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ABSTRACT

A WiFi Access Point (AP) is an important technology that switches data pack-
ets to transmit and receive wireless signals to create WiFi. These Access Points
(AP) can have powerful processors, but they are idle most of the time [1]. Instead,
these idle processing resources could be redirected to run containers for low-latency
applications. However, it is essential to ensure that the AP does not su↵er per-
formance issues as a result of running containers. The main function of APs is to
switch packets, and this function must be preserved while containers are running.
In this thesis, we propose a method, NetCon, to measure packet switching delay
and allow containers to run on APs only when there are available resources and
low tra�c. This would allow APs to be leveraged as edge devices for low-latency
applications while also maintaining their primary function as packet switching de-
vices by ensuring that packet switching delay is not adversely impacted by running
containers.
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Chapter 1

Introduction

This chapter provides an introduction to the primary motivations behind this thesis

and the problem that it is intended to solve, the related work in this topic and its

limitations, and a description of the proposed solution.

1.1 Motivation and Background

WiFi Access Points (AP) are wireless devices that create a wireless local area net-

work (WLAN) [2]. They are connected to a router that switches data packets to

transmit and receive a wireless signal to create WiFi. However, this rarely requires

all of their processing resources, and, outside of high-tra�c times, the device is

mostly left idle [2]. Since there is significant idle time on these devices, it is possi-

ble to utilize them to run containers for applications that require low latency. AP

represent a significantly underutilized edge device for edge computing.

AP and network switches primarily perform packet switching. Packet switching

delay is an important performance metric for AP and other network switching

appliances, but it is not necessarily relevant to many other edge devices that might

be running containers [3]. Packet switching, however, rarely requires all of an AP’s

processing resources, and there is idle time that could be filled with additional

functionality [3]. In that time, it could be beneficial to run containers on the AP

in order to decrease latency from the cloud, which could be particularly important
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for applications that require consistent low latency. However, packet switching

remains the essential operation of APs and network switches, and any additional

functionality cannot be allowed to jeopardize the primary function of these devices

[3]. Therefore, it may beneficial to explicitly take packet switching performance

into account when determining resource allocation to containers running on APs.

1.2 Related Work

This section provides an introduction to current works on containers, container

migration, resource allocation for containers, and extended Berkely Packet Filtering

(eBPF).

1.2.1 Containers

A container is a standard unit of software that packages up code and all its depen-

dencies so the application runs quickly and reliably from one computing environment

to another [4]. A container helps solve the issue of software reliability when trying

to move from one environment to another. Containers use a form of Operating

System (OS) virtualization where the features of the OS can isolate processes and

manage the amount of Central Processing Units (CPUs), memory, and disk that

the processes need access to [4]. Containers run in isolated user environments which

means that containers require less resources to maintain, are more e�cient, faster

to start up, are portable, and have less overhead [4].

2
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1.2.2 Container Migration

Container migration is the process of moving applications between di↵erent physi-

cal machines or clouds without disconnecting the client [5]. In container migration,

there is the source node which is the origin location of the container and the des-

tination node which is the final desired location of the container [5]. Container

migration is necessary because APs have a limited amount of resource, thus migra-

tion can open up space to allocate more resources [6]. NetCon will be using Docker

and Kubernetes to deploy and migrate containers on AP.

1.2.3 Resource Allocation Methods for Containers

Overall, current dynamic resource allocation methods for containers rarely consider

the specific challenges of running containers on AP or reallocating the processing

resources of a single edge device.

In one method, containers are assigned to edge devices based on edge device

availability [7]. This methods of resource allocation treats the edge devices them-

selves as the resources being allocated; once the containers are running within those

devices, the continued influence of the allocation scheme is limited, and it does not

appear to dynamically re-allocate processing resources on those individual edge de-

vices once a container has been assigned [7]. Instead, when resources become scarce,

the container is moved to another available device based on the lowest migration

cost. NetCon focuses specifically on the performance of the AP in terms of packet

switching rather than simply making decisions based on the processing resources

available.

There is also a method for network resource allocation for containers, even

briefly addressing those that run on APs [8]. However, this method focuses on

3
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managing the bandwidth usage of each container rather than the processor usage,

and it does not appear to include the influence of non-container processes running

on the specific edge device [8]. In contrast, the proposed solution of NetCon hinges

upon utilizing the AP for containers while avoiding an overly negative impact on

packet switching delay specifically, using this delay as an indicator of performance

in order to determine the e↵ect of containers on the AP’s performance.

Specific resource allocation on containers have the issue of overhead to consider.

Only under specific circumstances, containers may have more overhead than Virtual

Machines (VM) [9]. However, generally, containers with a larger number of cores

will have less overhead than containers with a smaller number of cores [9]. CPU-

intensive applications are better used o↵ with pinned container resources, where

resources are specifically assigned to cores.

