
SANTA CLARA UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Date: June 9, 2022

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Raghav Kapoor
Casey Nguyen

ENTITLED

Neural Network Interpretability for Autonomous Driving Neural Networks

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE COMPUTER SCIENCE AND ENGINEERING

Thesis Advisor

Department Chair

David C. Anastasiu (Jun 9, 2022 15:38 PDT)
David C. Anastasiu

N. Ling (Jun 9, 2022 16:32 PDT)
N. Ling

https://na2.documents.adobe.com/verifier?tx=CBJCHBCAABAAftWI1pQz_V68LsQMPkUbYvoJU8o6fMFj
https://na2.documents.adobe.com/verifier?tx=CBJCHBCAABAAftWI1pQz_V68LsQMPkUbYvoJU8o6fMFj

Neural Network Interpretability for Autonomous Driving Neural Networks

by

Raghav Kapoor
Casey Nguyen

Submitted in partial fulfillment of the requirements
for the degree of

Bachelor of Science Computer Science and Engineering
School of Engineering
Santa Clara University

Santa Clara, California
June 9, 2022

Neural Network Interpretability for Autonomous Driving Neural Networks

Raghav Kapoor
Casey Nguyen

Department of Computer Science and Engineering
Santa Clara University

June 9, 2022

ABSTRACT

In the field of neural networks, there has been a long-standing problem that needs to be addressed: gaining insight
into how neural networks make decisions. Neural Networks are still considered black boxes and are often difficult
to understand. This lack of understanding becomes an ethical dilemma especially in the domain of self-driving cars.
Given the limited number of works geared towards unravelling neural network logic for autonomous driving vehicles,
our team seeks to create a novel neural network interpretability method to influence the neural network during its
training process.

Deep Neural Networks have demonstrated impressive performance in complex tasks, such as image classification
and speech recognition. However, due to their multi-layer structure combined with non-linear decision boundaries,
it is hard to understand what makes them arrive at a particular classification or recognition decision given new data.
Recently, several approaches have been proposed to understand and interpret the reasoning in a deep neural network.
In some state-of-the-art solutions, researchers try to actively improve the network during the training process through
the use of penalty functions that added into the chosen layers of the model. However, in many other state of the
art solutions, interpretability is done after the model is trained. This means that no modifications are made to the
network until after it is fully trained. This results from this method of interpretability often take form of decision tress,
extracting logical rules, or highlighting images. However, improvement will have to be done through an additional
training process, meaning that more time will be taken. This is often the case with vision-based models such as those
used in self-driving neural networks.

Based on previous works done in the field of neural network interpretability, we propose adding a penalty function
in the feature extraction layers of an autonomous driving neural network model rather than taking the common passive
interpretability approach. Our method is intended to prevent the model from developing complex data representations
that are not human-understandable. Our group specifically chose L1 regularization as our penalty function for the
purpose of creating sparse feature maps that can ignore noise. Through the use of an autonomous driving simulator
and feature extraction methods, we proved that our regularized model was more effective and interpretable than an
baseline version of it. To determine model effectiveness, we observed the autonomy of both models. To determine
interpretability, we measured the compressibility and randomness of the features learned by both models. For feature
compressbility, the Principle Component Analysis (PCA) algorithm was applied from the features extracted from
the model. Furthermore, the randomness of the features were calculated using entropy. Our results show that our
regularized model was more autonomous and learned more compressible and less random features than the original
baseline.

ACKNOWLEDGMENTS

We would like to thank our advisor, Dr. David Anastasiu, for being the greatest advisor in the world. The resources
and guidance provided by Dr. Anastasiu have been a tremendous help for this project and our future research pursuits.

We would also like to thank Dr. Nam Ling, the Chair of the Computer Science and Engineering Department, for
assisting us in navigating the requirements of the degree that is about to be conferred upon us.

Last, but not least, we would like to thank our families. Without their support, we would have never been able to
complete this thesis or pursue our dreams.

iv

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Challenges of Implementing Neural Network Interpretability on Self-Driving Vehicles 1
1.3 Solution . 2

2 Literature Survey 3
2.1 Current Methods . 3

2.1.1 Passive Interpretability . 3
2.1.2 Active Interpretability . 4
2.1.3 Interpretability Hybrid . 6

2.2 Benchmarks . 6

3 Methods 8
3.1 Dataset . 8
3.2 Self-Driving Model . 8
3.3 Regularization . 10

3.3.1 Test Environment . 11
3.3.2 Data Collection . 12

4 Evaluation 13
4.1 Experimental Design . 13
4.2 Model Training . 13

4.2.1 Evaluation Metrics . 14
4.3 Experimental Results . 15

4.3.1 Trained Models . 15
4.3.2 Autonomy . 15
4.3.3 Interpretability . 16

5 Future Work 18
5.1 Improving the Dataset . 18
5.2 Improving the Self-Driving Model . 18

5.2.1 Cost Function . 18
5.2.2 Model Input . 19
5.2.3 Model Output . 19

5.3 Additional Regularization . 20
5.3.1 Mutual Information . 20
5.3.2 Tree Regularization . 20

6 Societal Issues 21
6.1 Ethical . 21
6.2 Trust . 22
6.3 Safety . 22
6.4 Lifelong Learning . 23

v

7 Conclusion 24
7.1 What We Have Learned . 24
7.2 Why it is Important . 25

A Additional Model Training Plots 26
A.1 Baseline Model Training Plots . 26
A.2 InterpNet Model Training Plots . 27

vi

List of Figures

3.1 The graphical representation of the Rectified Linear Unit activation function is shown above. 10
3.2 The graphical representations of two regularization functions are shown above. The left-hand figure

(a) represents L1 Norm Regularization and the right-hand figure (b) represents L0 Norm Regularization 11

4.1 Training plots of the optimal models with training and validation Loss are shown above. The left-hand
figure (a) depicts the training plot of the optimal baseline model. The right-hand figure (b) depicts the
training plot of the optimal InterpNet model. 15

4.2 Compressibility of the feature maps for the optimal models is shown above. The left-hand figure (a)
depicts the number of PCA components required to compress the feature maps extracted from the
optimal baseline model. The right-hand figure (b) depicts the number of PCA components required to
compress feature maps extracted from the optimal InterpNet model. 16

4.3 Entropy/Randomness of the feature maps for the optimal models is shown above. The left-hand figure
(a) depicts the entropy of the feature maps extracted from the optimal baseline model. The right-hand
figure (b) depicts the entropy of the feature maps extracted from the optimal InterpNet model. 17

A.1 Four additional baseline training plots are shown above for learning rates of 1e-2 and 5e-3 on batch
sizes 32 and 64. 26

A.2 Six additional InterpNet model training plots are shown above for l1 regularization strengths of 1e-3
and 5e-2, learning rates of 5e-4 and 1e-4, and batch sizes of 32 and 64. 27

vii

Chapter 1

Introduction

1.1 Motivation

The problem with neural networks in modern-day technology is that they are considered black boxes. When the

performance of the model is substandard or unexpected, machine learning engineers have a difficult time figuring out

why the neural network produced that prediction. This can be especially problematic in the domain of autonomous

driving, since the lack of understanding of a neural network’s incorrect decision can present a significant negative

impact on the safety of the passengers in those vehicles.

To improve the technology of autonomous cars and make them more widely trusted, we need to be able to under-

stand their decision-making logic and debug the misinterpretations of algorithms. In 2018, a Tesla Model X crashed

into a cement wall on the freeway, and the company could not understand the reasoning behind the car’s movements.

