
SANTA CLARA UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Date: June 7, 2021

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Christopher Woo

ENTITLED

Smart Grid Security Simulator

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

Thesis Advisor

Thesis Advisor

Department Chair

Department Chair

Nam Ling (Jun 8, 2021 08:32 PDT)
Nam Ling

Nam Ling

Xiang Li

https://na2.documents.adobe.com/verifier?tx=CBJCHBCAABAA3ao6AWlvV2yR_UZOZvWx8OCLG7I8bvJV

Smart Grid Security Simulator

by

Christopher Woo

Submitted in partial fulfillment of the requirements
for the degree of

Bachelor of Science in Computer Science and Engineering
School of Engineering
Santa Clara University

Santa Clara, California
June 7, 2021

Smart Grid Security Simulator

Christopher Woo

Department of Computer Science And Engineering
Santa Clara University

June 7, 2021

ABSTRACT

Visualizing the cascading failure of a network can be challenging due to the complexity of smart grid func-
tionalities. The web application, Smart Grid Security Simulator (SGSS), is designed to make it easier for
people, who intend to learn about smart grid security, to better visualize the failure of lines in a network due
to various attacks. By utilizing SGSS, users will be able to learn what types of attacks existing networks are
prone to and how di↵erent modifications to existing networks can bolster their security against each type of
attack.

iii

Acknowledgments

I would like to thank my advisor, Prof. Xiang Li, who has given me terrific guidance throughout the course
of this project.

iv

Table of Contents

1 Introduction 1
1.1 Problem . 1
1.2 Solution . 2
1.3 Existing Studies . 2
1.4 Cascading Failure . 2

2 Project Development 4
2.1 Development Timeline . 4
2.2 Risk Identification . 5
2.3 Risk Mitigation . 5
2.4 List of Requirements . 6
2.5 Meeting the Requirements . 7
2.6 Benefits . 7

3 Concept 8
3.1 Use Cases . 8
3.2 Components . 9
3.3 Activity Diagram . 10

3.3.1 Selecting a Network . 10
3.3.2 Editing a Network . 11
3.3.3 Cascading Failure Simulation . 11

3.4 Simple Architectural Diagram . 12
3.5 Design Rationale . 12

4 Technologies Used 14

5 Design Flowchart 15

6 Design 17
6.1 User Interface . 17

6.1.1 Slider . 17
6.1.2 User Input . 18
6.1.3 Network Visualization . 19

6.2 Cascading Failure Model . 20

7 Testing 22
7.1 Testing Procedures . 22
7.2 Test Results . 22

v

8 Societal Issues 25
8.1 Ethical . 25
8.2 Technological . 25
8.3 Social . 25
8.4 Economic . 26
8.5 Health and Safety . 26
8.6 Manufacturability . 26
8.7 Usability . 26
8.8 Sustainability . 27
8.9 Environmental Impact . 27

9 Conclusion 28
9.1 Obstacles Faced . 28
9.2 Lessons Learned . 29
9.3 Future of Project . 30

10 References 31

vi

List of Figures

2.1 Development Timeline . 4
2.2 Table of Requirements . 6

3.1 Use Case Diagram . 8
3.2 Activity Diagram . 10
3.3 Simple Architectural Diagram . 12

5.1 Algorithm Flowchart . 16

6.1 Main Screen . 17
6.2 Slider . 17
6.3 User Input . 18
6.4 Network Visualization. Source: Icons made by Freepik, smalllikeart from www.flaticon.com. 19

7.1 IEEE-30 AC Time-step 0 . 23
7.2 IEEE-30 AC Time-step 5 . 24

vii

www.flaticon.com.
www.flaticon.com.

Chapter 1

Introduction

1.1 Problem

Natural disasters and targeted attacks can cause power lines to fail. The failure of a line in a power grid can

result in more stress for other lines and nodes in the grid. Due to the increase of current through various lines

and the limited capacities of the lines, multiple lines can fail due to the initial line failure. This process is

known as cascading failure and may continue throughout the network until the network is stabilized.

In the worst case, natural disasters and targeted attacks on power grids can result in major blackouts if

the emergency is not handled properly. A power grid blackout causes major social, economic, and political

unrest. More specifically, it can cause disruptions in medical systems, road tra�c, payment transactions,

security systems, and the internet. This a↵ects almost everyone in their modern daily lives.

Many power grid networks across the world have su↵ered from frequent occurrences of blackouts in the

past decades. In USA alone, in the total number of blackouts recorded from 2008 to 2015, 2169 to 3236

power outages were recorded annually with a minimum of 13 million people being a↵ected or left without

power completely [1]. Generally, these blackouts were caused by natural disasters, old power systems, and

operation failures of protection systems [1].

One of the most notable power grid failures in America over the past decades was the 2003 Northeast

Blackout. After some power lines had encountered overgrown trees, the lines softened under the heat of high

current going through them, finally switching o↵. Due to an alarm system failure, the Ohio-based utility

company was not able to react in time. After tripping a cascading failure e↵ect through southeastern Canada

and 8 northeastern states, around 50 million people lost power for up to 2 days, resulting in 11 deaths and

costing around 6 billion dollars [1,2,3].