Energy-saving methods that have been used in VMs are also applicable to

energy-saving methods with containers [10]. Excessive idle resources are checked

and then reassigned to hosts with more VMs so that VMs who have little resources

are shut down [10]. With the way containers work better with a larger number of

cores, this can be checked and reallocated as well.

Furthermore, this thesis proposes to use packet switching delay as the measure

of Quality of Service (QoS) for the AP. Since this is the primary responsibility

of the AP itself, focusing on this measurement emphasizes the specificity of the

proposed solution. The e↵ects of containers on the AP and the availability of the

AP to run containers will be determined not by the processing load on the device

or the network conditions but by the packet switching delay and its change over

time. When processing resources are low, or when network tra�c increases, the

AP may become slower at packet switching, and these times or packet switching

delay increase should indicate that the AP is not available to run containers. When

4
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packet switching delay is low, and when containers are su�ciently small to avoid

adverse e↵ects on packet switching, the AP should be available to run container

and decrease idleness.

1.2.4 eBPF

Extended Berkeley Packet Filter (eBPF) allows user programs to be attached to

events occurring in the kernel and is predominantly used for tra�c control, network

monitoring, load balancing, and monitoring the operating system [11].

Measuring packet switching delay is a less common use, though there are some

preexisting methods to determine packet processing time. For example, one of these

methods inserts a timestamp into the packet header when the packet arrives and

when it is finished being processed, and the processing time is calculated accordingly

[12]. However, as this method is specialized for Virtual Network Functions (VNF),

it may not apply to use with a single AP.

In this case, eBPF will be used to measure packet switching delay (as the

time elapsed between the packet’s arrival to the wired interface and delivery to the

wireless interface of the AP) in order to observe and react to changes in the QoS of

the AP as the load on the AP increases when the resources allocated to containers

is increased and when the tra�c on the network changes.

1.3 Existing Solutions

While there are several current solutions that use edge servers to run containers and

decrease latency, there no widely known way of running containers and decreasing

latency using APs. In particular, EdgeAP, a SCU senior design project from last

5

433 0 R
433 0 R


year, investigated the potential impact of running applications on APs [1]. EdgeAP

specifically mentions that finding a way to migrate containers between APs will

better support mobile devices [1]. However, EdgeAP did not develop a resource

allocation algorithm to dynamically respond to an increase in packet switching

activity and take into consideration the unique concerns with running containers

on APs [1]. Without this resource allocation algorithm, EdgeAP’s system does not

know how to deal with increasing packet switching delay and increasing latency.

Additionally, there exists a container migration algorithm called ShareOn which

uses Linux Container Hypervisor (LXD) and Checkpoint Restore in Userspace

(CRIU) to keep track of tra�c and decides when to migrate containers based on

the resources available at the current edge node [7]. ShareOn, however, only works

in Mobile Edge Clouds and is not compatible for APs. Furthermore, their system

results showed that it does not work well when encountering large system latency

and higher server load [7]. Hence, ShareOn struggles to decrease latency during

higher server load.

1.4 Proposed Solution

The proposed solution, NetCon, is built to run on APs, providing a way to monitor

APs tra�c and packet switching delay to determine when APs are able to run con-

tainers without interfering with their primary function. When the AP has excess

idle time and is su�ciently free, the AP can run containers for di↵erent applica-

tions. When the AP has higher tra�c, and packet switching delay is high, NetCon

will recommend that the AP’s resources will be prioritized for packet switching. By

allowing container to run on the APs when there is low tra�c, NetCon seeks to de-

crease AP idleness while ensuring that packet switching delay remains low. NetCon
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Fig. 1.1: Conceptual model.

dynamically analyzes tra�c being switched by the AP and determines if containers

can be run. When tra�c is high, and running containers adversely a↵ects packet

switching delay, container resources should be decreased, and containers should be

migrated to other edge devices when the available resources are too low for them

to run.

Fig. 1.1 shows a high-level depiction of the concept behind NetCon. While

packet switching delay (and tra�c) is low, the AP will be available to run containers

at will. However, when the packet switching delay is higher, the AP will prioritize

packet switching, and containers will have their resources reduced, or they will be

migrated to another device.

1.5 Thesis Organization

This section presents an overview of this thesis. Chapter 1 focused on the introduc-

tion to the problem, related works, and the proposed solution, NetCon. Chapter

2 will discuss the functional requirements, non-functional requirements, and design

7
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constraints for implementation of NetCon. Chapter 3 will address NetCon’s sys-

tem architecture, including the underlying technologies used for its implementation.

