
SANTA CLARA UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Date: June 2, 2021

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Sarah Ahmed
Marco Marenzi

Leila Scola

ENTITLED

MARTHA: O✏ine Streaming Media for Cameroonian Refugees

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREES OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING
BACHELOR OF SCIENCE IN WEB DESIGN AND ENGINEERING

Thesis Advisor

Department Chair

Nam Ling (Jun 9, 2021 09:03 PDT)
Nam Ling

https://na2.documents.adobe.com/verifier?tx=CBJCHBCAABAArFXUGJ13ObsZwqdXVyUXAZYzoSmtadLi

MARTHA: O✏ine Streaming Media for Cameroonian Refugees

by

Sarah Ahmed
Marco Marenzi

Leila Scola

Submitted in partial fulfillment of the requirements
for the degrees of

Bachelor of Science in Computer Science and Engineering
Bachelor of Science in Web Design and Engineering

School of Engineering
Santa Clara University

Santa Clara, California
June 2, 2021

MARTHA: O✏ine Streaming Media for Cameroonian Refugees

Sarah Ahmed
Marco Marenzi

Leila Scola

Department of Computer Science and Engineering
Santa Clara University

June 2, 2021

ABSTRACT

MARTHA is a mobile application intended to deliver educational content to refugees from Cameroon currently re-
siding in Nigeria. Refugees were forced to flee after advocating for educational freedom, so education is of utmost
importance to those residing in these refugee camps. Parents want their children to benefit from learning general
educational content, as well as vocational content which is important for social mobility. Our application will display
files that can be followed at the users’ pace. While the project entails two phases, the final goal is to have a Raspberry
Pi act as a server and local database, allowing local Android tablets to stream content from its own ad hoc wireless
network. Our system will be able to provide equity in terms of social and economic advancement to those who need it
the most.

MARTHA: O✏ine Streaming Media for Cameroonian Refugees

by

Sarah Ahmed
Marco Marenzi

Leila Scola

Submitted in partial fulfillment of the requirements
for the degrees of

Bachelor of Science in Computer Science and Engineering
Bachelor of Science in Web Design and Engineering

School of Engineering
Santa Clara University

Santa Clara, California
June 2, 2021

Acknowledgements

We are profoundly thankful to everyone who helped us through the development of this project. A special thank you
to our advisor, Dr. Figueira who has been a guiding light since the project’s conception. Also, Allan Baez Morales
for his wonderful insight and ingenuity. A huge thank you to Isaac Zama from the Victoria Relief Foundation for his
guidance, foresight, and passion. We would also like to thank Dr. Parker and our teammates from EWH for their
contributions. Finally, thank you to Santa Clara University School of Engineering for helping fund this project.

Table of Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Stakeholders . 2
1.3 Existing Solutions . 2
1.4 Our Solution . 3
1.5 Alternative Solutions . 4

2 Requirements 5
2.1 Functional . 5
2.2 Nonfunctional . 5
2.3 Constraints . 6

3 Use Cases 7
3.1 User . 7
3.2 Administration . 7

4 Activity Diagram 11
4.1 Diagram . 11

5 Technologies Used 13

6 Architectural Diagram 15
6.1 Description . 15

7 Design Rationale 17
7.1 Design Goal 1 . 17

7.1.1 Goal . 17
7.1.2 Rationale . 17

7.2 Design Goal 2 . 18
7.2.1 Goal . 18
7.2.2 Rationale . 18

7.3 Design Goal 3 . 18
7.3.1 Goal . 18
7.3.2 Rationale . 19

8 Development Timeline 20

9 System Implementation 22
9.1 Overview . 22
9.2 Raspberry Pi . 22
9.3 MySQL Database . 23
9.4 Strapi and Additional Tools . 23
9.5 User Experience . 23

vi

10 Testing 26
10.1 Objective . 26
10.2 Unit, Integration, and System Testing . 26
10.3 Deployment . 27

11 Deployment Impacts 28
11.1 Risk Analysis . 28
11.2 Ethical Impacts . 28
11.3 Societal Impacts . 29

12 Conclusion 31
12.1 Obstacles Encountered . 31
12.2 Lessons Learned . 32
12.3 Next Steps . 32

vii

List of Figures

3.1 Use Case Diagram for the System’s Application . 8
3.2 Use Case Diagram for the System’s Raspberry Pi . 9
3.3 Use Case Diagram for the System’s Administration . 10

4.1 Activity Diagram for the System . 12

6.1 Phase 1: Architectural Diagram for the System . 16
6.2 Phase 2: Architectural Diagram for the System . 16

9.1 About Screen of the Application . 24
9.2 Home Screen of the Application . 25

viii

Chapter 1

Introduction

1.1 Problem Statement

Sadly, like many African nations, Cameroon was passed between imperialist hands several times leaving its infras-

tructure fragmented in many ways. Once it gained independence from both France and the United Kingdom in the

mid-1900’s, political power became consolidated to one ruling party and saw little turnover. Eventually the English-

speaking north advocated for more freedom, as well as the transition to English being the primary language taught in

schools. This unrest, coupled with the tradition of guerilla warfare to gain freedom, led to war between the majority

of the west and north, which declared itself Ambazonia, and the Cameroonian military.