It is crucial for power grid blackouts to be avoided completely, but how is that possible?

1

1.2 Solution

To start, it is important to better understand what power lines will fail based on whether a natural disaster

or a targeted attack hit the power grid. The Smart Grid Security Simulator (or SGSS), helps users visualize

what lines will fail based on where the attack is initiated. It then plays an animation, showing which lines

will continue to fail on each time-step. The line failure in SGSS is calculated by checking if the current going

through each line is greater than the calculated capacity of each line. If the current is greater, the line fails

in that time-step. This feature helps users find lines with more importance to the integrity of the power grid,

allowing them to figure out which lines need to be expanded.

The SGSS also allows users to draw new lines and nodes as well as modify certain parameters of individ-

ual lines and nodes in order to help users better understand how a network can be improved upon. This can

be done by using the provided user interface of the SGSS simply by inputting the voltages or capacities that

the user would like to provide. Through this tool, users will be able to learn what modifications can be made

to a network in order for it to be more resilient to various attacks. The information gathered in this project

can also be used to design various strategies that will strengthen existing networks against natural disasters

and targeted attacks on individual lines in a network.

1.3 Existing Studies

Currently, there exists many studies [1,4,5] that helps readers to better understand how di↵erent networks

respond to various attacks. These studies show the number of lines failed as well as providing information

about the importance of each line. Existing studies generally require much more in-depth knowledge as

to how smart grids function as well as how networks react to various attacks [4,5]. Due to this, people

learning about smart grids and cascading failures will find it di�cult to truly test various changes to a network.

To combat that problem, the Smart Grid Security Simulator is designed to provide a more simplified user

interface that allows modification of existing networks which provides users with a more learning-oriented

view on cascading failure results due to various attacks.

1.4 Cascading Failure

To give a brief description on cascading failures in a power grid, essentially a failure in one or more intercon-

nected parts of a grid can trigger following failures in other parts of a power grid. The failure of the initial

line in a power grid results in the re-balancing of power generation and load of buses in the network. This

2

re-balancing can cause the power flow of other lines in a power grid to be greater than the line’s capacity [4].

When this happens, the lines may fail, resulting in further lines to experience the same e↵ect.

3

Chapter 2

Project Development

2.1 Development Timeline

Figure 2.1: Development Timeline

4

2.2 Risk Identification

There were a few potential risks that may have hindered the development of the project. These risks include

the failure to properly implement the ability to calculate the cascading failure simulation. This specific risk

may occur due to a misconception of how a smart grid will react to di↵erent scenarios. In this case, the

program would be providing users with a false idea of how a smart grid works, this would be considered a

failure but would be hard to detect. This could occur due to a lack of information or knowledge in how each

attack impacts a network.

Another risk that needed to be considered was the failure to implement the visualization of cascading

failure. Although this was less of a concern due to the use of a prototype provided by Dr. Xiang Li, it is

important that the visualization of the lines failing corresponded to the correct time step. This risk is notable

due to the possible problem of how data is transferred between JavaScript and Python. A line that is calculated

to fail under the implemented Python functions should correspond to the same line that is visualized in the

front end by the JavaScript models.

2.3 Risk Mitigation

Both of the risks that were identified in the previous section were ones that I had handle throughout the de-

velopment process. In order to properly implement the cascading failure model for the SGSS, I did extensive

research on the various models that have been used in order to analyze smart grids in the past. By doing so,

I was able to select models that could be accurately simulated in the SGSS. The model that I ended up using

for cascading failure is called Generation Ramping [4]. This model will be described more in detail in a later

section.

When it came to the risk of the implementation for the visualization of cascading failure in the front end,

I was able to work around this risk by trial and error. Initially, the lines that were visualized to be failing were

not the ones that had been calculated by the back-end. This was due to a fourth type of node that I had not

initially accounted for. The three main types of nodes that are in each of the networks provided in pandapower

are a bus, a generator connected to a bus, and a load connected to a bus. However, some networks, such as

the 30-bus network that I had used in testing, contained a bus that was connected to both a generator and a

load. Although this took a lot of debugging to figure out, the problem ended up being rather simple to solve. I

worked around this by adding another checker in order to figure out if a bus was connected to both a load and

generator, and reformatted the JSON being sent to JavaScript to allow for this type of node to exist. Finally,

5

I added a new icon to represent this fourth type of node.

2.4 List of Requirements

Figure 2.2: Table of Requirements

Based on the project design, the figure above, figure 2.2, is a list of requirements that were measured

and observed during the development of the project. The list of requirements is separated into those that are

necessary and those that can be added but are not critical to the design of the project. The main requirements

for the project are considered functional requirements, meaning that they were able to be observed throughout

the development process.

As for the non-functional requirements for the project, the program should be designed to be user-friendly

as well as engaging. Since SGSS will mostly be used as a tool to aid in teaching or learning how smart grids

respond to di↵erent attack cases, it is important that the animations used in the program keep users engaged

while also being intuitive. The UI should be user-friendly in that the user should have no issues navigating

through the di↵erent functionalities of the program. More specifically, the user, at the very least, should be

able to easily select a network from the list provided, choose an attack scenario, as well as choose the location

that they want the initial attack to take place. This should all be done without the user struggling to find any

of these individual components without having much knowledge on smart grids. However, it can be assumed

6

that some sort of understanding of networks and smart grids are needed when it comes to creating and editing

a network.