Chapter 4 will explain the design rationale and implementation strategies to build

NetCon. Chapter 5 includes descriptions of testing strategies and the performance

evaluation for NetCon. Chapter 6 addresses the risk analysis for this project and

the impact that each risk had on the final deliverable. Chapter 7 analyzes the nu-

merous non-technical issues and potential implications of NetCon. Finally, Chapter

8 will provide the conclusion and discussion of potential future work.
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Chapter 2

Requirements

This chapter addresses the requirements for the implementation of NetCon. This in-

cludes functional requirements, non-functional requirements, and design constraints

that needed to be considered for the creation of NetCon.

2.1 Functional

Functional requirements refer to functions within the system which specifies what

the system needs to do when certain conditions are met [13]. Functional require-

ments describe what a system should do and its intended, specific behavior.

2.1.1 LAN Connectivity

The AP must be built and configured correctly so that both wired and wireless

connections to the AP are available. The AP must be able to successfully switch

packets between the wired and wireless interfaces using a bridge.

2.1.2 Applications and Containers

The AP must have the ability to run applications and containers. Specifically, it

must be possible to run Docker containers on the AP itself.

9
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2.1.3 Container Resource Allocation and Container Migration

The AP must be able to allocate and re-allocate resources to and from containers.

It must also be able to migrate containers to another edge device if the AP is

experiencing high tra�c.

2.2 Non-Functional

Non-functional requirements describe how a system should behave and the limits

that exist on its functionalities [13]. Non-functional requirements define the at-

tributes and operations of a system.

2.2.1 Performance

As more applications are added onto the AP, the AP’s packet switching delay

should be impacted as little as possible. Packet switching delay must be continu-

ously monitored to determine if containers are having an adverse e↵ect on the AP’s

performance of packet switching.

2.2.2 Security

The AP and network must remain secure and not be compromised by NetCon.

The system must be secure for containers to run and limit the container’s access

to only the resources required to function. Furthermore, NetCon should detect if

containers are adversely impacting the AP’s functionality and prevent the possibility

of containers taking up resources to the extant that they cause denial of service.
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2.2.3 Reliability

The system must be reliable for containers to run. It is crucial that the network

is reliable in order for the system to properly evaluate packet switching delays and

system latency.

2.3 Design Constraints

Design constraints refer to the conditions that needs to be satisfied in order for a

system to function properly [13].

2.3.1 Accurate and Dynamic Packet Switching Delay Measure-

ments

The AP must be able to accurately and dynamically measure packet switching

delay. If the measurements of packet switching delay are not accurate, or if they

are not continuously measured, it would be di�cult to determine when the AP is

is experiencing high tra�c and when it is available to run containers. Furthermore,

without comparing the change in packet switching delay over time, it would not be

possible to determine a baseline performance and therefore comparatively determine

what defines high and low tra�c.

2.3.2 Limited Network Capability

The AP must have the ability to run with limited network capability. Running with

limited network capability would prioritize packet switching during high tra�c times

11

433 0 R


and ensure that the original usage of these APs is kept. The AP must remain usable

while adding, running, or removing containers.

2.4 Summary

This chapter defined the functional requirements, non-functional requirements, and

design constraints that were considered in the design of NetCon. In terms of func-

tional requirements, an AP must be able to switch packets between the wired and

wireless interfaces, run containers, and assign resources to those containers. Non-

functional requirements require NetCon to ensure the AP performs well and con-

tinues to perform well when running containers and remains secure and cannot be

denied service due to having resources over-allocated to containers. Finally, in terms

of design constraints, NetCon must be able to accurately and dynamically measure

packet switching delay measurements, as those measurements are a metric for the

AP’s performance in its main function.
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Chapter 3

System Architecture

This chapter explores the hardware and software technologies used in the imple-

mentation of NetCon and how they all fit together.

3.1 Linux Machine

NetCon required the use of a Linux machine in order to create the AP. In this

particular case, a Kingdel mini-PC with Intel i7 CPU, 8GB RAM, 256GB SSD was

used [14]. A Linux-based OS, Ubuntu 20.04.4 [15], was installed on this machine,

and then it was configured as an AP.

3.2 Hostapd/NetPlan: Using a Linux Machine as an

AP

To set up the Linux machine as an AP, two main packages are used, hostapd and

Netplan. Hostapd stands for Host Access Point Daemon, a user-space service that

turns the network interface into an Access Point instead [16]. In this case, the

Linux machine was connected to the Ethernet and configure the hostapd as an AP

in order to access the internet. This turns the Linux machine into an AP and

an authentication server by assigning IP subnets to link layer addresses. This is
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done by configuration of the interface, driver, hardware mode, channel, and WiFi

Protected Access (WPA). Netplan is used to create the network configuration with

name server addresses, interfaces for bridges, IP addresses, and a gateway to connect

to the Ethernet for functionalities [17].