With an interpretability method, a company could trace the path that the data takes in providing a driving decision.

This tracing could take place prior to actual deployment of the self-driving system to reduce the probability of such

accidents happening in the real-world.

1.2 Challenges of Implementing Neural Network Interpretability on Self-
Driving Vehicles

There are two main reasons why autonomous self-driving systems are not inherently interpretable as indiacted by

Zablocki et al. [1]:

1. Deep learning models may potentially face the limitations that datasets contain numerous biases, are too general,

and are not precisely curated. This leads the system to learn from spurious correlation and overfit to certain

situations.

2. Self-driving systems have to solve incredibly complex problems. For humans, it may be simple, but it is very

difficult for a system to solve related tasks with different environments. The model that led to the prediction is

1

very chaotic, and we have to be able to navigate it to make it interpretable for humans.

Autonomous driving is a high-stake safety-critical application. From a societal point of view, performance guarantees

should be mandatory. However, there are many scenarios where self-driving models are not testable due to the im-

possibility of listing and evaluating every scenario that a model can encounter. A solution to this issue is to be able

to explain a model’s decision making process in making certain decisions in a given scenario and pinpoint the area of

error.

1.3 Solution

Our team created a solution to improve the interpretability of neural networks on autonomous cars by creating a

mechanism that helps interpret the neural network. This occured as the model was learning, such that the learning

process does not compromise prediction accuracy. This mechanism consisted of adding the L1 norm regularization

function to our model so that it penalized the neural network during training. The penalty prevented the neural network

from developing some chaotic data representation that may deliver high accuracy but diminishes interpretability. In

order to verify this, we executed a method of visualizing what features the model has learned based on how input data

is transformed by the neural network.

2

Chapter 2

Literature Survey

In this chapter, we discuss prior works done towards interpreting the decision-making logic used by neural networks

towards accomplishing a certain task. Within the domain of neural network interpretability, various benchmarks and

interpretability methods have been defined and are organized using the taxonomy defined by Zhang et al. [2]. Within

this taxonomy, interpretability techniques can be decomposed into three dimensions.

The first of these three dimensions specifies the type of engagements. This is further broken down into passive

and active. Passive engagement introduces interpretability after model training. Active engagement introduces inter-

pretability behavior during model training and actively influencing network or training process

The second dimension is type of explanation. This is decomposed into the following: examples, attribution, hidden

semantics, or rules.

The third dimension is the focus of the interpretability method. This is categorized as local, semi-local, or global.

Local focus seeks to explain network’s prediction based on individual sample. Semi-local focus attempts to explain a

group of similar inputs. Lastly, global focus strives to explain the network as a whole.

2.1 Current Methods

2.1.1 Passive Interpretability

As mentioned in the prior section, prior neural network interpretability methods consist of three different attributes.

Within the subdomain of passive interpretability, Woh and Liang [3] used a technique from statistics known as influ-

ence functions, which are capable of indicating how a change in one data instance can impact an overall estimator.

Within this particular work, Woh and Liang applied influence functions to trace the path taken by a training data in-

stance from the model’s prediction through the model and back to the original training instance. In order to determine

the influence of a particular data instance on a model, approximations of the original influence function were employed

due to the expensive nature of performing exact influence calculations on models with millions of parameters across all

training points. In the empirical evaluation of this approach on a Support Vector Machine with a Radial Basis Kernel

3

and the state-of-the-art Inception v3 convolutional neural network, Woh and Liang demonstrated how they were able

to understand model behavior, assess model vulnerability to adversarial training examples, debug models, and detect

dataset errors. However, since this model mainly focuses on the impact of individual training points towards a model’s

prediction output under the assumption of minimal model change, it does not possess the capability of explaining

global changes made to a network.

Bojarski et al. [4] produced a new method in the field of neural network interpretability of autonomous driving

called VisualBackProp. VisualBackProp visualises and determines which set of pixels of the input image made the

most contributions to the prediction made by the convoluted neural network(CNN). Due to the fact that this technique

only highlights regions of interest and does not change the network during training, we can categorize this as a passive

method. Its form of explanations is through providing highlighting visuals and works on a semi-local scale as it

operates on a set of pixels rather than individuals.

To test their method, the authors used NVIDIA’s neural network system for autonomous driving called PilotNet

to determine which elements of the road played the largest factor in influencing its steering direction highlighting the

object. Bojarski et al. were able to identify significant sets of pixels that are crucial in steering direction, highlighting

features such as cars, lane markers, parked cars, and the edge of roads. It was even able to discern that steering

direction doesn’t change with a crosswalk and did not highlight it. VisualBackProp successfully provides valuable

insights into the decision-making process of the end-to-end learning systems. When it comes to computation speed for

calculating masks, VisualBackProp took 2.0ms while another method, LRP, took 24.6ms. Bojarski et al’s method was

shown to be computationally competent as well as able to provide efficient and accurate visualizations. Although this

method is very fast and applicable to real time application, it does not provide any practical information for debugging

the original autonomous driving neural network.

2.1.2 Active Interpretability

Within the domain of active interpretability methods, many works have been done to introduce an element or inductive

bias or prior knowledge into neural network models. Wu et al. [5] created a new tree regularization method in order

to make deep models that can be closely modeled by decision trees with a few nodes, so that the deep models can be

human-simulatable. This tree regularization method takes form of a true-average-path-length penalty function, such

that the deep model would still maintain it’s accuracy and avoid complexity, which is defined as long average path

length. After evaluating this regularization method on a toy dataset, hospitalized septic patients dataset, HIV therapy

dataset, and English stop phonemes dataset, the authors discovered that tree regularized models were able to outper-

form conventional regularization methods such L1 norm and L2 norm in accuracy, while maintaining interpretability

through the use of decision tree proxies. Even with these exemplary results though, this tree regularization technique

limited only to input features that are interpretable and would not work on other types of input features, such as pixel

4

data from images.

Wu et al. [6] investigated activation function regularization using three regularization schemes, KL divergence,

Cos system, and smooth system, in order to influence a model’s activation functions to behave in accordance with

a certain target pattern. They evaluated each of these regularization techniques on Gaussian Mixture Models, Deep

Neural Networks with ReLU, tanh, and sigmoid activation functions, and other proposed models across three speech

tasks: the Wall Street Journal continuous speech recognition, eight IARPA Babel conversational telephone speech

tasks, and the U.S English broadcast news task. Through the use of activation function visualization and word error

rate as the metrics for comparison, the authors demonstrated that the proposed regularization schemes continually

yielded similar or better performance than the baseline models. Furthermore, they also showed that the KL divergence

regularization on the sigmoid activation function consistently yielded the lowest word error rate. While being able

to provide visualizations for convolutional neural networks used in speech recognition tasks, these target-pattern-

enforcing regularization techniques have not been verified on other neural network architectures such as recurrent

neural networks.

Du et al. [7] developed a framework called CREX, which influences deep neural networks to align their predictions

with evidence provided to it. To accomplish this, CREX regularizes the local explanations produced by a neural

network model to align with the domain-specific evidence provided that mentions the relevant features used in making

accurate predictions. In their evaluation of this framework, the authors created a two-dimensional convolutional neural

network, a unidirectional LSTM model, and a bidirectional LSTM model and measured the credibility and accuracy

of these deep neural networks on the test sets of a movie review dataset and product review dataset. To measure the

credibility of the local explanations produced by these models, the Du et al. used symmetric KL divergence between

the model’s local explanations and the ground-truth rationale. From their evaluation, the authors demonstrated that

the CREX framework allows neural network to generalize better to data instances beyond the test set, but does not

guarantee improved prediction accuracy unless the domain-specific knowledge supplied is of high-quality. However,

even without the domain-specific rationales, the CREX framework is still capable of behaving similarly to the L1 norm

regularization method, by influencing a model’s local explanations to be sparse.

