functionality are
increasingly prevalent; having such a device is the only barrier to accessing ORIENT. With
further work, our app would be available on app stores for free and on multiple device types (10S

and Android), removing additional access barriers.

Other ethical issues pertain to the potential harms of using AR in the classroom. One such
concern is the “divided brain”: immersive technology may be distracting to students, and the
addition of virtual elements may trigger information overload. Moreover, virtual imagery can be
misleading, leading to a breakdown of truth. It is unethical for developers to represent ideas or
objects inaccurately through AR, because students will not be able to distinguish truth from
falsehood. Finally, many digital applications purposefully try to maximize the amount of time
users spend on the application, since their business models profit from usage. This can result in
digital addiction, which would distract from the learning that AR apps aim to support [16]. To
make AR a safe, enjoyable, and effective tool, developers must design and build AR applications

in an ethical manner.

ORIENT was created with these ethical considerations in mind; special care was taken to ensure
that the application prioritizes learning over gamification or user engagement metrics, and the
guided nature of the tutorials serves this priority. There is a clear start and end to each tutorial,
and students are intended to use ORIENT simply as a tool to acquire an understanding of OOP.
ORIENT is a means to an end, and it is not designed to profit off of increased user engagement.
Our consideration of the possible harms of AR in education are taken into account in our project

objectives, and can be seen in the metrics we used to assess ORIENT’s effectiveness.

29

Chapter 7

Conclusion

As the demand for computer science education grows, so does the demand for educational tools
to help students better understand and learn material. Augmented reality provides students with a
visual and hands-on approach to learning fundamental programming principles. AR can be
useful in assisting students in visualizing abstract concepts in object-oriented programming,

particularly the principles of class creation, inheritance, and polymorphism.

The proposed solution, ORIENT, is designed to simplify OOP concepts for novice programmers
using AR. ORIENT's three main goals are to (1) deliver educational content in an
age-appropriate manner, (2) create an intuitive AR experience that prioritizes comprehension of
OOP ideas over code syntax and structure, and (3) encourage students to explore OOP with
learning as the primary goal. Each of the tutorials reflects these objectives. The application
enables students to learn in a novel and dynamic way by providing a guided learning
environment, defined learning outcomes, introduction to coding syntax and structure, as well as
visible and written feedback at every step of the way. Following in-depth case studies with six
students ranging from middle school to university level, ORIENT has demonstrated a strong
potential to be utilized in the classroom for introductory computer science courses at the middle
school level and above. It is our hope that ORIENT can provide insights on the effectiveness of
using immersive technology to enhance computer science education, and we hope that it inspires

future developments in this field.

30

Bibliography

[1]

2]

[3]

[4]
[3]

[6]
[7]

[8]
[9]

[10]

[11]

[12]
[13]

[14]

English, C. (2015). Parents, Students Want Computer Science Education in School.
https://mnews.gallup.com/poll/184637/parents-students-computer-science-education-school
.aspx

Arth, C., Grasset, R., Gruber, L., Langlotz, T., Mulloni, A., & Wagner, D. (2015). The
History of Mobile Augmented Reality. arXiv e-prints.
https://www.researchgate.net/publication/275974448 The History of Mobile Augment
ed Reality

Bitter, G., & Corral, A. (2014). The Pedagogical Potential of Augmented Reality Apps.
International Journal of Engineering Science Invention, 3, 13-17.
https://www.researchgate.net/publication/267153854 The Pedagogical Potential of Au
gmented Reality Apps

Scratch. https://scratch.mit.edu/

Kim, S.W. (2017). Development of Additional Functions in Scratch for Learning the
Fundamentals of Object-oriented Technology. International Journal of Applied
Engineering Research, 12(20), 9942-9947.
https://www.ripublication.com/ijaerl7/ijjaerv12n20 98.pdf

Kodable. https://www.kodable.com/

Screenshot of Alice.
https://en.wikipedia.org/wiki/Alice (software)#/media/File:Alice-2-screenshot.jpg

Alice 3. https://www.alice.org/get-alice/alice-3/

Alice 3. Scene Editor Overview.
http://www.alice.org/resources/how-tos/scene-editor-overview/

Abidin, Z.Z., & Zawawi, M.A.A. (2020). OOP-AR: Learn Object Oriented Programming
Using Augmented Reality. International Journal of Multimedia and Recent Innovation,
2(1), 60-75. https://lamintang.org/journal/index.php/ijmari/article/view/83/55

Patel, T. (2017). Learning Object Oriented Programming Using Augmented Reality: A
Case Study with Elementary School Students.
https://core.ac.uk/download/pdf/97835744.pdf

Apple Developer. ARKit. https://developer.apple.com/documentation/arkit

Markkula Center for Applied Ethics. A Framework for Ethical Decision Making.
https://www.scu.edu/ethics/ethics-resources/a-framework-for-ethical-decision-making/

United Nations. Universal Declaration of Human Rights.
https://www.un.org/en/about-us/universal-declaration-of-human-rights

31

[15] Association for Computer Machinery. ACM Code of Ethics and Professional Conduct.
https://www.acm.org/code-of-ethics

[16] Hawkinson, E., & Klaphake, J. (2020). Legal and Ethical Issues in Immersive Education.
6th International Conference of the Immersive Learning Research Network (iLRN),
305-307. https://ieeexplore.ieee.org/document/9155135

32

ORIENT_Teaching_Object_Oriented_Programm
iIng_with_Augmented_Reality_Publication

Final Audit Report 2022-06-08
Created: 2022-06-08
By: Darcy Yaley (dyaley@scu.edu)
Status: Signed
Transaction ID: CBJCHBCAABAADbs3NI8iay3QOUdFnyttGEBWWknuplP4g

"ORIENT_Teaching_Object_Oriented_Programming_with_Augm
ented_Reality_Publication" History

9 Document created by Darcy Yaley (dyaley@scu.edu)
2022-06-08 - 5:51:32 PM GMT

£3 Document emailed to N. Ling (nling@scu.edu) for signature
2022-06-08 - 5:52:43 PM GMT

™ Email viewed by N. Ling (nling@scu.edu)
2022-06-08 - 6:34:55 PM GMT

2% Document e-signed by N. Ling (nling@scu.edu)
Signature Date: 2022-06-08 - 6:35:39 PM GMT - Time Source: server

@ Agreement completed.
2022-06-08 - 6:35:39 PM GMT

Adobe Acrobat Sign

		2022-06-08T11:35:41-0700
	Agreement certified by Adobe Acrobat Sign