3.3 eBPF and Python: Measuring Packet Switching

Delay

Fig. 3.1: Measuring Packet switching delay.

To monitor packet switching delay, eBPF was used. Using eBPF allowed the

attachment of hooks to the kernel system calls associated with packet switching,

in order to determine the time between when a packet arrives at the Ethernet

interface and when it is ready to be transmitted over WiFi [18]. A Python program

was written in conjunction with eBPF in order to measure the packet switching

delay as shown in the figure below.

In Fig. 3.1, t1 refers to the time the packet arrives from the wired interface, t2

refers to the time the packet is transferred to the wireless interface for transmission,

and t3 refers to the time the packet is actually transmitted. In this case, the
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measurement for packet switching delay �t will be the di↵erence between t2 and

t1 rather than the di↵erence between t3 and t1, since t3 depends on the number of

devices connected or trying to connect and can be impacted by outside interference.

In contrast, as the time elapsed between the packet’s transfer from one interface to

the other depends mainly on the processor of the AP, �t is a better measurement

of packet switching delay for the purpose of this thesis. Furthermore, this should

the removal of the variable of transmission time (which is unlikely to be directly

correlated to the resources used by containers running on the AP) in order to better

measure the potential correlation between processor load and packet switching delay.

Measuring these times requires the use of eBPF. First, it is necessary to identity

the system calls to the kernel being used when 1) the packet arrives from the wired

interface and 2) the packet is delivered to the wireless interface for transmission [18].

Furthermore, as it is conceivable that more packets may arrive while earlier packets

are being switched, it may also be necessary to keep track of the packets currently

in transit in order to ensure that the time between their arrival and delivery is

being accurately measured. These two timestamps are correlated between packets

by the packet checksum. In order to ensure checksum was a reliable metric for

correlating and identifying packets, it was necessary to disable Network Address

Translation (NAT). Then, eBPF hooks must be attached to log these system calls

with timestamps and compare the times between them [18].

The Network Interface Card (NIC), Qualcomm NIC: NETELY 802.11N Dual

Band Mini-PCIE Interface, that was installed in the Linux machine used the ath9k

driver [19]. Therefore, the system call for the packet’s delivery to the wireless inter-

face used was ath-9k-tx-complete-buf. For alternative NICs, it would be necessary

to alter the eBPF program to target the proper wireless-interface function associ-

ated with that NIC.
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3.4 Load Balancing: Using Packet switching delay

Load balancing improves application responsiveness [20]. Through load balancing

and resource management, containers can run safely on all network devices [20].

NetCon’s load balancing is designed to allow applications to run on APs without

impacting any of its functions. Packet switching delay was used as the main metric

for AP performance. When times of high tra�c and increased packet switching delay

are predicted, containers are discontinued at a certain load threshold. However, it

is also necessary to take into account the processing resources available on each

device. If a container no longer has enough resources to thrive, it will be removed.

If a container is doing well but packet switching delay is increasing, it will also be

removed. At this point, NetCon does not have a predictive consideration of the

impact of container migration before making the decision to migrate: it will be

solely based on packet switching and available processing resources.

3.5 LSTM: Predicting Tra�c Trends

Originally, a Long Short-Term Memory (LSTM) algorithm was going to be used

to predict tra�c trends using the eBPF data. The purpose of this would be to

past tra�c data to help predict future tra�c times [21] so that resources could be

allocated in advance of when they are needed. LSTM functions as a network that

remembers previous states and can selectively choose past information in order to

make predictions about future states [21]. Currently, however, it did not integrate

well into the system, so the decisions are based solely o↵ of current packet switching

information, not predicted future information.
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3.6 Docker: Allocating and Reallocating Container Re-

sources

The container technology that selected to allocate container resources on APs is

Docker. Docker is a container run-time environment and is primarily used to create

and build software inside containers [22]. Docker allows users to create, allocate,

move, and delete containers. To create a container, Docker pulls images from the

Docker registry and created a container using that image [22]. Additionally, Docker

uses C-groups and user namespaces to allocate resources to containers. Docker also

allows users to control how much memory and CPU share should be allocated to

a container [22]. Through adjusting memory limit and CPU share, it allows us to

reallocate resources that are idle to other containers that require more resources.

All of the applications that run on NetCon uses Docker and all of the container

images are stored in the Docker Hub registry.