Ambazonia now contains roughly 679,000 people displaced from their home which has led to about 60,000

refugees seeking safety in Nigeria. About 80% of schools in Ambazonia have been shut down and supplies have

been stopped from entering. Nigerian neighbors have graciously been setting up camps, with about 89 in existence,

and welcoming Cameroonians into their communities. Supplies are spread thin. Necessities are provided by refugee

organizations and the Nigerian government, including living accommodations, food, and water. Tarps or dwellings of

mud-bricks are set up and refugees earn money for food by working as agricultural day laborers. Parents often must

pay a small fee to allow their children to go to school. Given that refugee camps are continuously supplying food,

water, and shelter, education seems to be a primary need of refugees that is unattainable. Cameroon and Nigeria have

the highest rates of educational enrollment. Cameroon sits at 93% and Nigeria at 98%, and education is valuable to

Cameroonian refugees.

Without education, parents fear their children will lack the skills to perform well in the current job market. They

have fled their country to provide a better life for themselves and their families. Without an education they are stuck

without skills to earn a living. Education also provides the means to understand proper hygiene, bargaining skills, and

communication skills. If action is not taken to provide access to education, refugees are stuck in a negative feedback

loop of lack of knowledge that leads to lack of jobs that leads to lack of money to buy an education. Without an

education, long-term success is impossible to attain.

1

While there is a large focus on educating the next generation, this has been made extremely di�cult by the lack

of educational resources, as well as lack of educators in these camps. Most camps have a single educator, if they are

lucky, and only a blackboard to teach with, lacking things as basic as pencils and papers. Virtual learning content

can be easily distributed to many, filling the role of educators, and eliminating the need for physical resources, since

monetary barriers prevent access to school supplies. In addition, there is poor Internet connection and when connected,

it is extremely expensive to download content. Any current virtual learning environments are more expensive than

public school education in Nigeria, and therefore, inaccessible. The lack of Internet access in these refugee camps

thwarts the implementation of any solution which utilizes electronic devices that rely on Internet connectivity as a

means of distributing content. There seem to be no a↵ordable outlets for young refugees to learn how to provide for

themselves and their community which can be utilized o✏ine.

1.2 Stakeholders

Our team identified the following stakeholders in our project:

• Cameroonian refugees youth and rural community.

• Victoria Relief Foundation.

• Engineering World Health SCU.

• SCU Frugal Innovation Hub.

• Academe Nursing Institute (Vocational Education School), Ikom, Nigeria.

• Community Career Academy (Vocational and General Education), Ikom, Nigeria.

1.3 Existing Solutions

There are very few educational tools that are currently available to be utilized by children in Nigerian refugee camps.

These families and children travel with bare necessities. Agencies that support the refugees camps struggle to provide

food, water, and shelter. Learning mediums are often restricted to pencils, paper, and maybe a teacher and classroom

with a blackboard.

Various learning tools do exist that function without the need to connect to Internet often. Obviously, written

curriculum can be acquired. Besides that, virtual learning materials are often apps that can be downloaded onto

mobile devices. They often function as interactive games or learning material and work best with one person using the

app at a time. Other solutions include eBooks, tutorial videos, notes, quizzes, career guidance, and other less dynamic

2

services. These are often free to use and do not require internet access, but access to premium features and content

that will truly provide the learning material requires users to pay additional fees.

None of these learning tools provides a system that can not only download educational material, but then distribute

it across many devices and provide a learning platform for many students at one time. Lack of money or internet

access should not hinder someone from accessing educational tools that can allow them to achieve their full potential.

1.4 Our Solution

We will provide an a↵ordable, reusable, sustainable, and long-term solution to this issue. We propose an educational

application that can be utilized o✏ine through an ad hoc wireless network as a means of delivering educational ma-

terial between electronic devices, which the young refugees will use as vehicles for learning. Our system will be

implemented in two phases. The first phase will develop the front end of the application and connect it to a persis-

tent database that administration can upload educational content to. The second phase will install and configure a

Raspberry Pi to act as an intermediate local server and database that multiple Android tablets may connect to.

The first segment of our proposal is to implement an operational application for iOS and Android mobile devices

by using React Native to display our interactive learning material. It will display di↵erent grade levels to choose

from and then topics within each level. Content will largely consist of text material and dynamic testing and learning

modules. A single device will provide general education, vocational training, hygiene knowledge, and community-

building skills. In this application, one of the main tasks is going to be storing data and sending data that may be in

the data format of img(image), PDF(text document), pptx(powerpoint), mp3(audio files), mpeg(video files). In this

first phase, we will use a MySQL database and PHP to configure our data and store it persistently. We will use React

Native language to manipulate and transfer the data. As mentioned, the data will consist of education material and

media that will instruct the students in the refugee camp.

The second part of the solution is to integrate a Raspberry Pi computer that can serve as a local database in

the refugee camps that periodically retrieves updated media once it has Internet connection. With an attached wireless

card, the Raspberry Pi is expected to be able to transfer data and provide an ad hoc wireless network that mobile devices

can connect to while o✏ine. This will streamline our solution and make it more robust and scalable. In addition, we

will integrate a new persistent database and query language to reduce the lag in content retrieval by storing data closer

to the user. We will use Strapi with GraphQL and SQLite plug-ins as our back-end content management system acting

primarily as a content repository. In conjunction, we will use a Digital Ocean Cloud Server to retrieve data from

the Strapi database. Ultimately the Raspberry Pi will pull its content from the Digital Ocean Cloud Server when it

connects to the Internet for the most recent update. As a final update to our system, the application will be configured

to allow the user to manage memory usage. In addition, we will modify our system to use solar power to recharge.