2.5 Meeting the Requirements

Currently, the web application allows users to select networks and attacks from the front end and calculate the

attacks in the backend. The user is also able to modify the power output or requirements of all nodes and the

capacity of all lines in the network. These nodes consist of generators, loads, and buses. SGSS also provides

users with the ability to select whether the cascading failure model will be calculated using AC power flows

or DC power flows, where the following line failures are then calculated in the backend and visualized in the

front end.

The SGSS is not yet capable of providing users with strategies to protect the network against further

attacks. However, I plan on implementing this feature in the next stage of development for the SGSS.

2.6 Benefits

In its planned final form of implementation, SGSS can provide many benefits. Firstly, it can provide users

learning about cascading failure with a better understanding of smart grids and their reaction to various

attacks. When network improvement suggestions are implemented, SGSS can also help power companies

better manage power grids by providing information on which lines or nodes should be improved upon to

strengthen the security of the network. This can result in economic benefits as cascading failures in power

grids will happen less frequently. The strengthening of power grids could also prevent events such as the

Northeast Blackout from being as severe. Potentially saving lives and improving safety for residents who

rely on the given power grid.

7

Chapter 3

Concept

3.1 Use Cases

The Smart Grid Security Simulator web application is designed to help those who are learning about smart

grids to better visualize how a smart grid functions and how cascading failure works based on various attack

cases. Additionally, it is intended to help users locate potential flaws in existing networks and provide them

with strategies to improve the security of the network against each type of attack. The use case diagram is

shown in figure 3.1.

Figure 3.1: Use Case Diagram

Use Case 1 - Learning about smart grid security

Actor: Student/person learning about smart grid functionality

Basic Flow: Student launches web application and selects a network that they would like to visualize.

They choose which type of attack that they would like to view the cascading failure for and selects a specific

8

area/group of lines for the attack to initialize at. SGSS shows which lines fail at each time-step.

Use Case 2 - Teaching smart grid security

Actor: Teacher/person teaching about smart grid functionality

Basic Flow: Teacher launches web application and selects a network that they would like to visualize.

Similar to how students would use the application, but in addition, they can show students how di↵erent

modifications on the network can impact a network positively or negatively. Additionally, they can modify

existing networks or networks that they created and view the same attack side by side with the unmodified

version of the network. This will help them show the di↵erence that modifications to certain lines in a

network can make compared to the approximate cost that it will take to make that modification. By doing

so, this feature can be used to find possible improvements on existing networks or networks that have been

created by the user.

3.2 Components

The Smart Grid Security Simulator application consists of a front-end and a back-end.

The main components of the front-end include the prompts that will ask the user to select a network

or edit a network, as well as selecting an attack case and the location of the attack. The attack size can

vary by number of lines and the attack cases consist of a natural disaster attack and a targeted attack. The

natural disaster attack selection selects all lines connected to the node that a user selects. The targeted attack

selection allows a user to select individual lines to fail. Another important component of the front-end is the

visualization of a network as well as the visualization of the cascading failure e↵ect through each time-step.

The main components of the back-end consist of the communication between what the user inputs in the

front-end and the functions in the back-end. This will allow data to be pulled from the pandapower package

in order to load the network that is specified by the user. Additionally, the back-end consists of a cascading

failure component that determines which lines will fail after the initial attack. This then communicates

with the front-end to allow the visualization of which lines proceed to go out at each time-step. The SGSS

allows a user to interact with the provided UI in order to create and edit networks to determine strengths and

weaknesses in their modified networks.

9

Figure 3.2: Activity Diagram

3.3 Activity Diagram

The Activity Diagram in Figure 3.2 shows the processes that a user can go through in order to select, modify,

and visualize a cascading failure e↵ects from the given power flow models and attack cases.

3.3.1 Selecting a Network

The user begins by opening SGSS and selecting a network for which they would like to view. The network can

be changed by the user after starting. A change in the network will essentially act as a complete refreshment

of the application and all data that has been inputted. Once a network is selected, the user can click on the play

button in order to start the calculation process. The user can also choose to edit a network before selecting

to play the simulation. Since the initial networks provided by pandapower are all stable, clicking play with a

10

default network and no attack cases will result in no lines failing.

3.3.2 Editing a Network

A user may add nodes or lines to the network that they selected. The user should specify the voltages for the

load and generators if they choose to add one, and input a capacity for every line that is added. A user may

also use the same input boxes in order to modify existing nodes or lines of the network. Once the user is done

editing the network to their liking, they can simply click the play button to proceed with the cascading failure

simulation.

3.3.3 Cascading Failure Simulation

Once the play button is clicked, the user can choose an attack case. The user may choose between natural

disaster attacks and targeted attacks. The natural disaster attack option will select all lines that connect to the

node that a user selects and the targeted attack option allows the user to select individual lines. The user may

select as many lines as they would like for the initial attack, as well as use both natural disaster attacks as

well as targeted attacks in the same attack case. The network will have no attacks by default, so this must be

selected by the user.