3.7 Kubernetes: Orchestrating Container Deployment

and Migration

Kubernetes is a container orchestrator tool for scheduling and automating the de-

ployment, management, and scaling of containerized applications [23]. Kubernetes

acts as a complementary technology to Docker in order to complete the entire pro-

cess of resource allocation and container migration [24]. The benefits of using con-

tainer orchestration tools include: increased portability, e�ciency, and security [23].

As an orchestrator, Kubernetes determines where containers should be located and

manages the deployment and migration of containers. Kubernetes can also automat-
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ically replicate containers and reschedule failing containers [23]. Within NetCon,

Kubernetes is used to determine where containers should be located and to manage

the deployment and migration of containers.

3.8 Iperf3: Testing

Iperf3 is a command line tool that measures bandwidth with a variety of settings

[25]. In the testing phase, iperf3 will be used to send packets of various sizes and

amounts in a constant time frame in order to test the impacts of packet size, packet

arrival frequency, and container resource allocation on packet switching delay.

3.9 Summary

This chapter provided a discussion of the di↵erent types of technologies that were

used to implement NetCon’s system. First, NetCon uses a Linux machine like

a Kingdel and the prerequisite software packages, such as Hostapd and NetPlan,

to create the AP. Then, NetCon uses eBPF to measure packet switching delay.

Packet switching delay is the metric that used to determine whether containers will

remain in their current state, have resources removed from them, or be migrated

elsewhere. Docker and Kubernetes were used to help with container deployment,

resource allocation, and migration tasks. Lastly, iperf3 will be important during

the testing and evaluation phase.
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Chapter 4

Design and Implementation

This chapter presents an overview of NetCon’s design and how aspects of the design

were implemented.

4.1 Design Rationale

This section details the reasoning behind certain aspects of NetCon’s design.

4.1.1 Docker and Kubernetes

Docker and Kubernetes are commonly used for container images and orchestration

respectively. It was important to use well-known container technologies to help max-

imize the portability and real-world implications of NetCon, so these technologies

were selected to help implement NetCon.

4.1.2 Packet Switching Delay

In order to determine the e↵ects of running containers on the AP’s e�ciency, packet

switching delay was measured from the entry interface (wired) to the exit interface

(wireless). In particular, this is something that the AP has control over and occurs

internally using the AP’s processing resources. Therefore, it is an aspect of delay

that is likely to be most e↵ected by running high-load containers on the AP.
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Fig. 4.1: Phases of Container Allocation.

4.1.3 Programming

The eBPF program is written in Python and the underlying, contained eBPF pro-

gram with the hooks is written in C. C made it easier to implement the kernel

probes required for the measurement to function, and Python was simpler to exe-

cute the eBPF program, process the data, calculate delays, and make predictions

due to built-in data processing libraries such as pandas [26].

4.2 Implementation

This section is a general overview of the current implementation of NetCon. Fig. 1.1

depicts the main phases of the container resource allocation process. First, packet

switching delay is continuously monitored and calculated using the eBPF program.

Then, it should be fed into the LSTM model in order to predict future tra�c trends.

However, currently, LSTM is having implementation issues, so the delay data is

instead directly used to make decisions based o↵ of current trends rather than
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Fig. 4.2: Internal Activity Diagram.

future predicted trends. Based on that data, NetCon will make a recommendation

for containers resources to be decreased. If the container is already at its usable

resource minimum, it will be migrated away from the AP instead.

Fig. 4.2 shows the major stages that NetCon goes through. Once NetCon

is started, it will begin to continuously and passively monitor the packet switch-

ing delay. If high tra�c is forecasted (with implementation of LSTM) or detected

(without implementation of LSTM), NetCon will assess current resources assigned

to containers and reallocate resources as necessary to prompt a reduction in packet

switching delay. If this is not su�cient to resolve the issue, or if the proposed real-

location of resources would harm a container’s ability to run properly, the container

will be migrated instead. After this, NetCon will simply be passively monitoring

the packet switching delay. If NetCon is exited, users can either migrate or termi-

nate the containers currently running on the AP, since it would not be prudent to

continue running them without considering their impact on packet switching delay.
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4.3 Summary

NetCon depends on packet switching delay in order to determine whether the AP is

available to run containers. Based on these packet switching delay measurements,

NetCon can determine whether and when container resources should be decreased

in order to ensure that packet switching delay does not su↵er on account of resources

assigned to containers. Therefore, containers can safely run on APs without com-

promising the performance of packet switching.
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Chapter 5

Evaluation

This chapter provides an overview of the performance evaluation of Netcon’s packet

switching delay measurement methods and the e↵ects of packet size and container

load on those measurements.

5.1 Packet Size and Arrival Frequency

This section displays the e↵ects of packet size and amount of packets being sent on

the packet switching delay within the AP. The initial hypothesis was that a greater

number of packets being sent in the same timeframe would correlate to greater

average packet switching delay. This was due to the assumption that high tra�c

and a higher frequency of packets arriving at the AP would imply then the packet

switching delay is likely to increase due to queuing.