Alvarez-Melis and Jaakkola [8] also designed an interpretability method within the subdomain of active inter-

pretability by creating a bottom-up interpretable model that maintain desirable characteristics of simple linear models

in terms of features and coefficients without limiting performance. They made a self-explaining neural network model

(SENN) that progressively generalizes linear classifiers to complex architecturally explicit models. Instead of looking

at single pixels on predictions their model aims to examine the higher level features because individual pixels tend to

be hard to analyze and often lead to chaotic explanations. Their results were judged on the criteria of explicitness/in-

telligibility, faithfulness, and stability.

To assess the relevancy of their model, Alvarez-Melis and Jaakkola observed the effects of removing features on

5

their model’s prediction. To test their method, they used the MNIST digit dataset, UCI datasets, and propublica’s

COMPAS datasets. The results showed that they were able to create complex models with robust explanations. To

measure the stability of their explanations, they used an explanation general model. Since the model is an end-to-end

differential with respects to concepts SENN was directly able to be be calculated in comparison to other methods.

2.1.3 Interpretability Hybrid

While most works on neural network interpretability fall into either the category of passive or active, Plumb et al. [9]

designed a hybrid approach known as EXPO. Within this method, a domain-independent regularization technique

is applied to black-box models that provides greater control over the quality of post-hoc explanations generated to

elucidate the logic used by the model. In order to assess this hybrid approach, the authors evaluated their EXPO-

regularized model on seven regression problems from the UCI collection, the MSD dataset, and the Support2 dataset

against the following metrics: model accuracy, point-fidelity, neighborhood-fidelity, and stability. In addition, a user

study was conducted by the authors to further qualitatively validate the quality of the post-hoc explanations produced

by EXPO. The results of the application of EXPO regularization to increase fidelity and stability show that this method

slightly improves model accuracy and greatly improves the quality of interpretability across each of the datasets.

However, this method does not provide a resolution to the issue of vulnerability of local explanations to adversarial

training examples and does not provide results when trained on data without semantic features.

Dong el al. [10] built a novel neural network architecture specifically within the domain of autonomous driving

known as a global soft attention model. This model consists of a feature extractor, a Transformer, and decision-

making logic generator. This novel model was trained on the Berkeley Deep Drive Object Induced Actions dataset to

include both the original video frames with driving actions and explanations. The global soft attention model was then

compared to other baseline models including the regional hard-attention model, the regional soft-attention model, and

the global no-attention model. In order to evaluate this architecture, the authors chose to use the overall F1 score and

training curve as the metrics. The results produced by the authors support the accuracy improvement brought by the

global soft attention model compared to the baselines due to its focus on global features, fusion of individual pieces

of information, and ability to capture long-range correlations in the input data. However, even with the introduction

of some form of set of explanations for the logic used by this architecture, the authors did not evaluate the quality of

these explanations.

2.2 Benchmarks

In current state-of-the-art neural networks, a commonly used framework to validate the reliability of these interpretabil-

ity methods is to detect the drop of accuracy as important features are removed from the input as shown by Samek et

al. [11]. Although this method is inexpensive, it comes with a significant drawback: when a set of features is removed

6

it changes the distribution of data creating a set of features with different probability distributions. This violates a

fundamental rule of machine learning: the training and data must come from the same distribution.

Hooker et al. [12] developed a way to evaluate the approximate accuracy of interpretability methods that esti-

mate feature importance in deep neural networks using a method they named ”ROAR”. Also known as Remove and

Retrain, ROAR removes the fraction of input features deemed to be the most important according to each estimator

and measures the change to the model accuracy upon retraining. The most accurate estimator will identify important

inputs based on whose removal causes the most damage to model performance relative to all other estimators. While

re-training data is a computationally expensive aspect of ROAR, it is a crucial aspect because, without re-training, we

don’t know whether the degradation in performance is caused by the introductions of objects outside of the original

training data or because the information was actually removed.

In their results, they found that the commonly-used base estimators, Gradients/Sensitivity Heatmaps, Integrated

Gradients, and Guided BackProp were worse or on par with a random assignment of importance. SmoothGrad was

more computationally intensive but did not improve upon a single estimate and were worse in some cases. However,

on a positive note, VarGrad and SmoothGrad-Squared improved the quality of these methods and greatly outperformed

a random guess.

7

Chapter 3

Methods

3.1 Dataset

To train the end-to-end self-driving model, the Udacity Self Driving Car Dataset 3-1: El Camino is used. This dataset

consists of 3 hours of driving data from the Udacity office in Mountain View to San Francisco and from San Francisco

back to the Mountain View Udacity office. The data was collected on a 2016 Lincoln MKZ with the following sensors:

2 Velodyne VLP-16 LiDARs, 1 Delphi radar, 3 Point Grey Blackfly cameras, an Xsens IMU, and an Electronic Control

Unit (ECU) sensor. With these sensors, the following information was collected: left camera view, center camera view,

right camera view, Velodyne VLP-16 LIDAR packets, steering angle, steering wheel torque, vehicle speed, and vehicle

position (i.e latitude, longitude, altitude).

This dataset is then preprocessed to only contain the center camera view with the corresponding steering wheel

angle. Furthermore, the dataset images in which the car is stationary either in the beginning or the end of dataset are

removed, resulting in a final dataset size of 210,000 data points. The first 190,000 of these points are used for training

the model and the last 20,000 are used as a validation set, to verify that the model is not overfitting to/memorizing the

training data labels. Further preprocessing is the applied to the center camera images, by resizing the input images

from 480x640 (height x width) to 125x349, converting the dataset image representation from 8-bit unsigned integer

to Tensorflow’s 32-bit floating-pointing number, and converting the images from RGB to grayscale. These images are

then fed into the self-driving model.

3.2 Self-Driving Model

The end-to-end driving model used in this work was developed by Bojarski et al. [4] called NetHVF. This model was

initially designed as a means of validating the VisualBackProp approach of extracting feature maps that accurately

represent the concepts learned by a vision-based neural network. However, in this project, the application of this

model is extended beyond its original scope and evaluated for its driving capabilities. The composition of this model

and additional details are provided on the following page.

8

Table 3.1: Architecture of NetHVF

NetHVF
Layers Layer Output Size Filter Size Stride Size
conv 32 x 123 x 349 3 x 3 1 x 1
conv 32 x 61 x 173 3 x 3 2 x 2
conv 48 x 59 x 171 3 x 3 1 x 1
conv 48 x 29 x 85 3 x 3 2 x 2
conv 64 x 27 x 83 3 x 3 1 x 1
conv 64 x 13 x 41 3 x 3 2 x 2
conv 96 x 11 x 39 3 x 3 1 x 1
conv 96 x 5 x 19 3 x 3 2 x 2
conv 128 x 3 x 17 3 x 3 1 x 1
conv 128 x 1 x 8 3 x 3 2 x 2
FC 1024 - -
FC 512 - -
FC 1 - -

Note the following details about the design of the NetHVF model. Each layer except for the last fc layer in

Table 3.1 is followed by ReLU activation. Each conv layer is preceded by a batch normalization layer. Let n be the

number of feature maps, h be the height and w be the width. For conv layers, layer output size is n × h × w. Filter size

and stride are given as h × w.