The user can also select whether the cascading failure calculations use AC or DC power flows. The default

for this option choice is the AC power flow. The power flow selection is used in the calculations by running

a power flow through the network at each time-step in order to determine whether or not the current flow in

a line exceeds the capacity of the line.

Once the attacks and power flow are selected, the formatted JSON file is sent to the back end for calcu-

lations. The Python script will run calculations on each time step as well as set up the initial time steps for

visualization. Once these calculations are completed, the Python script re-formats the new data into a JSON

file to send to the front-end for visualization.

Finally, the front-end visualizes all the line failures for each time-step in the network and plays the ani-

mation from time-steps 1 through 10 for the user. Once the simulation is complete, the user can choose to

modify the network and run the process again by clicking the play button. If the user does not do this, then

the user is assumed to be done using the application. The user may also click the play button again without

editing the network to simply replay the simulation that has already run

11

Figure 3.3: Simple Architectural Diagram

3.4 Simple Architectural Diagram

The SGSS program works with basic steps, as user authentication is not required since no information is

being protected. The program will only have to determine that the actor is communicating properly with the

server. Figure 3.2 shows how these will communicate with each other. The actor will be communicating

directly with the SGSS API. The SGSS API will grab data from the Python package pandapower in order to

retrieve networks and load it to be visualized.

3.5 Design Rationale

Before beginning the development stage of the project, I had done a lot of research on smart grid func-

tionalities as well as cascading failure models based on di↵erent attack scenarios in order to have a better

understanding of how each work. This is important in order to most accurately simulate these events in the

program.

I had chosen to work with a more simplistic UI as well as using color-coding for each of the inputs of the

UI in order for the user to have a simpler time figuring out how to add or modify lines or nodes in a network.

The user is also able to quickly go between time-steps in the case that the time-step animation runs too fast

to figure out which lines are failing on each individual time-step.

Due to the large amount of elements that pandapower provides, I had limited the SGSS to allow the user

to customize the capacity of the line as well as the voltage requirement of a load or the voltage output of a

generator. Although it is rather simple to add more customization options to the program, it would result is

the screen being cluttered with many input boxes as well as buttons. This is something that could be changed

in the future development of the SGSS by adding a pop-up window for customization options in order to

12

prevent clutter in the main screen of the SGSS.

13

Chapter 4

Technologies Used

Since the Smart Grid Security Simulator is a web application, this program consists of a front-end and back-

end. The front-end of SGSS consists of the visualization of the network as well as the visualization of line

failures at each time step. The front-end also contains simple data that the user can read on various nodes and

lines in the network. The back-end of the SGSS consists mostly of the functions required to load networks

from the pandapower package and translate them to JSON formatting in order to be sent to the front end for

visualization. The back-end also holds the cascading failure calculations as well as graph calculations that

are used for cascading failure.

The front-end development was built through the use of HTML, CSS, and JavaScript. These are used

to describe the function and interactive elements of the program that allows the user to select networks and

attack cases.

Python was used to build the back-end. Python packages pypower and pandapower were used for cascad-

ing failure simulation. pypower is useful for power related calculations while pandapower has many built-in

networks that will help with the development process. The pandapower package has functions that automati-

cally uses pypower’s power flow calculations on a pandapower-formatted network. I used these functions in

order to run both AC and DC power flows through networks at each time-step in the cascading failure model.

After a power flow is run, the necessary calculations for line capacities are run in order to check for line

failure. Through this process, the Python package pypower was not directly used in the development of the

SGSS. Instead pypower was indirectly used through the use of Python package pandapower.

14

Chapter 5

Design Flowchart

The basic software system can be seen in figure 5.1. Once the program is launched, it initially asks the user

to input a network. The user is then able to do so by selecting a network that already exists the programs

database, or the user can create their own network. The network creation works by allowing the user to place

their own nodes as well as edit the network capacity. After a valid network is submitted, the application loads

the network to be visualized. It then prompts the user to select an attack case. Once an attack case is selected,

the user is then be asked to select the location for which they want the attack to be initialized at. The program

provides the user with a visualization of the cascading failure at each time step. Once the visualization is

complete, the user may edit the network or choose another network to visualize. This results in the program

either being rerun from the select/create step, or will result in the end of the program. In the next stages of

development for the SGSS, the user will also be able to save their new or edited networks to a database which

would allow users to work with networks that have been created by other people. This is included in the

algorithm flowchart as well. In order to deem whether or not a network is completed, an algorithm will be

developed to check for the whether parts of the network are completely disconnected from the rest.

15

Figure 5.1: Algorithm Flowchart

16

Chapter 6

Design

6.1 User Interface

Figure 6.1: Main Screen

After launching the web application, the user will be met with the main screen of the SGSS as seen in

Figure 6.1. The main screen composes of three main sections. These are the Slider, the User Input Section,

and the Network Visualization.