3

These edits to our system will create a more robust solution.

Cameroonian refugees are facing an unjust amount of di�culty. Thankfully, many of their primary needs are being

taken care of by the Nigerian government and refugees assistance organizations, including shelter, food, and water.

These refugees work menial jobs to provide for their children and want them to get an education. The war began

over the fight for an education. We want to do our part to aid them in providing them with the resources to elevate

their status. Given the current constraints of monetary barriers and Internet access, we have developed a solution that

will be free to use, easy to distribute, and will not need Internet access to remain relevant and useful. Our solution

circumvents the two main barriers of entry to an education: money and the Internet. Overall, we will help subside the

stem of educational access.

1.5 Alternative Solutions

Most existing solution for delivering educational content require limited internet access such as our solution does,

but they lack the infrastructure to implement our solution. Our solution creates a server, ad hoc WiFi network, and

educational content that can be used by many at once. Other educational content requires individual mobile devices to

download or stream the educational content directly and can only be e↵ectively utilized by one user at a time.

One alternative solution is RACHEL, a plug-and-play server that stores educational websites that is streamable

online on a local connection. RACHEL is a tool for the 53 percent of the world without an internet connection to

access the best free educational resources [1]. RACHEL models range from 170 to 500 dollars. However, the creators

also have an open-source tool, OER2Go, which is a collection of educational websites repackaged for download

and online use. This system is too expensive for those living in refugees camps and the open-source tool lacks the

infrastructure necessary to delivery content to the refugee camps.

4

Chapter 2

Requirements

2.1 Functional

We found that there are four requirements that need to be met in order to ensure that the functionality of our system is

full-proof. The functional requirements in order of importance are:

1. The system will deliver content to students through Android tablets.

2. The tablets will download content from an external database.

3. The Raspberry Pi will be configured to seamlessly and autonomously update its content by pulling from a larger

online web database when it is able to connect to the Internet.

2.2 Nonfunctional

These requirements are aimed at improving the user’s experience. They will be verified through dialog with the client

throughout the system’s development. The non-functional requirements in order of importance are:

1. Su�cient educational content should be available without the need for Internet connection.

2. The server will have the capacity to store all content that is uploaded to the database.

3. The system will allow multiple users to connect to the server and retrieve data at any time.

4. The media will load in a reasonable amount of time and play with limited lag. We aim for all media to load in

no more than 10 seconds.

5. The system will respond to user action in a reasonable amount of time. We aim for all reactions to occur in no

more than 10 seconds.

6. The system will be accessible and useful for people with limited to no technical experience.

5

7. The application user interface will be simple and intuitive.

8. The system will be easy to maintain and update by outside programmers and administration.

2.3 Constraints

The system constraints are:

1. In order to distribute the technology to everyone that needs it, the system must be low-cost and low-power.

2. The delivery of media content from the local server to the Android tablets must be able to be carried out without

internet connection.

3. The system must be easy for users of all technical experience to interact with.

6

Chapter 3

Use Cases

3.1 User

The user may use the system in two ways. The first interaction with the system is to access and use the mobile

application itself. They have the ability to initially access the ’About’ Page, which provides a description about the

application, why it was created, and its ultimate goal, the ’Help’ Page, which allows a user to send a message to

administration, and the ’Home’ Page, which allows a user to select educational content. From the ’Home’ Page a user

selects their educational level, then the topic, then the subject, and finally the educational file to access. This can be

observed in Figure 3.1.

The user may also interact with the Raspberry Pi, accessing it to turn it on and o↵, and to charge it. The wireless

network is enabled automatically when no Internet is detected. Additionally, all Android application packages (APKs)

should already be installed. As mentioned, on the application, the user will then be able to view files and read about

the application, observable in Figure 3.2.

3.2 Administration

The administrator of the system may edit the system by creating new content for the application to display, updating

the repository of data, and responding to User’s messages submitted from the ’Help’ Page. More detail can be seen in

Figure 3.3.

7

Figure 3.1: Use Case Diagram for the System’s Application

8

Figure 3.2: Use Case Diagram for the System’s Raspberry Pi

9

Figure 3.3: Use Case Diagram for the System’s Administration

10

Chapter 4

Activity Diagram

4.1 Diagram

The activity diagram in Figure 4.1 outlines the flow of activities a user can complete when using our application. Upon

opening up our application, MARTHA, a flash screen will appear while the content of the application loads. After

that, the user is directed to the ’Home’ Screen of the app. There will be a navigation bar on the bottom of the page so

the user may click to navigate to the ’About’ Page or ’Help’ Page from the ’Home’ Page.

The ’About’ Page displays a text description of the application’s mission and the inspiration for creating the

application. Additional, information about the Victoria Relief Foundation, their mission, and their involvement in the

creation and distribution of the application and its lesson content will be included. If the user clicks on the ’Help’ Page

icon they will be redirected to the ’Help’ Page where text below text boxes will instruct a user to fill in their first and

last name and message. At the bottom of the page is a button to submit feedback or ask for help. Upon clicking the

button, a message will automatically be created that will be sent to the administrator.