For further clarification, the conv layers specified are an abbreviation for convolutional layers, FC layers are an

abbreviation for fully-connected/feedforward layers, and ReLU is an abbreviation for rectified linear unit. Additional

details on the meanings of each of these terms as well as others will be provided in the following short paragraphs.

Convolutional layers employ convolution operations or strided dot products on their provided input, usually im-

ages. The use of convolutional layers in NetHVF is intended to extract features from images provided during training

that aid model in making an accurate decision. Specifically, the convolutional layers at the top of the diagrams shown

above learn low-level features such as edges, and the last few convolutional layers learn more high-level features, such

as lane markers.

Fully-connected layers work by passing the outputs of each of the artificial neurons in that layer to every neuron

in the next layer.

Rectified Linear Unit (ReLU) is a mathematical function that is expressed in the following form.

𝐴(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (3.1)

Additionally, the graphical representation of the ReLU is shown on the following page.

9

5 0 5

5

Figure 3.1: The graphical representation of the Rectified Linear Unit activation function is shown above.

This function is commonly used to add non-linearity to each of the layers in a neural network to aid it in learning

very complex decision boundaries.

Batch Normalization layers are normally placed between two adjacent hidden layers, or neural network layers

between the input and output layers, in order to reduce variance in the prior layer’s output. This layer does so by

taking the output of the previous neural network layer and normalizing it, such that the following layer sees the

normalizing output. This aids the model in reaching an optimal solution.

When combined together as shown in Table 3.1, the mechanics of the model can be described in the following

manner. A preprocessed image is passed an input into the model, in which it is first normalized before going through

convolutional layer for feature extraction. This process is repeated multiple times to extract higher-level features from

the input image while also making sure that the model can reach an optimal solution. Once input has passed through

the batch normalization and convolutional layers, the output of the last convolutional layer is flattened out as single-

dimensional vector before it is passed through the following fully-connected layers. This is where the model takes

in the learned feature and learns to make a steering-wheel angle decision based on the features it extracted from the

image. After going through these fully-connected layers, the steering wheel angle output is produced.

3.3 Regularization

In order to make this model more interpretable, our proposed method involves applying active model interpretability

in the form of the penalty function on the model’s optimization function, also known as regularization. The specific

form of regularization applied to this model is L1 Norm Regularization. For additional clarification, from a theoretical

point of view, the application of L0 Norm Regularization would be more ideal over L1 Norm Regularization, since the

former can guarantee sparsity. As shown by the graphical depictions of L0 and L1 Norm Regularization in Figure 3.2,

L0 Norm is axis-aligned, which means that the application of this regularization will constrain optimal solutions of

the model to be axis-aligned as well. However, since solving an optimization problem with L0 Norm Regularization

is NP hard, L1 Norm Regularization is used instead where optimal sparse solutions are more likely that non-sparse

solutions at the vertices of its graphical representation.

10

5 5

5

5

5 5

5

5

(a) (b)

Figure 3.2: The graphical representations of two regularization functions are shown above. The left-hand figure (a)
represents L1 Norm Regularization and the right-hand figure (b) represents L0 Norm Regularization

From a mathematical point of view, L1 Norm Regularization is shown as the following:

‖𝜃𝑖‖1 = 𝜆

𝑛∑︁
𝑖=1

|𝜃𝑖| (3.2)

This operation of this regularization term is as follows. For all values of 𝜃𝑖, which represent the parameters that the

model learns during training, take the summation of the absolute values of those terms. Semantically, this equates

to inducing sparsity in the parameters learned by a model, which means that some of these parameters become or

approach zero. Additionally, the impact of L1 Norm Regularization on the model can be varied via the lambda

parameter denoted in the equation above, in which higher values of lambda result in greater sparsity of the model’s

parameters and lower values of lambda result in less sparsity of the model’s parameters.

Within this particular project, L1 Norm Regularization was applied mainly to the convolutional layers of the

NetHVF model. The purpose of this is to induce sparsity in the features learned by the network, such that the reduction

in parameters would allow the model to be more selective in the features that it learns during training. Through this

process of selecting the features learned in each of the convolutional layers, the model may be able to filter out some

unnecessary noise that may be irrelevant to autonomous driving and learn identifiable patterns. This in turn may make

the features learned by the model more interpretable for humans.

3.3.1 Test Environment

To evaluate our model, we decided to use the open-source driving simulator CARLA. This simulator has a diverse

set of driving environments with a flexible API for greater ease in adding different vehicle sensors. In addition,

CARLA has a comprehensive driving benchmark called Corl2017. This benchmark test evaluates the autonomous

driving model on two towns, Town01 and Town02, with 24 different experiments run on both towns. Within these

experiments, the autonomous driving model is evaluated for being able to drive straight, make a single turn, go to an

arbitrary position, and go to an arbitrary position with random moving objects in the environment. For each of these

11

tasks, the weather conditions of the simulation environment are changed to the following: clear noon, heavy rain noon,

clear sunset, after rain noon, cloudy after rain, and soft rain sunset. In total, this equates to the autonomous driving

model being evaluated on 600 different simulations for a total of 39 hours. The first 24 hours are evaluated on Town01

and the next 15 hours are evaluated on Town02. These times may vary based on the performance of the model in the

benchmark.

For this project, only the Town02 simulations are run, since Town01 is used in the training dataset that CARLA

provides and not utilized to train the baseline and regularized NetHVF models.

3.3.2 Data Collection

During the benchmark test, the number of human interventions, autonomous driving time, and images viewed by the

models is collected. For the number of the human interventions, this quantity is incremented based on observations

made when the simulated car with the loaded model drifted out of a lane or crashed into a pole or building during each

of the simulation episodes. For the autonomous driving time, this is measured by taking the total time during which

the simulated car with the loaded model drives continuously until the car is no longer able navigate after crashing or

for the duration of the simulation. Lastly, for the images viewed by the models, these images are collected after every

50 frames.

12

Chapter 4

Evaluation

4.1 Experimental Design

4.2 Model Training

After collecting the required data and building the self-driving model using the open-source Keras Python Deep Learn-

ing API with Tensorflow as the API’s backend framework, various model configurations were trained. One set of model

configurations consisted of the baseline model without regularization and the second set used L1 Norm regularization.

The following hyperparameters were modified for both of these types of models: batch size and model learning rate.

Furthermore, the strength of L1 Norm regularization applied to our InterpNet model was also varied. The following

list illustrates the specific parameters that were evaluated.

• Batch Size: 32, 64

• Learning Rate: 1e-2, 5e-3, 1e-3, 5e-4, 1e-4

• L1 Norm Strength: 1e-3, 5e-3, 1e-2

All the model configurations were trained to minimize the mean squared error between their predicted and ground-

truth steering wheel angles using mini-batch stochastic gradient descent. This optimization algorithms takes batches

of data with the specified batch size and randomizes either all the data points in all the batches or only the batch order.

For this project, only the order of the batches were randomized, since autonomous driving relies on concepts and ideas

from reinforcement learning. Specifically, since reinforcement learning does not make the assumption that the data

points in the relevant data distribution are independent, this means that there is some correlation between some of the

data points. Thus, in order to ensure that each model configuration learn this correlation, the order of the data points

in each of the batches of training data was fixed.