Packet switching delay was measured by conducting controlled network testing

with iperf3. In each test, 1.25 Mb of data in 10 seconds were transferred from a

public iperf-compatible server to a client device connected to the AP while the AP

measured the packet switching delay. The packet size was adjusted for each test,

starting at 200 bytes and increasing in increments of 200 bytes up to 2 kilobytes.

During these initial tests, no containers were running. The purpose of these initial

tests were merely to determine if the packet switching delay would show correspon-

dence to di↵erent levels of tra�c in terms of handling di↵erent sizes and amounts
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Fig. 5.1: Packet Switching Delay for Packets of Sizes 200-2k Bytes.

of packets in the same time interval.

Increasing packet size appeared to correlate weakly with a decreased packet

switching time, with an R-squared value of 0.321 for the trendline in Fig. 5.1.

However, upon review, packet size was an overly indirect metric for measuring

the packet arrival frequency, though it was the main controllable iperf3 variable

associated with packet arrival frequency. For example, increasing the packet size

from 200 bytes to 400 bytes represents a doubling of the size and therefore halves

the amount of packets being delivered. At greater sizes, an increase of 200 bytes

becomes less meaningful, as the percent increase a↵orded by an increase of 200 bytes

decreases as the packet size increases.

Evaluating the same data in terms of the amount of packets delivered in the 10-

second test intervals against the packet switching delay, shown in Fig. 5.2, showed

a stronger correlation between the amount of packets being delivered and packet

switching delay than the size of the packets being delivered. Displaying the exact

same test data with the explanatory variable of number of packets had a R-squared

value of 0.828 for the positive correlation, compared to the R-squared value of 0.321

24

322 0 R
334 0 R


Number of Packets

Pa
ck

et
 S

w
itc

hi
ng

 D
el

ay

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

1000 2000 3000 4000 5000 6000

Packet Switching Delay vs. Number of Packets

Fig. 5.2: Packet Switching Delay vs. Number of Packets Delivered.

for the original explanatory variable of packet size shown in Fig. 5.1.

Overall, this shows that the frequency at which packets are being delivered to

the AP for switching from the network has a strong correlation with the packet

switching delay. Since this delivery frequency varies with tra�c, packet switching

delay can likely be e↵ective as an indicator of tra�c and the AP’s performance.

5.2 Packet Switching Delay vs. Container Resources

This section displays the results of di↵erent container resources on packet switching

delay. The main resources considered include assignment of CPUs, memory, and

swap memory. Each of these are measured against packet switching delay averages

for 10-second iperf3 tests using packets of fixed size at 200 bytes. In each comparison

of tests, one resource variable is varied for the test and the others remain fixed.
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Fig. 5.3: Packet Switching Delay vs CPUs Assigned to Containers.

5.2.1 CPUs Assigned

This section shows the results of assigning di↵erent amounts of processors to running

containers. In this scenario, containers are not pinned to specific processors except

for when CPUs=1, but containers also do not necessarily take up all the processor’s

resources, as other assigned resources, memory and swap memory in particular, are

set to a constant 1 GB. The packet size is fixed to 200 bytes, and the amounts of

packets arriving is similarly fixed.

The correlation between assigned CPUs and packet switching delay unexpect-

edly appears to be weakly negative. Overall, it may be possible that the numbers

of CPUs assigned to containers does not have a significant impact unless all of the

CPU’s resources are assigned to containers. In the case where the container load

remains constant at less than all of the processing resources of the CPUs and the

amount of CPUs changes, there does not appear to be a negative impact on packet

switching delay as a result of assigning more CPUs to containers.
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Fig. 5.4: Packet Switching Delay vs. Swap Memory Assigned to Containers (for Mem-
ory=1 GB).

5.2.2 Swap Memory and Memory

This section shows the results of assigning di↵erent amounts of swap memory and

memory to running containers. For each test measurement, packet size (and delivery

frequency) are constant, the amount of CPUs assigned is constant at 1, and memory

is set to a constant GB value between 1 and 3. Swap memory is the primary test

variable for each set of test data displayed.

These results in Fig. 5.4 represent variations in the amount of swap memory

assigned to containers for a constant CPU assignment of 1 and 1 GB of memory

assigned to containers. Oddly, though packet switching delay increases on average

according to the trendline, there is a weak correlation between delay and swap

memory assigned to containers for this scenario. Though packet switching delay

initially increases for 1 and 2 GB of swap memory, it decreases again for 3 and

4 GB. However, the average packet switching delay for 4 GB of swap memory

remains slightly larger than the original value for the baseline measurement. There

could potentially be confounding factors that are interfering with the results. In
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Fig. 5.5: Packet Switching Delay vs. Swap Memory Assigned to Containers (for Mem-
ory=2 GB).

particular, the 3 and 4 GB tests were further removed from the baseline in terms

of the time elapsed between tests than the 1 and 2 GB tests. If there was any

change in the network itself during that time, that could interfere with the results.