If the user clicks on the ’Home’ Page icon they will be directed to a screen that allows them to choose from multiple

levels of lesson content, each increasingly more detailed than the last. This may also be referred to as the ’Lessons’

Page. By clicking on a Level, a new page will appear that will allow a user to choose a Topic within that level, such

as Vocational Education, Hygiene Education, etc. By choosing a certain Topic, the user will be directed to a certain

screen where they must choose a Subject, such as Science, Math, English, etc. Finally, if a user selects a Subject

they will be brought to a screen that displays each file pertaining to the Subject with a title to provide detail about the

content of the file.

At any stage of file selection a user may navigate backwards towards the Lessons page by clicking the arrow in the

upper-left-hand corner of the page. When the user clicks on a file they would like to view, they will be redirected to a

full screen view of that file where they can read the file or return to the files screen. The user may close the app at any

point in the flow of activities.

11

Figure 4.1: Activity Diagram for the System

12

Chapter 5

Technologies Used

In order to best meet the requirements, we identified several technologies and devices needed to implement our design.

We decided to use React Native as our programming language, and solar-powered battery, a Raspberry Pi, memory

card, Android tablet, and USB Drive as our main hardware.

Below is the complete list of devices and software we have used to develop our system:

• Android 10.1” tablet (Samsung - Galaxy Tab A (2019) - 10.1” - 128GB - Black) with Wi-Fi and Bluetooth

functionality. This tablet runs on Android 7.0, and it will be able to install and run our app and have basic video

playback functions and ability to view PDF files.

• Raspberry Pi 3B+/4B, 2GB or 4GB RAM with a micro SD card containing an image of the operating system.

Raspberry Pi is the best solution on the market for our needs for a highly portable, general-purpose computer. For

its tiny size, it supports 32GB or more on board storage, USB and HDMI ports, as well as wireless connections

via Wi-Fi and Bluetooth 5, which are all crucial for our system.

• Raspbian OS. Raspbian is the o�cial operating system of Raspberry Pi, which is a Linux(Debian)-based, low-

resource operating system. It will maximize our development time and dedicate the most CPU processing time,

RAM and storage space on our Raspberry Pi for the server processes.

• React Native. React Native is one of the most popular UI library for mobile development with a relatively flat

learning curve. It has lots of easy-to-use development tools to choose from.

• Expo CLI. Expo CLI is a command line application that is the main interface between a developer and Expo

tools. It can be used to create new projects, develop applications (running project servers, viewing logs, opening

app simulators), publishing applications, and building binaries (apk and ipa files). It makes developing a project

extremely simple and straightforward, especially given the thorough documentation, and it is compatible with

React Native.

13

• MySQL. MySQL is extremely compatible with React Native coding environments and useful in storing data in

an organized fashion, with clear labeling of metadata. It is specifically designed to make front-end development

easier. It will be useful to store content and keep it updated in ways that will enable filtering and rendering on

the front end.

• PHP. PHP is a widely-used open source general-purpose scripting language that is especially suited for web

development and can be embedded into HTML. This makes it an ideal tool for communicating with the MySQL

database.

• Strapi. Strapi is a headless content management system that acts primarily as a content repository. It utilizes

JavaScript, which is particularly useful in setting it up since we are familiar with it. It allows for easy integration

of GraphQL and SQLite using plug-ins. This will eventually streamline database management in the second

phase of system development.

• GraphQL. GraphQL is a query language for APIs and a runtime for fulfilling those queries with existing data.

It is naturally integrated as the schema for the database and its syntax is simple and easy to use with the React

Native framework.

• SQLite. SQLite is a C-language library that implements a small, fast, self-contained, high-reliability, full-

featured SQL database engine. It allows for easy management and storage of our data.

• DigitalOcean Cloud Server. DigitalOcean is a simple server that works across multiple hardware devices in

parallel. It will bring our server content closer to the user, reducing lag time.

Our goal was to keep the system scope and requirements simple to make the system easy to use. This has allowed

us to focus on creating a robust and simple design. This also somewhat limited the variety of bugs and other technical

issues we encountered during development.

14

Chapter 6

Architectural Diagram

6.1 Description

Our architecture is data-centric, rather than data-driven, with clients retrieving data that is then stored to their local

device(s). There are two major parts of our system, which operate asynchronously. The first part of our system consist

of an administrator uploading files to the MySQL database, and therefore the Santa Clara University file server, or

Strapi database. (The database used varies depending on the phase of project development). The database will serve

as persistent storage for our files that can be edited at any time, given the administrator has Internet connection. The

schema for the database will be configured and accessed using PHP or GraphQL.

The second part of our system will consist of the Raspberry Pi server and local devices that will stream from it.

The Raspberry Pi server requires modules to be installed and set up for it to function as a media server, as well as a

script that will constantly run to connect to the database and retrieve data if Internet access permits it to. The Raspberry

Pi will also provide an ad hoc wireless network in a 25m-30m range. Within this network, local devices may connect

in order to download content that is stored on the Raspberry Pi server to the device by observing what is available

and selecting desired content. The Raspberry Pi will allow this to happen by serving the media and accepting client

connections, then streaming media data to all connected clients in the network.