6.1.1 Slider

Figure 6.2: Slider

17

The slider can be found at the top of the main screen of the Smart Grid Security Simulator as seen depicted

in Figure 6.2. The functionality of the slider is very simple as there are only ten time-steps available, time-

step 0 through time-step 9, in the cascading failure calculations of the SGSS. The user can move the slider

between any of the ten time-steps in order to view which lines are still active in the network.

Visualization of the cascading failure e↵ect on a given network always begins at time-step 1. At time-step

0, the user will be able to view the full network that they are testing. Time-step 1 then shows the user the

network immediately after the initial attack, removing the lines from the graph. At time-steps 2 through 9, the

cascading failure model is then applied and lines that fail at each time-step is removed for their corresponding

time-steps.

6.1.2 User Input

Figure 6.3: User Input

The User Input section of the Smart Grid Security Simulator contains buttons, selects, and inputs, as seen

in Figure 6.3, that allows a user to customize a network. The Play button can be clicked by the user at any

time in order to begin visualization of the cascading failure e↵ect by the selected attack. This moves the

slider from time-step 0 through time-step 9 in short intervals, acting as an animation so that the user can

better visualize the cascading failure in the network.

The grey selects on the left-most side of the section allows a user to select which network they would

like to work with as well as what power flow they would like to run in the cascading failure model. At the

moment, the user can select between networks IEEE-5, IEEE-9, and IEEE-30. These networks are all pulled

directly from pandapower. The user can also select between AC and DC power flows for the cascading failure

model to perform during line failure calculations. The Select Attack select allows users to choose between a

natural disaster attack and a targeted attack. The natural disaster attack adds all lines around the next node

a user clicks into the attack case, while the targeted attack option only adds the next line that the user clicks

into the attack case.

The center buttons and inputs allow a user to add and remove lines and nodes to the network that the user

has selected. The green button and inputs allow a user to add a node to the network. The user can select

between a bus, a generator, and a load. The generator and load options also add an initial bus connection

18

when added in in order to properly connect the node to the rest of the network. The user also needs to input

a generator power or load power if they are adding a generator or load to the network respectively.

Similarly, the blue button and inputs allow a user to add a line to the network. The user is in charge of

setting the node that the line begins at and the node that the line ends at. The capacity of a line is also inputted

directly by the user.

The pink buttons and selects allow a user to remove nodes or lines according to the line or node id that

the user inputs. This allows a user to more easily remove the line or node that they intend to remove rather

than having the potential of accidentally clicking an alternative line or node.

Finally, the user can clear the attack case, or modify a specific line or node. At the current state, the

modification process uses the existing inputs for line and node ids, as well as the power inputs and line

capacity inputs.

This section is planned to be updated into a pop-up window in order to reduce the clutter when more

modification options are added, as well as add clear instructions for what each part of the section does.

6.1.3 Network Visualization

Figure 6.4: Network Visualization. Source: Icons made by Freepik, smalllikeart from www.flaticon.com.

Figure 6.4 shows the IEEE-30 network provided by pandapower. The network consists of all four types

of nodes that are allowed in the SGSS. These are the bus, the generator, the load, and the generator and

19

www.flaticon.com.
www.flaticon.com.

load. As seen in the figure, hovering over a node or line presents the user with a small pop-up showing basic

information on the element that the user is hovering over.

In the case of the figure, the user is hovering over a generator and load. The node id is 1 and the node’s

corresponding generator power and load power is given in megawatts.

To provide more visual simplicity, the visualization of a power grid is shown like that of graph theory.

Rather than showing every bus and generator/load connected to it, SGSS only shows the combination of a

bus and generator as a generator in the front-end. This goes for loads connected to buses as well. However,

calculations for the power grid still consider all buses involved. Nodes in the visualization section can be

dragged around by the user in order to rotate the graph or change the positions of specific sections of the

graph. This allows a user to work around nodes that are too close together as well as better visualize cascading

failures when lines are initially overlapping.

It is important to note that the length of a line is not shown in the simple network depiction given by

SGSS’s visualization of a network. Since nodes can be dragged around by the user, it is di�cult to truly

implement the lengths or distances of lines and nodes in the visualization process.

6.2 Cascading Failure Model

To calculate line capacities I used the formula given in equation 6.1 below, as seen in [5]

c = (1 + ↵) ⇥ max(| fl|, f) (6.1)

To begin, the line capacities are calculated with the line tolerance (set to 1) plus 1 times the max between the

average initial magnitude of all line flows and the magnitude of active power at the receiving side of the line.

Essentially, the line capacities are calculated to 2 times the max of those values.

Next, the network is temporarily turned into a simple graph of nodes and lines to check if all the nodes

are connected. If not all nodes are connected to one another, then the network is separated into sub networks

in order to perform further calculations. Once this is complete, the power generated by generators in the grid

are then re-scaled based on the total load divided by the total generated power. This is known as Generation

Ramping which is described in [4]. And finally, a DC or AC power flow is run through each network. After

the power flow, lines are checked to see if they exceed their calculated capacities, and if they do, the line is

failed. The data is saved for each time-step and sent back to the front-end for visualization.