In terms of hardware, the training of all the models was divided between Santa Clara University’s WAVE High

Performance Computer (HPC) and Data Mining Lab12 system (DM12). On the WAVE HPC, model training was done

on an Nvidia Tesla V100 GPU with 32 GB of RAM, whereas, on DM12 system, training was done on an Nvidia

13

TITAN XP GPU with 12 GB of RAM. Our choices of batch size in this project were restricted by the RAM capacity

of the GPU hardware used.

4.2.1 Evaluation Metrics

To evaluate the model, the effectiveness and interpretability of the baseline and InterpNet model were examined.

For model effectiveness, the autonomy of the models was measured using the number of human interventions

that was recorded during the 10 hour benchmark test. The precise formulation of this metric, as stated by Bo-

jarski et al. [13], is provided below.

𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑦 = 1−
(︂
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠× 6 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 [𝑠𝑒𝑐𝑜𝑛𝑑𝑠]

)︂
(4.1)

For further clarification, the autonomy of the model was calculated indirectly by measuring how non-autonomous

the model is. This non-autonomy portion of the metric was calculated by taking the number of human interventions

multiplied by 6 seconds over the total elapsed driving time. The number of human interventions was multiplied by 6

seconds because it takes 6 seconds on average for a person to correct a driving error.

For model interpretability, the compressibility and randomness of the features learned by both models were used

as indicated by Samek et al. [11]. To extract these learned features, the VisualBackProp approach [4] was used to

extract the learned features of both models on the image collected during the benchmark test. After completing this

extraction process, the interpretability measurements were performed.

First, the compressibility of the features were calculated using the Principal Component Analysis (PCA) machine

learning algorithms. This algorithm is a commonly used dimensionality reduction technique to linearly transform a

given set of features into another feature space of reduced size to maximize the variance captured from the original

set of features. In other words, PCA takes an input and tries to reduce the size of this input without losing too much

of the information contained within the original features. Within this project, the scikit-learn implementation of PCA

was used and configured such that the algorithm would find the reduced size of the transformed features that capture

90% of the variance within the original features.

Second, the randomness of the features was calculated using a concept from information theory called entropy,

which measures how much disorder or randomness a provided input has. The range of randomness for entropy ranges

between 0 and 1 inclusive, in which 0 indicates no randomness and 1 indicates complete randomness. For this project,

the entropy function provided by the scikit-image library was used.

14

4.3 Experimental Results

4.3.1 Trained Models

As prior described, various model configurations were tested for the baseline and InterpNet models. For the baseline

model, a total of 10 model configurations were evaluated. For the InterpNet model, a total of 30 model configura-

tions were evaluated. After training these models until convergence, the optimal solution for each configuration was

determined based on the epoch at which minimal validation loss was achieved. After comparing the optimal solutions

for all the baseline models, it was determined that the optimal baseline model was that trained for 52 epochs with

batch size of 32 and learning rate of 5e-4. This model achieved a validation loss of 0.00255298. After comparing the

optimal solutions for all the InterpNet models, it was determined that the optimal InterpNet model was that trained for

260 epochs with a batch size of 32, learning rate of 1e-4, and L1 Norm regularization strength of 1e-3. This model

achieved a validation loss of 0.00200723. The training plots for optimal baseline and InterpNet model are shown in

the following figures.

0 20 40 60 80 100
Epochs

0.01

0.02

0.03

0.04

Lo
ss

Model Loss vs. Epochs
training loss
validation loss

0 50 100 150 200 250 300 350 400
Epochs

0

2

4

6

8

10

12

14

16
Lo

ss
Model Loss vs. Epochs

training loss
validation loss

(a) (b)

Figure 4.1: Training plots of the optimal models with training and validation Loss are shown above. The left-hand
figure (a) depicts the training plot of the optimal baseline model. The right-hand figure (b) depicts the training plot of
the optimal InterpNet model.

4.3.2 Autonomy

Based on the data collected on the number of human interventions from the Corl2017 benchmark tests for the baseline

model and InterpNet, the autonomy results are shown in Table 4.1 on the following page.

15

Table 4.1: CARLA Autonomy Measurement

Baseline InterpNet
Number of Interventions 618 598
Autonomous Driving Time (seconds) 2870 3090
Autonomy 43% 46%

As shown in Table 4.1, the baseline model drove autonomously for a smaller amount of time compared to the

InterpNet model and required more human interventions as well. In total, this equated to the InterpNet model being

more autonomous than the baseline model by 3%.

4.3.3 Interpretability

Based on the data collected on the images viewed by the baseline and InterpNet models, histograms were created to

describe the compressibility and randomness of the features learned by both models were extracted.

Feature Compressibility

The histograms for measuring the compressibility of the features learned by the baseline model and InterpNet are

shown below in Figure 4.2. For clarification, each of the bins in these two histograms represents the number of images

requiring a certain number of Principal Components in order to hold 90% of the information from the original features.

As the number of Principal Components required increases, this indicates that the features are less compressible.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
PCA Components

0

500

1000

1500

2000

2500

Im
ag

e
Co

un
t

Baseline Feature Map Compressibility

0 1 2 3 4 5 6 7 8 9 10 11 12
PCA Components

0

2000

4000

6000

8000

10000

12000

Im
ag

e
Co

un
t

InterpNet Feature Map Compressibility

(a) (b)

Figure 4.2: Compressibility of the feature maps for the optimal models is shown above. The left-hand figure (a) depicts
the number of PCA components required to compress the feature maps extracted from the optimal baseline model.
The right-hand figure (b) depicts the number of PCA components required to compress feature maps extracted from
the optimal InterpNet model.

From these histograms 4.2, it is observed that the distribution of the compressibility of the features learned by

the baseline model closely resembles a Gaussian distribution with a greater amount of variation compared to the

distribution of the compressibility of the features learned by InterpNet. Additionally, the peak compressibility of the

learned features of the baseline model requires 7 Principal Components compared to the 3 Principal Components

16

always for learned features of InterpNet. This indicates that the features learned by InterpNet are generally more

compressible than those learned by the baseline model.

Feature Randomness

The histograms for measuring the randomness of the features learned by the baseline model and InterpNet are shown

below in Figure 4.3. For clarification, each of the bins in these two histograms contains images whose entropy values

fall within the an entropy range specified by the tick marks to the left and right side of the bin. For example, the

rightmost bin in the feature randomness graph for the baseline mode contains images whose entropy values are between

0.9 and 1.0. As the entropy range values, this indicates that the features are more random.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Entropy

0

1000

2000

3000

4000

5000

6000

Im
ag

e
Co

un
t

Baseline Feature Map Entropy

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Entropy

0

2000

4000

6000

8000

10000

12000

Im
ag

e
Co

un
t

InterpNet Feature Map Entropy

(a) (b)

Figure 4.3: Entropy/Randomness of the feature maps for the optimal models is shown above. The left-hand figure (a)
depicts the entropy of the feature maps extracted from the optimal baseline model. The right-hand figure (b) depicts
the entropy of the feature maps extracted from the optimal InterpNet model.

From these histograms 4.3, a similar trend for the histograms is observed as from the histograms of the features

learned by both model. Specifically, the peak randomness of the learned features of the baseline model falls within the

range of 0.9 and 1.0 compared to 0.5 and 0.6 range for learned features of InterpNet. This indicates that the features

learned by InterpNet are generally less random than those learned by the baseline model. However, the distribution

for the randomness of the feature learned by the baseline model are skewed to the right/maximum entropy instead of

closely resembling a Gaussian distribution. Nonethess, this still indicates that the features learned by InterpNet are

generally less random than those learned by the baseline model.