The integration of the Raspberry Pi will occur during the second phase of system development. Initially, the front

end will retrieve files cached on the Santa Clara University file server via a URL. In the second phase, we will phase

out the MySQL database and phase in the Strapi repository and its additional tools. The Raspberry Pi will connect to

the DigitalOcean Cloud Server to retrieve content. It will also, as mentioned above, host a local wireless network for

local devices to retrieve content from.

The client will be an Android application running on the tablet. It will display a library of media and handle display

of data – which will typically be PDF viewing. Note that it is likely that more data will be available on the server than

can be stored on local devices, so it is necessary that clients are able to choose the content they download.

15

Figure 6.1: Phase 1: Architectural Diagram for the System

Figure 6.2: Phase 2: Architectural Diagram for the System

16

Chapter 7

Design Rationale

To meet the needs of the project, our group selected the following necessary devices and technologies to implement

the design.

7.1 Design Goal 1

The system requires an on-site server and peripherals to deliver the data to local devices within the refugee camp. It

must do this at a low-cost and with low-energy usage.

7.1.1 Goal

The physical devices we chose to include are:

• Raspberry Pi

• SD Card attached to the Raspberry Pi

• Android Tablet

• Raspbian (Operating System)

7.1.2 Rationale

The Raspberry Pi will act as the control hub that manages and is responsible for most of the functionality. The

Raspberry Pi will not only store the education materials inside of the SD card, but it will also be responsible for

hosting the ad-hoc wireless network that allows the Android tablets to connect whenever necessary. In addition, the

Raspberry Pi only uses .4-3.4 watts/hour, requiring very little energy. One of the constraints is the lack of Internet

connectivity in the refugee camps, and the Raspberry Pi is a compact device that can be easily carried to a location with

Internet access to retrieve and download the latest data. After the Raspberry Pi is taken back to refugee camps, it hosts

an ad-hoc wireless network that allows Android tablets to connect and download new data. The SD card enhances

17

the Raspberry Pi memory capability. The Raspbian Operating System will be responsible for managing the network

protocol between the Raspberry Pi and the Android tablets, as well as conserving computing resources used by system

processes to ensure most resources are dedicated to our application.

7.2 Design Goal 2

It is necessary to use languages that can easily construct a relay point to upload and manage data.

7.2.1 Goal

The coding languages used are:

• React Native

• JavaScript

• PHP

7.2.2 Rationale

React Native is a language that is extensive and popular and combines the functionality of React, JavaScript, CSS, and

HTML to create a versatile and easy to use framework for building applications. It can easily be utilized to manage

data and connections in our system. We will use JavaScript to manage the client and server side communication as a

natural incorporation in the React Native framework. PHP will be used in intermediate configurations of the database

and server.

7.3 Design Goal 3

The focus of the system is the mobile application responsible for displaying and managing data. Proper coding and

management tools are required to do so.

7.3.1 Goal

Tools used to build the mobile application are:

• React Native

• MySQL Database

• Strapi

• DigitalOcean Cloud Server

18

• GraphQL schema plug-in

• SQLite

7.3.2 Rationale

React Native was used to develop and manage the cross-platform mobile application. It can easily be wielded to create

an intuitive user interface given its wide range of developer tools and environments without the extra work of installing

packages and installing environments from scratch.

MySQL is a simple database that allows for simple organization of database content and tagging of content to

allow for simple access and sorting to the front-end. This allows for easy persistent storage and access of educational

content from our front-end application. It was used as an intermediate database and server during phase one of system

development.

Strapi contains open-source libraries and headless content management system that acts primarily as a content

repository. It makes content accessible via an API for display on any device, without a built-in front-end or presentation

layer and easily integrates several tools that streamlines content upload and retrieval. It will be integrated during phase

two.

DigitalOcean Cloud Server is a server that runs in parallel and provides storage of content. It will be implemented

closer to the user to reduce latency in data retrieval during phase two. It will pull content from the SQLite server that

Strapi uses by default.

GraphQL is a query language for APIs and is a very simple way of interacting with AWS Amplify to manage data,

both creating the schema and querying it. It is o↵ered as a default schema when creating the AWS Amplify database.

It enables the quick development of applications by giving software engineers the ability to query multiple databases,

micro services, and APIs with a single GraphQL endpoint.

SQLite is a C-language library that implements a small, fast, self-contained, high-reliability, full-featured, SQL

database engine. It is automatically used by Strapi and will act as an middle-end storage tool.

19

Chapter 8

Development Timeline

Our team generally followed the timeline below to complete our project in a timely fashion in order to meet expected

deadlines from both Santa Clara University and our client, the Victoria Foundation. It is depicted as a general Gantt

chart, seen in Table 8.1.

20

Legend Team Sarah Leila Marco Deadline

Table 8.1: Development timeline arranged to conform to given deadlines.