In [5] the authors used a di↵erent supply and demand balancing rule. This rule being, shedding and

curtailing. They did this by checking if the total power supply was greater than the total power demand. If it

20

was, then the active power outputted by generators were curtailed. If not, then load shedding was performed

to match the total power supply. This di↵ers from the Smart Grid Security Simulator’s implementation of

re-scaling power generated in order to match the power demand. The authors’ calculation for line failure was

implemented using the deterministic rule of power flow in lines exceeding the line capacity similarly to the

deterministic line failure used in the cascading failure model of the SGSS.

The alternative rule mentioned in [5] is separating and adjusting. This rule begins by separating the

generators from the grid from smallest to largest until a removal results in a shortage of supply. After sepa-

ration, the output of the largest supply node is reduced to meet the demand. This rule for supply and demand

balancing is planned to be added in the next stages of development for the SGSS.

Testing for the cascading failure model in SGSS was compared to the test results for the IEEE-30 network

as given in [5].

21

Chapter 7

Testing

7.1 Testing Procedures

In order to test the cascading failure model that I had implemented for the Smart Grid Security Simulator, I

decided to work with the IEEE-30 network case file provided by pandapower. This decision was due to the

clear test results for the same network provided in [5] that allowed for an easy comparison in order to check

the accuracy of SGSS’s cascading failure model.

In order to test the network, I decided that single-line failure would be the most practical approach.

Although the journal [5] provides both single-line and double-line failures, the time it would take to run all

the tests for both would take far too long on the current implementation of the SGSS.

7.2 Test Results

Through testing the failure of a single line of all lines in IEEE-30, I found the following information.

The failure of line 4 resulted in line 8 failing in the following time-step, and lines 0 and 7 failing in the

4th time-step in both AC and DC power flows. A total of 3 lines failed after the initial attack.

The failure of line 7 resulted in line 8 failing in the following time-step, and line 0 failing in the 4th

time-step in both AC and DC power flows. A total of 2 lines failed after the initial attack.

The failure of line 9 resulted in lines 39 and 40 failing in the following time-step. In an AC power flow,

only line 0 failed in the 4th time-step, while in a DC power flow, both lines 0 and 34 failed on the 4th

time-step. A total of 3 to 4 lines failed after the initial attack.

The failure of line 28 resulted in lines 26 and 27 failing in the following time-step. In a AC power flow,

lines 0, 29, 30, and 35 failed in the 4th time-step and lines 1, 3, and 34 failed in the 5th time-step. In a DC

power flow, lines 29, 30, and 35 failed in the 4th time-step and lines 0, 3, and 34 failed in the 5th time-step.

22

Figure 7.1: IEEE-30 AC Time-step 0

Finally, line 0 failed in the 6th time-step. A total of 9 lines failed after the initial attack.

Figure 7.1 shows time-step 0 for an initial attack case of line 28. As shown in the figure, the line that

is selected for the attack case is highlighted red so that the user is able to clearly view which line they have

selected. Figure 7.2 shows time-step 5 for the initial attack case of line 28. In this figure, lines 0, 1, 3, 29, 30,

34, and 35 are missing to show that these lines have failed in the time-steps between time-step 0 and time-step

5.

The lines with the largest vulnerabilities should be lines 1, 9, then 28, 30, 31, 36, 40, and 41 according to

[5].

However, in the testing done using the cascading model I had implemented, lines with the largest vulner-

abilities came out to be lines 28, 9, then 4, 7, 29, 31, 34, and 35. There are some similarities between the

SGSS tests and the paper’s results. Even then, the order of the vulnerabilities are still o↵. This di↵erence is

likely due to the di↵erence in implementation of power generation scaling compared to the shedding and cur-

tailing used by the paper’s authors. Given the remaining time to develop, I will revisit this issue to continue

testing and improve the accuracy of the SGSS. However, many conclusions can still be made with the current

cascading failure model implementation.

23

Figure 7.2: IEEE-30 AC Time-step 5

24

Chapter 8

Societal Issues

8.1 Ethical

As a teaching tool, the Smart Grid Security Simulator is designed to educate users on the functionalities of a

smart grid and how they respond to various attacks on a network. With this knowledge, users can help improve

on existing power grids across the world in order to help prevent events such as the Northeast Blackout from

being as severe. This could result in many lives being saved as well as prevent many families and businesses

from losing essential power that is needed in their day-to-day lives.

8.2 Technological

The Smart Grid Security Simulator helps advance the current technology in cascading failure prevention.

Due to the lack of existing applications that allow for simple modifications of a network, the development of

the SGSS helps those learning about smart grids and cascading failures to better understand how changes to

a network can improve or reduce the security of the network.

8.3 Social

The Northeast Blackout of 2003 resulted in approximately 50 million being a↵ected and many of those losing

power for up to 2 days. This sort of power less resulting from a cascading failure due to a lack of security in

power grids leads to many social impacts. Without being able to contact families or individuals who su↵er

from the lack of power, friends or families of the people impacted are unable to assure that the people they

care about are safe from the disaster. Additionally, those a↵ected are unable to contact help when needed.

The improvements in security of power grids across America, and eventually, across the world can lead to

the prevention of a massive blackout. This can result in the power-security for everyone who is connected to

25

a power grid across the world. Although smaller communities may still experience blackouts due to targeted

attacks and natural disasters, the scale of the blackout would be nowhere near as large as the Northeast

Blackout.