17

Chapter 5

Future Work

5.1 Improving the Dataset

One of the first key points regarding improvements made to this project revolves around finding a more suitable dataset.

Due to complexity of the autonomous driving task, the dataset fed into the model should reflect similar complexity in

terms of environment and actions taken. Within the dataset used for this project, the Udacity Self-Driving Dataset 3-1:

El Camino, it was observed that this dataset was biased towards highway driving on a sunny day during the afternoon.

Additionally, the center camera provided by the dataset was not properly centered, and the driving capabilities of the

NetHVF model on the Udacity dataset was not demonstrated in the original paper [4] In total, these issues with the

dataset would influence the model’s ability to generalize to new environments and accurately respond to input data

that is not properly represented within the training dataset distribution. To resolve this issue, we recommend using a

different dataset, such as that described by Hecker et al. [14], which consists of more driving data in diverse driving

environments. The use of this dataset for this project may prove more beneficial towards having a more competent

baseline model that can properly demonstrate the impact our regularization on the model.

5.2 Improving the Self-Driving Model

Generally speaking, some straightforward modifications made towards improving the self-driving model would focus

on more testing. With the current parameters specified in the methods section, further testing in this regards would

include testing more values for L1 Norm Regularization strength, model learning rate, and batch size in order to cover

a greater scope of potential optimal solutions for the baseline model and Interpnet. More involved improvements to

InterpNet are specified in the following subsections.

5.2.1 Cost Function

In terms of improving the self-driving model, one approach to solving this issue would be from the point of view of

objective/cost functions. Specifically, instead of giving the NetHVF model the task of minimizing the mean squared

18

error between the predicted and ground-truth steering wheel angle output, a better cost function could be used. From

the literature on self-driving models by Tampuu et al. [15], it has been stated by that giving self-driving models to

the task of minimizing the mean absolute error between the predicted and ground-truth steering wheel angle results in

better driving capability of the model.

5.2.2 Model Input

From the point of view of the model’s input, an improvement could be made by adding in additional camera input

instead of just the center camera image. As pointed out by Hecker et al. [14], the development of a model that can take

inputs from cameras positioned at multiple angles to take in a 360 degree view of the vehicle results in better model

performance. Additionally, LIDAR sensors could be added as potential model input; however, the main hesitancy with

the addition of LIDAR is the significant increase in cost for autonomous vehicles. Therefore, it would be prudent to

include combinations of inputs to a self-driving model that avoid using LIDAR. very chaotic, and we have to be able to

navigate it to make it interpretable for humans. Autonomous driving is a high-stake safety-critical application. From

a societal point of view, performance guarantees should be mandatory. However, there are many scenarios where

self-driving models are not testable due to the im- possibility of listing and evaluating every scenario that a model

can encounter. A solution to this issue is to be able to explain a model’s decision making process in making certain

decisions in a given scenario and pinpoint the area of error. 1.3 Solution Our team created a solution to improve

the interpretability of neural networks on autonomous cars by creating a mechanism that helps interpret the neural

network. This occured as the model was learning, such that the learning process does not compromise prediction

accuracy. This mechanism consisted of adding the L1 norm regularization function to our model so that it penalized

the neural network during training. The penalty prevented the neural network from developing some chaotic data

representation that may deliver high accuracy but diminishes interpretability. In order to verify this, we executed

a method of visualizing what features the model has learned based on how input data is transformed by the neural

network. 2

5.2.3 Model Output

With regards to the output produced by the model, an improvement could be made in terms of transitioning from

steering wheel angle to waypoint prediction. In other words, the model would be plotting its proposed location for

a series of consecutive time steps, such as for the next 10 image frames. This would allow for the transformation

of the model’s output from low-level to high-level that would be easier to interpret and encode more information.

For example, as described in by Tampuu et al. [15], work done towards waypoint prediction for autonomous driving

contains information such as steering wheel angle and speed, which can be extracted using a controller module. While

the inclusion of speed output to the original model may seem simpler, the inclusion of an additional output would

19

place constraints on the regularization functions we seek to apply, which will be described further in the next section.

Therefore, in order to preserve a single output from the model, it would be beneficial to outputting vehicle waypoints.

5.3 Additional Regularization

While the use of L1 Norm Regularization improved the performance of the NetHVF model, the use of additional

regularization terms may result in additional improvements in model effectiveness and interpretability.

5.3.1 Mutual Information

One such improvement would include the use of regularizing for mutual information along with L1 Norm in the con-

volutional/feature extraction layers of the NetHVF model. For clarification, the mutual information measure indicates

how much information is shared between two variables. For a self-driving model, the penalty/regularization function

applied would constrain the model’s optimal parameters, such that each of the features learned during training are

sparse and independent between and across layers. Conceptually, this would encourage the model the learned features

that are distinct and may be interpretable given the sparsity constraint added.

5.3.2 Tree Regularization

Although our main constraints to the model have targeted the feature extraction layers, regularization can also be

applied to the dense/decision-making layers as well to promote interpretability. This would be done using the tree

regularization term described by Wu et. al. [5]. This regularization terms was specifically designed to allow developers

and consumers to trace through the decision-making process of time-series models and multi-layer perceptrons using

the decision tree machine learning model. Since this type of machine learning model is inherently interpretable, as

described by Molnar [16], the use of tree regularization and distillation of the model’s dense layers into a decision tree

may allow for consistent or improved accuracy and greater interpretability.

20

Chapter 6

Societal Issues

6.1 Ethical

Today, cars are able to perform complex tasks such as braking, steering, and object detection, without the assistance

of the driver. Big tech companies are aiming to deploy fully autonomous vehicles in the United States in the next

two to three years. The discussion of self driving vehicles can be tackled from many perspectives. On one hand, one

can make the argument that self driving car is gradually improving and function better than human drivers. On the

other hand, many bring up the concern of unsolvable decision making problems like the trolley problem. As software

is now playing a key role in modern vehicles, software engineers must be proactive in ensuring that their solutions

and products address ethical and social concerns that are prevalent in the domain of modern day vehicles. We asked

ourselves:

∙ If needed to choose between two bad outcomes, how do we choose what the model values more?

∙ Should there be a governing entity that tells us what to prioritize?

∙ Who is to blame if something goes wrong? The driver, company, or engineer?

This dilemma is similar to the trolley problem. The solution to the trolley problem is extremely limited and all answers

can be perceived as ethically bad or wrong. A typical approach in answering this problem is by analyzing it through

various ethical theories such as utilitarianism or deontological ethics. For example, Utilitarianism stressed the greater

good meaning that the ethically correct answer according to that idea of thinking would be to choose the least amount

of casualties hence maximising utility. Depending on the ethical framework, different theories can be used to justify a

decision. These conclusions are only drawn by humans, but how do these cars come to their conclusion? Should we

be implementing moral principles into our algorithms? Who chooses what is morally correct?

21

6.2 Trust

While self autonomous vehicles promise to provide numerous benefits, one key barrier is the lack of trust that the

public has with this technology. The complex models of Deep Neural Networks make it hard to understand and

reason the predictions. Due to the complexity, there is a lack of trust with consumers using self-driving technology.

Consumers may feel more at ease with a well-understood model. Especially in the domain of vehicles, understanding

what the model is interpreting as significant could help engineers understand what modifications they may need to

make on the model to improve its capabilities.