Fall
Weeks

1-2

Fall
Week 3

Fall
Weeks

4-9

Fall
Week 10

Winter
Weeks

1-2

Winter
Week 3

Winter
Week 4

Winter
Weeks

5-9

Winter
Week 10

Spring
Week 1

Spring
Weeks

2-9

Spring
Week 10

Problem
Statement

Design
Report
Design
Review
Revised
Design
Report
Initial
System

Operation
Application
Front-End
Prototype

Server
Set-Up

API Calls
and

Back-End
Flow

Application
Front-End
Connecting
Front-End

and
Back-End

Admin
Website

Front-End
Testing

Final Pre-
sentation

Final
Report
Final

System

21

Chapter 9

System Implementation

9.1 Overview

Our system is develop in two phases. During the first phase, the system consists of a MySQL database and an Android

tablet with our application, MARTHA, installed on it. The front-end pulls directly from the MySQL database and

downloads the content. During the second phase, the MySQL database is replaced with a Strapi content management

system/repository in conjunction with a SQLite and DigitalOcean Cloud Server to manage data and store it persistently.

A Raspberry Pi will be integrated to retrieve data from the DigitalOcean server when Internet access is available, acting

as a local database, and host an ad hoc wireless network, acting as a local server, for the front end to connect to and

download content from. The second phase aims to streamline the functionality provided in phase one, as well as reduce

latency.

9.2 Raspberry Pi

We have chosen to use a Raspberry Pi in our system due to its versatility, price, size, and power usage. As mentioned,

a Raspberry Pi is a computer that can be configured to do a variety of things. In this instance, we have configured it

to connect to the Internet when the Internet becomes available and download new content from the MySQL database.

When the Internet is not available, the Raspberry Pi will automatically generate an ad hoc wireless network for devices

to connect to in order to receive educational content.

A Raspberry Pi allows us to provide an a↵ordable, scalable, and maintainable system to communities that have

very few resources, namely those living in refugee camps. The Raspberry Pi used in our system is only about thirty-

five dollars. It will be used with multiple tablets and students, making the cost nearly negligible. For the same reason,

the system scales very well.

Additionally, the system is small, and therefore easy to transport and store. The Raspberry Pi is 3.5 by 2.3 by

0.76 inches, and therefore a very portable option. The system is being developed for community with no access to

technology or electricity, so must use as little power as possible. A Raspberry Pi only requires 3 amps power supply

22

which can easily be produced from a solar powered battery.

9.3 MySQL Database

A MySQL database persistently stores all files in the system. It provides an easy and functional way to organize

files. It was easily integrated into both the front-end and Raspberry Pi. The application pulls content directly from the

MySQL database providing a straightforward data path. It also does not incur monetary costs to the system as it is

used. Overall, it is a simple and intuitive piece of the system.

9.4 Strapi and Additional Tools

A Strapi repository database persistently stores all files in the system, but provides simpler administrative system

management and automatic integration of GraphQL and SQLite to configure and store data. DigitalOcean Cloud

servers retrieve data from SQLite to store data closer to the user. Ultimately, the Raspberry Pi will pull updated

content from the DigitalOcean server and serve as a local database.

Replacing MySQL with Strapi and its additional tools will make data management easier for administration and

store data closer to the end user, improving system functionality, reducing latency, and increasing system robustness.

9.5 User Experience

One of the main accomplishments of the system is that the system is extremely simple and easy to use given that

members of the community we intend to deploy to have never used electronic technology. The user interface design

and user experience are critical to provide a system that is easy to navigate.

To achieve our goal, we organized our content hierarchically and by educational category and employed a min-

imalist design strategy. We used colors to emphasize di↵erent educational categories, simple font throughout, and

o↵ered simple work flows throughout. The content is organized by grade level and then educational category, as seen

in Fig.9.1 and Fig.9.2. This design is intended to make our application simple, intuitive, and approachable.

23

Figure 9.1: About Screen of the Application

24

Figure 9.2: Home Screen of the Application

25

Chapter 10

Testing

10.1 Objective

The objective of testing is to detect and correct defects in the system as early as possible. More specifically, once

defects are detected, they must be documented, prioritized, and the most critical should be fixed. Testing was conducted

on individual pieces of the system, as well as the system as a whole, including the database, Raspberry Pi, and the

front-end application.

The test plan prioritizes tests according to the system requirements. The hope is that the system will be deployed

in the near future. We began our testing by focusing on unit testing, then integration testing, then system testing. The

final steps of the process are closed-box testing and user acceptance testing.

10.2 Unit, Integration, and System Testing

As mentioned, the first phase of testing focused on meeting system requirements and testing using unit, system, and

integration testing. The development team tested individual units mainly for functionality, but also for clarity of code.

Unit testing prioritized the following:

1. The tablets will download content from an external database.

2. The Raspberry Pi will be configured to seamlessly and autonomously update its content by pulling from a larger

online web database when it is able to connect to the Internet.

3. Su�cient educational content should be available without the need for Internet connection.

4. The system will be accessible and useful for people with limited to no technical experience.

5. The application user interface will be simple and intuitive.

In summary, we hope that content will be pulled from an external database, be loaded onto the Android tablet, and

be easily accessible for all users.

26

At any point in development, there should be a path to upload content to a persistent database, whether that is

Strapi or MySQL, and retrieve it on the front-end where it will be available to users without Internet connection. In the

final phase, the Raspberry Pi should be able to store database content, automatically update itself, and automatically

create an ad hoc network for external devices to connect to. The front-end application should provide an intuitive and

simple interface for users to select educational material. The database should store educational content.