8.4 Economic

Large-scale blackouts across the world results in massive strains on the economy of the area that was im-

pacted. The Northeast Blackout alone costed around 6 billion dollars for repairs, with an unknown cost as to

how much it had costed the families and businesses in the area. The prevention of larger blackouts could save

countries a large sum in repair costs, which could instead be put towards the strengthening of security for

their power grids. Although the application itself does not cost much to upkeep as well as having no existing

plan to charge for usage of the Smart Grid Security Simulator, the end-goal is to help provide more teaching

tools to those learning about smart grids and cascading failure e↵ects.

8.5 Health and Safety

Although there are no direct health and safety concerns that are brought up by the SGSS. The accuracy of

the final product of the SGSS is important for the safety of power grids. Since it is built as a teaching tool,

the knowledge gained from using the SGSS is meant to be used to help improve on existing and future smart

grids. If the accuracy of the application is far from accurate, it may lead to failures in power grids in the

future. This would have a negative impact on the health and safety of people who rely on these power grids.

8.6 Manufacturability

Since this project is developed as a web application, there is no need to continue the reproduction of the Smart

Grid Security Simulator. Additionally, there is little to no upkeep cost for it.

8.7 Usability

The SGSS is designed to have a minimal and simplistic view of how cascading failure in power grids work.

In reality, a bus in the 30-bus network can be connected to a generator, a load, or both a generator and a load.

However, in the SGSS visualization of a network, the bus is combined with the generator and/or load in order

to be visualized as a single component. This is to optimize the user’s experience with the application in order

for networks at a larger scale to be much more manageable for users learning about cascading failures.

26

The UI is designed using color-coding for buttons and text input so that a user can more easily find which

inputs to use when adding or modifying nodes and lines in a network. Additionally, when hovering over a

specific node or line, information about the element is displayed. This allows users to distinguish which node

or line they would like to edit or remove.

In its current stage, the Smart Grid Security Simulator web application does not take into account for

accessibility by everyone. There are no text-to-speech options for people with visual impairments available

on the application and the current text size used may be di�cult to view as well. The accessibility of the

application is extremely important and I plan to make many improvements on the accessibility-aspect in the

future development of the project.

8.8 Sustainability

The Smart Grid Security Simulator is a web application that will be viable and useful until large changes

to the implementations of smart grids are made. Additionally, since there is a negligible upkeep cost for the

SGSS, it has little to no negative impacts on the environment and economy. The knowledge that can be passed

along to users of the SGSS may help benefit power grids and the development of smart grids in the future.

8.9 Environmental Impact

Since the SGSS is completely developed as a web application, the development process of the Smart Grid

Security Simulator has had no impact on the environment. The knowledge gained from the use of the SGSS

may lead to more e�cient power grids which may lead to small improvements on the environmental impact

of power grids.

27

Chapter 9

Conclusion

9.1 Obstacles Faced

Although I did not end up facing many obstacles that I hadn’t anticipated facing, there were a few issues that

resulted in a delay in the development process of the SGSS. The main obstacle that I faced was my initial lack

of understanding of power grids and cascading failure. Since I had not taken many courses about the topic

prior to starting the project, I had to set aside a lot of time in order to just do research. I spent the majority of

Fall quarter researching on how smart grids function as well as how a targeted attack or natural disaster could

e↵ect a power grid. After solidifying some basic understanding in smart grid functionality as well as attacks

on power grids, I had decided to dive right into the development process of the SGSS.

This led to the first major setback that I had encountered. I had initially began writing the cascading

failure model to do checks on nodes that were directly connected to the node of the initial attack. This model

would spread out as it continued to check more nodes as the failures spread out. However, after checking my

results against the results of existing studies, I found that my cascading failure model was completely o↵. In

order to proceed, I had to do much more in-depth research on how cascading failure worked. This eventually

led to the current model of checking the entire grid after each grid modification, as nodes on the opposite side

of the power grid from the initial attack may also fail in direct correlation to the initial line failure.

Another obstacle that I faced throughout the research and development of the SGSS was working on the

project individually. It was much easier to manage how di↵erent components worked with each other for the

SGSS since I developed all of the individual components. However, I was unable to refer to other members of

a group when I ran into a roadblock in development or when I didn’t fully grasp a concept during the research

phase. This made it di�cult, as a lot of the time spent developing the project was spent debugging issues that

could have easily been solved. Additionally, pandapower is not a very popular Python package, which made

28

debugging pandapower related problems much more time-consuming.

9.2 Lessons Learned

Going o↵ of the previous section, the most important lesson that I had learned was the importance of research

before development. After getting somewhat impatient with the research process and diving directly into the

development process, I found myself wasting many hours of development and debugging on issues that I

simply had wrong from the get-go. If I had stuck with the initial plan that I had setup with my advisor, Dr.

Xiang Li, I would have been able to fast-track the beginning stages of the development process simply by

fully completing the research part before starting. On top of this, I should have planned for more research to

begin with, as I did not consider the amount of time that it would take to adequately learn how to work with

pandapower functions as well as manipulate pandapower networks.