To give consumers more trust in their self-driving technology, companies can opt to be transparent about their

process (i.e data collection, model decision, and training results) as well as having transparency in the code they

release. Datasets fundamentally influence a model’s behavior. Making sure that the dataset is diverse, unbiased, and

relevant will ensure good results [17]. If companies are more transparent about their sourcing and training process,

consumers will feel more inclined to use their technology since it is publicly available and easily verifiable for anyone

who wishes to verify the legitimacy of the model as the public easily has access to attempt to recreate it and voice their

concerns for improvement.

A note of concern that in doing this will most likely not be feasible in a predominately capitalist society as it

will discourage innovation in public companies when they forced to reveal their company secrets. Another way to

ensure that a model works is to create an interpretable model, a model that is easier for humans to understand. Some

interpretable methods are to use regularizers, decision trees, or feature maps. Regularizers on existing models zeroes

out some parameters inducing sparsity. This in turn makes the model more generalizable. A decision tree allows

for humans to easily follow the logical parameters or rules that the model sets. It also shows how the model will

reach its decision. Feature maps highlight the area that the model deems as significance. Gaining inspectable internal

representation on a model plays a crucial role in letting companies and the public trust the model more.

6.3 Safety

According to the World Health Organization, approximately 1.3 million people die each year as a result of road traffic

crashes. Self driving vehicles have the potential to reduce a number of those deaths by eliminating human errors.

Improving safety is primary objective of autonomous vehicles. In the domain of self driving cars, there are pre-market

safety processes that involve measuring certain kinds of safety violations, such as near misses, pedestrian detection,

correct traffic light and sign recognition, etc. Post market reporting as well as audits and updates can help engineers

improve on their model and make sure its performance stays up to par. It also allows for companies to detect a shift

in errors which may suggest that the data is no longer like the training data. When taking proper safety protocols,

self driving vehicles can shift from being an alien software that is difficult to understand and trust to a more safe and

22

welcoming vehicles with statistics to back up the claim.

With interpretability one can figure out why a prediction was made by a model. In some cases, knowing the why

is not necessary but in a high risk field such as self-autonomous vehicles, the why can help one know more about the

problem, the data, and the reason why the model might fail.

6.4 Lifelong Learning

As the field of Deep Learning becomes more integrated into the daily life of society, the need for engineers to un-

derstand how a model works and being able to provide an explanation for its decision process becomes increasingly

important. In the process of this project, we were able to educate ourselves on the state-of-the -art technology of

self driving models and interpretability methods. In addition, we learned how to develop an end-to-end deep learn-

ing pipeline and experience the research of process of thinking about and improving upon shortcomings in current

research work. Especially since self driving technology and other fields of Deep Learning are still currently being

developed, there is still ample amount of opportunity to explore and consider fundamental aspects of these models. As

this technology continues to develop, our goal as researchers is to not only keep up with new developments, but also

play a significant role in this innovation. And playing a significant role in innovating deep learning and self-driving

technology requires that we continue to apply the skills we have learned, including finding research problems, devel-

oping a comprehensive understanding of past work, deeply thinking about the connection between these works and

the problem, and designing an experiment to evaluate novel solutions that we generate.

23

Chapter 7

Conclusion

7.1 What We Have Learned

In conclusion, our evaluation demonstrated the potential of Interpnet as an improvement upon the original baseline

model given our results for the model’s autonomy and feature randomness and compressibility. However, another

important observation that we made was the relatively static nature of the feature maps we extracted from Interpnet,

which indicates that our model may be generalizing a little too much or overfitting to the validation data. When

looking back at the training curves for the InterpNet model, we did notice a higher training loss compared to that of

the baseline model. From this, we learned that simply looking for the smallest validation loss may not be the best

evaluation metric for optimal models. Instead, it may be better to also observe how far apart the training loss and

validation losses are. Additionally, we learned the importance of making sure the validation data used for choosing the

optimal model is well representative of the training data in spite of what the literature may specify. In particular, while

the authors of the NetHVF model specified that the last 20,000 images of the Udacity dataset be used for validation,

this may not have been an adequate representation of human driving for the InterpNet model to perform equal well at

in conjunction with the training dataset.

Aside from the technical aspects related to the impact of dataset splits on the model, we learned much about

the theoretical aspects involved in implementing a self-driving model. Especially since autonomous driving is a

reinforcement learning problem that uses deep learning, we could not rely on conventional deep learning knowledge.

In particular, this meant not assuming that our each driving image in our dataset was independent, since each segment

of driving data has correlations that need to be learned by the model. Additionally, we could not use a test set of images

and corresponding steering wheel angles to evaluate the effectivness of the baseline and InterpNet models, since this

method would not properly demonstrate driving capability. This warranted the need for a simulator. However, we also

learned that the use of any simulator with non-realistic image frames was not appropriate. As we observed, a simulator

whose environment is not represented in the model’s training data provides an additional barrier for the model. This

occurred, at least in our case, since the baseline and InterpNet models learned how to driving the real-world and were

24

therefore not well equipped to drive in a simulated/virtual world.

Along with the theoretical lessons learned from this project, we also learned important lessons related to developing

an input pipeline for loading data into the model and configuring the CARLA simulator to load the optimal baseline and

InterpNet model. With regards to model input, we learned how to develop an input pipeline for a model from scratch

using low-level Tensorflow functions, since the high-level data-loading functions in Tensorflow were not particular

adapted for our dataset. In terms of the CARLA simulator, we learned how to setup a virtual environment with the

right versions of various Python modules in order to run our code.

From a more general point of view of conducting research, we learned how important it is to choose problems

whose computational resources are available. Especially since self-driving requires a large amount of data to prop-

erly train on, the lack of dedicated supercomputer for this project hindered investigation into whether our proposed

modifications would truly improve interpretability and effectiveness for state-of-the-art autonomous driving models.

7.2 Why it is Important

Our project has value as it tackles the long-standing issue of gaining insight in how neural networks think in mission-

critical applications, such as autonomous driving. Generally speaking, as the autonomous driving feature becomes

more prominent in more and more vehicles, it is important for engineers to be able to debug erroneous models quickly

in order to prevent further loss of life.

Within the scope of this project, the impact of applying sparsity towards the features a model learns is important not

only for interpretability but also potentially for effectiveness. Therefore, our work may suggest another area of interest

for the autonomous driving research community to consider the theoretical aspects involved in robust reinforcement

learning rather than primarily focusing on collecting larger and larger datasets to improve model generalizability.

Additionally, our work promotes the combination of different interpretability approaches for complete insight into

image-based deep learning models in general. Based on the analyzed literature, much work on interpreting image-

based deep learning models focuses solely on showing the feature maps learned by the feature extraction layers of a

model. However, as expressed in future works chapter 5, tree regularization also has the potential to be applied to

the NetHVF model to understand the decision-making layers of the model as well, given how InterpNet was able to

produce interpretable feature maps.

25

Appendix A

Additional Model Training Plots

The following appendix contains additional plots of the training and validation losses of the other model configurations
tested in pursuit of the optimal baseline and InterpNet Models.

A.1 Baseline Model Training Plots
This section contains the training plots for the baseline models. Below each graph, the learning rate and batch size
hyperparameters that were used to train the corresponding model are specified.