Each of these units were tested individually before shifting attention to integration testing to ensure parts of the

system integrate seamlessly. Once unit and integration testing is completed, the system testing will begin. In system

testing we will ensure that the application has a path to retrieve database content that can be viewed by users.

10.3 Deployment

The final phase of testing will focus on the ease-of-deployability and ease-of-use of the system. The system should be

easy to deploy in the sense that any person could take our system to a school with no internet connection or electricity,

and set up the system to download files to local tablets. The system should be easy to use for the users who are

accessing the files. The wireless network should connect without user intervention. To test these parts of the system

we hope to enact a beta test with students at Santa Clara University, then conduct user-acceptance testing within the

refugee camps in Nigeria.

We will begin this process by asking peers to use our system and ask for feedback on the usability, intuitiveness,

and performance of the application and system as a whole. The application as a whole, should be easy to use for a

person who has had limited experience with technology. The interface should therefore be simple and straight-forward

to use. In addition, the system must perform with little error and handle errors with ease.

By testing on local groups before conducting user-acceptance testing in Nigeria will ensure that basic errors will

have been corrected before we bring the system to the community it is intended to be deployed in. Therefore, once

brought to Nigeria, we may focus on correcting usability and deployment errors.

The final testing phase will be the user acceptance testing in Nigeria. The Victoria Relief Foundation will assist

the Santa Clara University team in deploying the system to the refugee camps. Teachers and students in the refugee

camps will test the system. Ideally users will be able to use the system without much instruction and maintenance.

Our hope is that the Raspberry Pi is started with ease, the Android tablets connect to the Raspberry Pi seamlessly, and

the users are able to easily navigate the application’s interface. The team would like to see that the interface is simple,

yet engaging and that the system is intuitive to use and continue to maintain. After this final testing, the team will

make final changes and finalize the system. All testing results and iterations should be documented.

27

Chapter 11

Deployment Impacts

In this chapter we evaluate the various types of impacts our system will have on the local and global community

once deployed. Important factors we consider are the risks associated with our product, ethical impacts, and societal

impacts.

11.1 Risk Analysis

Our system presents minimal risk since no one experiences any additional harm when using our system, emotionally

or physically. The information presented on our application has been crafted by students specifically informed about

the most relevant educational topics and vetted by the Victoria Relief Foundation. This should ensure the content is

both relevant and culturally appropriate, therefore minimizing or eradicating any emotional harm. Physical harm is

limited to the narrow potential of a wire short circuiting and simultaneously being exposed to water, electrocuting

anyone touching the device. This is highly unlikely since wires are largely insulted and unlikely to short circuit.

By providing detailed documentation of our system and its functions to users and members of the Victoria Relief

Foundation, we should be able to provide thorough system understanding and avoid any potential risks from occurring.

We also o↵er user training if necessary. By tailoring our system to client specifications, the system should be easy and

simple to use while providing content that is useful.

11.2 Ethical Impacts

This application is intended to deliver educational content to a community that does not otherwise have adequate

access to it. All humans should be given equitable access to information and educational tools. Education, and

therefore opportunities that follow, should not be limited by geography or money. Since it is within our capabilities

to create a solution that brings educational materials to refugee and impoverished communities, that is what we have

done.

Our system is also economical, especially when compared to other alternatives. We provide the initial tablets and

28

server at no cost, and all content is designed by Santa Clara University students and volunteers. In addition, the system

will be utilized by many students and teachers, making the costs of each device negligible. As mentioned, the system

was free to develop and distribute.

Our system is sustainable since we have employed battery saving methods. We use a solar-powered battery to

charge the tablets and to power the Raspberry Pi. We have also taken measures to reduce background computation in

our system to reduce energy consumption further. Since the system is used by many users, it makes it more sustainable

than systems used by only one person. This makes the system overall less environmentally taxing that other electronic

systems.

The main negative ethical consideration is how accurately the content engages with users and delivers culturally

appropriate information. While we have attempted to speak with those immersed in the refugee communities to

capture the needs of our audience, we can only understand so much without actually experiencing the environment

for ourselves. Our content is intended to educate users in traditional academic subjects, but also vocational training

and emotional and physical wellbeing. If designed e↵ectively, users should be able to easily navigate the application

and learn. If we distract from the content or do not organize the content in a way that is easy to navigate there is the

potential for causing more stress, denying people ease of access to educational material, or accidentally disrespecting

others’ values by displaying content incorrectly. However, we believe we have been able to avoid this issue through

the help of the Victoria Relief Foundation.

11.3 Societal Impacts

The society most directly impacted by the deployment of our system is the Cameroonian refugee camps in Nigeria

that the Victoria Relief Foundation has been supporting in the ways that they can. Our goal is to provide access to

educational, vocational, and health information through our mobile application. Many aspects of our project ensure

the societal impact is positive.

Our application is free to deploy and to use. Therefore, it is economically positive, preventing users from unnec-

essarily spending money on education and providing easier access to information. It also contains politically neutral

content, ensuring it is a useful and positive resource. As mentioned, the content aids users in accessing educational

and health care information, again providing a useful and positive community resource.

The platform is simple and easy to use and presents no security risks. The user interface is minimalistic and easy

to navigate. No information is needed to log in and use the application, presenting no information security risks. The

system is also easy to deploy and manufacturing it is easy in comparison to most technological systems.