During the development stage of the SGSS, I also learned of the importance of documentation as well

as the readability of code. At the beginning stages of development, I failed to properly document functions

that I was adding since I initially believed it was not necessary if I was the only one working on the project.

However, this caused problems later down the line when I had issues figuring out what each of the functions

I had written were doing as well as the variable for the input and output of the functions. As I had begun doc-

umenting my work, I found that is streamlined the development process as I added more and more functions

but was still able to keep track of what each one of them did.

Finally, in the process of working on the project as a one-person group, I learned many of the benefits and

drawbacks of working alone. I was able to fully manage when each of the individual components of the SGSS

were completed as well as being able to work on my own time schedule. However, I found it di�cult to go

back and debug the code without the help of fellow group members. This was especially di�cult, as I found

it harder to keep track of every element that was being changed at each time-step as well as checking whether

or not that element should have been changing or not. Additionally, the testing phase of the cascading failure

model of the SGSS was extremely taxing as it required me to individually test each single-line failure in the

30-bus network as well as keeping track of each of the line failures.

Although I was able to get feedback from a few testers for the UI and the functionalities of the SGSS, I

do not believe that I had gotten enough people to test the web application out. Since the SGSS is meant to

be a learning tool in the end, I should have spent more time getting others to test out the SGSS to see if they

were able to understand how to use it without being given verbal instructions.

29

9.3 Future of Project

When it comes to the continued development of SGSS, I plan on improving the accuracy of the cascading

failure calculations. This can be done by adding more models that the user can select from such as shedding

and curtailing. Additionally, many di↵erent types of nodes can be added to SGSS to cover all of the data

structures and elements that are given in pandapower. These includes motors, shunts, transformers, switches,

and many more. This would allow users to fully customize a network.

Building upon the requirements that have not been met, the SGSS can also be improved upon to support

the creation of a new network as well as the saving/accessing of networks that have been implemented or

saved by the user.

Finally, strategies can be implemented into the SGSS to allow the application to provide users with the

best-calculated improvements that can be made on a given network. These improvements would consider

which lines are most important to be improved upon as well as suggestions on the parameters of newly added

nodes.

The addition of these would also require an improvement of processing time in order to handle much

larger networks. As the current implementation of the SGSS already struggles with handling larger networks.

When all of the improvements suggested in the previous slide are implemented, the SGSS will be able

to provide power companies with accurate methods on how to best improve on a given power grid based on

the budget they are allowed. With the improvements of power grids across America, blackouts can be largely

avoided when it comes to targeted attacks as well as natural disasters. With the avoidance of these blackouts,

there will be less interruption in everyone’s daily lives as well as the avoidance of many deaths such as the

lives lost due to the Northeast blackout. Power companies will also be able to test networks that have yet to

be developed under various attacks in order to determine what improvements can be made before installing

new networks across the globe.

30

Chapter 10

References

[1] H. Haes Alhelou, M. Hamedani-Golshan, T. Njenda, and P. Siano, “A Survey on Power System Blackout

and Cascading Events: Research Motivations and Challenges,” Energies, vol. 12, no. 4, p. 682, Feb. 2019.

[2] J. R. Minkel, “The 2003 Northeast Blackout–Five Years Later,” Scientific American, 13-Aug-2008. [On-

line]. Available: https://www.scientificamerican.com/article/2003-blackout-five-years-later/. [Accessed: 31-

May-2021].

[3] A. Muir, and J. Lopatto, “Final report on the August 14, 2003 blackout in the United States and Canada :

causes and recommendations,” Canada: N. p., Apr. 2004. Web.

[4] J. Yan, Y. Tang, H. He, and Y. Sun, “Cascading Failure Analysis With DC Power Flow Model and

Transient Stability Analysis,” IEEE Transactions on Power Systems, vol. 30, no. 1, pp. 285–297, 2015.

[5] H. Cetinay, S. Soltan, F. A. Kuipers, G. Zussman, and P. Van Mieghem, “Comparing the E↵ects of

Failures in Power Grids Under the AC and DC Power Flow Models,” IEEE Transactions on Network Science

and Engineering, vol. 5, no. 4, pp. 301–312, 2018.

31

	Introduction
	Problem
	Solution
	Existing Studies
	Cascading Failure

	Project Development
	Development Timeline
	Risk Identification
	Risk Mitigation
	List of Requirements
	Meeting the Requirements
	Benefits

	Concept
	Use Cases
	Components
	Activity Diagram
	Selecting a Network
	Editing a Network
	Cascading Failure Simulation

	Simple Architectural Diagram
	Design Rationale

	Technologies Used
	Design Flowchart
	Design
	User Interface
	Slider
	User Input
	Network Visualization

	Cascading Failure Model

	Testing
	Testing Procedures
	Test Results

	Societal Issues
	Ethical
	Technological
	Social
	Economic
	Health and Safety
	Manufacturability
	Usability
	Sustainability
	Environmental Impact

	Conclusion
	Obstacles Faced
	Lessons Learned
	Future of Project

	References

		2021-06-08T08:58:31-0700
	Agreement certified by Adobe Sign