0 20 40 60 80 100
Epochs

0.000

0.002

0.004

0.006

0.008

0.010

Lo
ss

Model Loss vs. Epochs
training loss
validation loss

0 20 40 60 80 100
Epochs

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Lo
ss

Model Loss vs. Epochs
training loss
validation loss

(Learning Rate: 1e-2, Batch Size: 32) (Learning Rate: 1e-2, Batch Size: 64)

0 20 40 60 80 100
Epochs

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Lo
ss

Model Loss vs. Epochs
training loss
validation loss

0 20 40 60 80 100
Epochs

0.000

0.005

0.010

0.015

0.020

0.025

Lo
ss

Model Loss vs. Epochs
training loss
validation loss

(Learning Rate: 5e-3, Batch Size: 32) (Learning Rate: 5e-3, Batch Size: 64)

Figure A.1: Four additional baseline training plots are shown above for learning rates of 1e-2 and 5e-3 on batch sizes
32 and 64.

26

A.2 InterpNet Model Training Plots
This section contains the training plots for the InterpNet models. Below each graph, the L1 regularization strength
(abbreviated L1 Reg), learning rate and batch size hyperparameters that were used to train the corresponding model
are specified.

0 25 50 75 100 125 150 175 200
Epochs

0

2

4

6

8

10

12

14

Lo
ss

Model Loss vs. Epochs
training loss
validation loss

0 25 50 75 100 125 150 175 200
Epochs

0

2

4

6

8

10

12

14

Lo
ss

Model Loss vs. Epochs
training loss
validation loss

(L1 Reg: 1e-3, Learning Rate: 5e-4, Batch Size: 32) (L1 Reg: 1e-3, Learning Rate: 5e-4, Batch Size: 64)

0 25 50 75 100 125 150 175 200
Epochs

0

1

2

3

4

5

Lo
ss

Model Loss vs. Epochs
training loss
validation loss

0 25 50 75 100 125 150 175 200
Epochs

0

2

4

6

8

Lo
ss

Model Loss vs. Epochs
training loss
validation loss

(L1 Reg: 1e-3, Learning Rate: 1e-2, Batch Size: 32) (L1 Reg: 1e-3, Learning Rate: 1e-2, Batch Size: 64)

0 25 50 75 100 125 150 175 200
Epochs

0

10

20

30

40

50

60

Lo
ss

Model Loss vs. Epochs
training loss
validation loss

0 25 50 75 100 125 150 175 200
Epochs

0

10

20

30

40

50

60

70

Lo
ss

Model Loss vs. Epochs
training loss
validation loss

(L1 Reg: 5e-3, Learning Rate: 5e-4, Batch Size: 32) (L1 Reg: 5e-3, Learning Rate: 5e-4, Batch Size: 64)

Figure A.2: Six additional InterpNet model training plots are shown above for l1 regularization strengths of 1e-3 and
5e-2, learning rates of 5e-4 and 1e-4, and batch sizes of 32 and 64.

27

Bibliography

[1] É. Zablocki, H. Ben-younes, P. Pérez, and M. Cord, “Explainability of vision-based autonomous driving systems:
Review and challenges,” ArXiv, vol. abs/2101.05307, 2021.

[2] Y. Zhang, P. Tiňo, A. Leonardis, and K. Tang, “A survey on neural network interpretability,” IEEE Transactions
on Emerging Topics in Computational Intelligence, vol. 5, pp. 726–742, 2021.

[3] P. W. Koh and P. Liang, “Understanding black-box predictions via influence functions,” in Proceedings of the
34th International Conference on Machine Learning (D. Precup and Y. W. Teh, eds.), vol. 70 of Proceedings of
Machine Learning Research, pp. 1885–1894, PMLR, 06–11 Aug 2017.

[4] M. Bojarski, A. Choromanska, K. Choromanski, B. Firner, L. J. Ackel, U. Muller, P. Yeres, and K. Zieba,
“Visualbackprop: Efficient visualization of cnns for autonomous driving,” pp. 4701–4708, 2018.

[5] M. Wu, M. Hughes, S. Parbhoo, M. Zazzi, V. Roth, and F. Doshi-Velez, “Beyond sparsity: Tree regularization
of deep models for interpretability,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, Apr.
2018.

[6] C. Wu, M. J. F. Gales, A. Ragni, P. Karanasou, and K. C. Sim, “Improving interpretability and regularization in
deep learning,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 26, no. 2, pp. 256–
265, 2018.

[7] M. Du, N. Liu, F. Yang, and X. Hu, “Learning credible deep neural networks with rationale regularization,” in
2019 IEEE International Conference on Data Mining (ICDM), pp. 150–159, 2019.

[8] D. Alvarez Melis and T. Jaakkola, “Towards robust interpretability with self-explaining neural networks,” in Ad-
vances in Neural Information Processing Systems (S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, eds.), vol. 31, Curran Associates, Inc., 2018.

[9] G. Plumb, M. Al-Shedivat, A. A. Cabrera, A. Perer, E. Xing, and A. Talwalkar, “Regularizing black-box models
for improved interpretability,” in Advances in Neural Information Processing Systems (H. Larochelle, M. Ran-
zato, R. Hadsell, M. F. Balcan, and H. Lin, eds.), vol. 33, pp. 10526–10536, Curran Associates, Inc., 2020.

[10] J. Dong, S. Chen, S. Zong, T. Chen, and S. Labi, “Image transformer for explainable autonomous driving system,”
in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 2732–2737, 2021.

[11] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K.-R. Müller, “Evaluating the visualization of what
a deep neural network has learned,” IEEE Transactions on Neural Networks and Learning Systems, vol. 28,
pp. 2660–2673, 11 2017.

[12] S. Hooker, D. Erhan, P.-J. Kindermans, and B. Kim, “A benchmark for interpretability methods in deep neural
networks,” pp. 9737–9748, 2019.

[13] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,
J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-driving cars,” 2016.

[14] S. Hecker, D. Dai, and L. V. Gool, “End-to-end learning of driving models with surround-view cameras and route
planners,” 2018.

28

[15] A. Tampuu, T. Matiisen, M. Semikin, D. Fishman, and N. Muhammad, “A survey of end-to-end driving: Archi-
tectures and training methods,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, pp. 1364–
1384, apr 2022.

[16] C. Molnar, Interpretable Machine Learning. 2 ed., 2022.

[17] T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach, H. Daumé, and K. Crawford, “Datasheets
for datasets,” 2018.

29

Neural_Network_Interpretability_Autonomous_D
riving_Neural_Networks_Publication
Final Audit Report 2022-06-09

Created: 2022-06-09

By: Darcy Yaley (dyaley@scu.edu)

Status: Signed

Transaction ID: CBJCHBCAABAAftWI1pQz_V68LsQMPkUbYvoJU8o6fMFj

"Neural_Network_Interpretability_Autonomous_Driving_Neural_N
etworks_Publication" History

Document created by Darcy Yaley (dyaley@scu.edu)
2022-06-09 - 10:36:56 PM GMT

Document emailed to David C. Anastasiu (danastasiu@scu.edu) for signature
2022-06-09 - 10:37:47 PM GMT

Email viewed by David C. Anastasiu (danastasiu@scu.edu)
2022-06-09 - 10:37:52 PM GMT

Document e-signed by David C. Anastasiu (danastasiu@scu.edu)
Signature Date: 2022-06-09 - 10:38:14 PM GMT - Time Source: server

Document emailed to N. Ling (nling@scu.edu) for signature
2022-06-09 - 10:38:15 PM GMT

Email viewed by N. Ling (nling@scu.edu)
2022-06-09 - 11:31:59 PM GMT

Document e-signed by N. Ling (nling@scu.edu)
Signature Date: 2022-06-09 - 11:32:17 PM GMT - Time Source: server

Agreement completed.
2022-06-09 - 11:32:17 PM GMT

		2022-06-09T16:32:19-0700
	Agreement certified by Adobe Acrobat Sign