It is worth mentioning the principle of informed consent. This principle relates to our project because the system

has been designed for a specific community based on specifications from the Victoria Relief Foundation. The system

29

will not be deployed without community consent, therefore ensuring no one is at risk and understands the system and

its functionality before using it.

Throughout the development of this project we reflected on the qualities that ”good” engineers possess and what

their tools o↵er society. At the core of a good engineer is compassion for the community they are designing tools for.

In addition, a good engineer has the foresight to plan for changes in user needs and plan for the future, ensuring the

product they design is adaptable and sustainable. Throughout this project, we have attempted to consider the ways

users will need to interact with our system to gain a benefit, limitations on system use, deployment e↵ects of our

system, and how user needs will evolve. By considering these factors we have ensured our product fits the current

needs of Cameroonian refugees, can be used without Internet connection and other resources, can be updated with ease,

and can move locations and be modified. We also ensured the product was sustainable by using solar-powered batteries

and low-power devices and by allowing multiple users to use the system at one time. Our goal is to enact positive

change, ensuring the world has more equitable opportunities available. We hope our system provides impoverished

communities with little to no Internet access the ability to access educational, vocational, and health resources.

30

Chapter 12

Conclusion

To conclude, we will discuss obstacles encountered, lessons learned, and next steps for the project.

12.1 Obstacles Encountered

Our team encountered a wide range of obstacles throughout the course of this project. The largest obstacle we faced

was the fact that we were all separated and working remotely due to protocols enacted due to the spread of Coronavirus-

19 (COVID-19) around the globe. This severely hindered our ability to coordinate and integrate system units, as well

as enact su�cient testing. Our solution was to communicate often and work to build a working path of data flow for

our system in hopes that it will be further developed in the future. In addition to the strain of COVID-19, we lost a

teammate after our first quarter, leading to some setbacks in the development of the Raspberry Pi unit of the system.

After gaining a new teammate, we then encountered di�culty in working with new technologies, most specifically

the Raspberry Pi and supplementary database. We attempted to conduct thorough research, reach out to teams that had

worked on similar projects before us, namely the YouLearn team, and read available documentation and forums that

detailed information on the Raspberry Pi, creation of ad hoc wireless networks, file server implementation and passing

file information.

Another challenge was lack of ability to fully perform integration and system testing due to the restrictions from

COVID-19. As a result, we split our development into two phases. The main di↵erence in the two phases is the

di↵erent databases. In order to create an e↵ective database we used two di↵erent methods, Strapi and MySQL, to

ensure that we had a working database.

Debugging was another challenge faced. There were several instances where we would get stuck on one simple

line of code or a single command. To resolve this issue, we usually did research on available forums and would return

to a problem after a break, where we were able to more easily debug the system.

Throughout the process, constant communication and flexibility in goals allowed us to create a simple, yet working

solution to the initial problem.

31

12.2 Lessons Learned

While developing MARTHA, our team learned the details of a software development life cycle. We learned how to

communicate with stakeholders and glean user needs, document every step of the design process, iterate on initial

design, coordinate with teammates and stakeholders, and be flexible with our goals in order to develop a working

solution. Each step in the process allows one to create a product that can be easily and e↵ectively used by others and

further iterated upon to create something that is even more useful to communities around the world.

Due to remote working and the nature of software development, we learned how critical regular communication

and coordination of goals is as well. We held weekly team meetings, regularly checked in with our advisor, and

regularly checked in with other stakeholders. This allowed us to keep each other accountable, troubleshoot problems

together, and progress project goals forward in a timely fashion.

Lastly, we learned the importance of flexibility in engineering projects. As one begins to design and test units,

certain errors or issues might lead one to find a better solution to the problem at hand. In order to e↵ectively create

system units and integrate pieces together, we needed to communicate, conduct unit testing, and incrementally advance

our project. Overall this steady testing allowed us to progress faster and more e↵ectively.

12.3 Next Steps

Our system units meet all of the functional, non-functional, and constraints we initially set out to accomplish. Phase

two still is incomplete. While the Raspberry Pi is able to successfully host an ad hoc wireless network that devices can

connect to, it is not yet able to send files over the network. In addition, the Raspberry Pi and mobile application do not

have automatically storage management. All other pieces of the system work as intended. In the future, we hope that

the Raspberry Pi can successfully send files over its ad hoc wireless network and manage storage.

We also hope to be able to conduct our user testing and deployment testing in the future. This will allow us to

better understand what gaps in technological understanding we have overlooked and how we may improve our system

design and user interface.

We would also like to integrate a solar-powered battery that charges the Raspberry Pi and Android tablet. This

would be a final step before deployment since it is only a matter of buying the battery. We would also like to change

certain settings on the Raspberry Pi so that its operating system uses less power overall.

After these corrections to the system are made, creating a script that seamlessly sets up the Raspberry Pi would

make the system much more scalable. It would allow Raspberry Pi boards to be set up quickly for use with our system,

rather than taking a couple hours. These steps would make MARTHA easier to use and meet all system goals.

32

Bibliography

[1] “Rachel.” https://worldpossible.org/rachel.

33

		2021-06-09T09:12:34-0700
	Agreement certified by Adobe Sign