The range between the largest and smallest measurement is also larger than the

subsequent tests, at 0.004139 seconds compared to 0.001585 and 0.001562.

For a set memory of 2 GB, depicted in Fig. 5.5, the packet switching delay

average is more tightly clustered than for Fig. 5.4, with a range of 0.001585 sec-

onds compared to 0.004129. Furthermore, the correlation between increasing swap

memory and increasing average packet switching delay is stronger than the results

for 1 GB of memory assigned to containers.

For a constant memory of 3 GB assigned to containers, depicted in Fig. 5.6,

there is also an overall increase in packet switching delay with increased swap mem-

ory assigned to containers.
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Fig. 5.6: Packet Switching Delay vs. Swap Memory Assigned to Containers (for Mem-
ory=3 GB).

5.3 Summary

Overall, as hypothesized, an increased frequency of packet arrival at the AP corre-

lates strongly with a packet switching delay. Therefore, packet switching delay is

correlated with the amount of tra�c being switched through the AP, which means

that it can be used as a reasonable indirect measurement of tra�c and, in future

developments, used to predict future tra�c trends.

Furthermore, though the amount of CPUs assigned to containers does not ap-

pear to have a negative impact on packet switching delay if the container load is

not high, other controllable container resources such as swap memory do appear to

be positively correlated with packet switching delay, and increasing swap memory

increases packet switching delay. This means that, along with standard load balanc-

ing techniques and processing capacity, it may indeed be beneficial to control the

assignment of other resources to containers in order to prioritize packet switching

delay.
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Chapter 6

Risk Analysis

This chapter shows the risk analysis for NetCon. Risks have been sorted in descend-

ing order according to their calculated impact. The impact was calculated using

the risk’s estimated probability of occurring and its severity.

Table 6.1: Risk Analysis Table.
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Overall, several of these risks impacted the development of NetCon, and some

of them were more severe than initially calculated. Firstly, due to unexpected

time consumption, the implementation of NetCon was much less ambitious than

the original idea, focusing more on current packet switching delay than being able

to predict future network trends. One issue that occurred was that the original

Linux machines did not integrate well with the required eBPF programs, so it

was necessary to purchase entirely new hardware and reinstall from scratch. On

the new Linux machines, described in 3.1, there were di↵erent wired and wireless

interfaces and an entirely di↵erent process for setting up the AP, so reinstalling

these important prerequisites took more time than expected. Furthermore, since

the LSTM model did not integrate well with the other components of the system,

it had to be removed from consideration for this iteration of NetCon.
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Chapter 7

Existing Issues

In addition to the technical aspects of NetCon, it is also important to talk about

the non-technical ramifications that exists. These non-technical issues can have a

significant impact on users if they are not taken into account during the product

development. As such, it is important that NetCon considers and addresses these

concerns.

7.1 Ethical Issues

NetCon uses the cloud for information configuration and transfer, specifically data

packets as well as containers. Since NetCon can decrease latency in communication

with container-based applications without jeopardizing any of the AP’s functionali-

ties, this ensures that other users of the AP are not negatively impacted by NetCon.

Users can experience the positive e↵ects that NetCon brings to APs without facing

any negative repercussions. Furthermore, NetCon is also designed to prevent con-

tainers from over-utilizing APs and denying service to other users, so that should

not be an issue. NetCon only runs if the system administrator or owners of the AP

install it and the prerequisite software on the device, so it would be implemented

with their full consent.
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7.2 Societal Issues

NetCon’s goal is to improve modern APs by decreasing processor idleness. NetCon

should not adversely impact any members of society. In fact, NetCon is designed to

be beneficial to individuals who have low-latency applications they would like to run

as containers on edge devices. NetCon can be accessed and used by all populations

regardless of their social status, demographic, or religion.

7.3 Political Issues

A major political concern with internet networks is privacy. NetCon does not have

any privacy concerns as NetCon primarily focuses on transferring containers and

resources to decrease latency and packet switching delay, not transferring user pri-

vate data or information. NetCon does not collect user-based data, only AP-based

data measurements of packet switching delay and tra�c. The data in the users’

containers is entirely private, but may be relocated based on available resources and

impact on packet switching delay. NetCon does not store user’s private information

or use it in any way.

7.4 Economic Issues

NetCon can be used on any Linux APs, so customers do not need to specifically

purchase a new device to use NetCon. Additionally, new features and functionalities

can be added to NetCon in the future to further improve the model without needing

to create an entirely new infrastructure.
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7.5 Environmental Issues

Since NetCon can work on all Linux APs, new hardware is not needed to be man-

ufactured in order to support NetCon. NetCon continuously checks and reallocate

containers when needed to avoid resources sitting in idle time. This method ensures

that NetCon is e�cient with the container resources and are continuously allocating

them to perform tasks to their best ability. NetCon also helps mitigate the wasted

idle processing resources of APs by using them to run container.

7.6 Usability Issues

NetCon makes it easier to install, run, and delete containers without impacting AP

functionalities. NetCon only requires the presence of a AP in order to be used. Since

NetCon uses Docker containers, it is easy to implement any Docker containers on

an AP using NetCon. NetCon so that any Docker container can run safely without

adversely impacting the performance of the AP it is running on.

7.7 Sustainability Issues

NetCon is a sustainable networking system as it can be use to upgrade current APs

without requiring the purchase of new devices and technology. Furthermore, NetCon

eliminates digital waste by constantly reusing containers and resources that would

have been left idle. This allows for more devices to connect without encountering

any significant delays. However, to fully assess the sustainability implications of

NetCon, it may be necessary to run additional testing on the energy consumption

of APs running container with and without NetCon.
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7.8 Health and Safety Issues

NetCon is not inherently a software that is likely to compromise the health and

safety of its users. However, NetCon does deal with health and safety issues through

its goal of decreasing latency from the cloud without compromising AP functionality.

For example, security applications commonly require low latency [1]. If NetCon

makes it easier to run these applications via containers on close edge devices like APs

without negatively impacting network functionality, it may improve user’s safety.

7.9 Manufacturing Issues

NetCon does not have any manufacturing concerns as NetCon can run on existing

APs. NetCon does not require any new hardware devices in order to function and

the system can be installed onto modern APs that exists in many homes, school,

and work, provided that they run on Linux.

7.10 Summary

Overall, NetCon is unlikely to create any particular ethical, environmental, or im-

plementation issues. In terms of ethical issues, NetCon does not collect user-based

data, and its primary functionality are unlikely to harm users in terms of health and

safety, and may, depending on its application, actually help with health and safety.

In terms of environmental issues, NetCon is meant to use an underutilized resource

that is commonly wasted, but it would be prudent to conduct further testing on the

energy expenditure of NetCon in order to assess the full impact on the environment.

Finally, since NetCon runs in a standard Linux environment, it is relatively portable

35

422 0 R


and will not create any manufacturing issues or sustainability issues through the

production of new, specialized hardware.

36



Chapter 8

Conclusion and Future Work

This section presents the overall conclusion to this thesis as well as a brief note on

potential future work that could be done to improve or expand the scope of NetCon.

8.1 Conclusion

NetCon is a proposed method make APs more e�cient by running containers while

still ensuring that packet switching delay remains low, and the AP can continue to

perform its main function. The impact of di↵erent container resources on packet

switching delay was evaluated and found to have a negative impact overall, which

can be improved by keeping track of packet switching delay vs. container resources

and ensuring that the former does not su↵er.

Overall, APs exist across the world and are used almost every day by most of

the world’s population. Through these improvements with NetCon, users will have

the option to run low-latency applications on APs, but they will not experience

increased network congestion as a result.

8.2 Future Work

There are several potential future improvements and expansions of NetCon that are

possible.
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8.2.1 Energy E�ciency

One major goal is to determine the level of energy expenditure of APs running con-

tainers with NetCon compared to standard container migration and load balancing

algorithms and to APs that are only working on switching packets. This would

allow for a more informed perspective on the sustainability impacts of NetCon, and

if NetCon was found to be energy-ine�cient, it would open up more avenues for

improvement.

8.2.2 LSTM

Secondly, the original intent was to implement LSTM in order to predict future

increases and decreases in packet switching delays in order to be ready to remove or

return containers to the AP as soon as possible. However, due to time di�culties,

this was not fully implemented. Adding a predictive algorithm to NetCon instead

of relying simply on current measurements would allow for quicker responses to any

issues that show up, assuming the predictions are su�ciently accurate.

8.2.3 Generalization

Finally, another potential improvement would be to generalize NetCon to work

on any available network switching appliances, as the current implementation only

works on APs. Furthermore, NetCon’s packet switching delay measurement is cur-

rently specialized to work with a particular NIC. Another future improvement might

be to make NetCon easily adjustable to mark the arrival and delivery timestamps

of packets for multiple types of NIC that use di↵erent system calls.
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