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ABSTRACT

With the increasing size and complexity of machine learning datasets, obtaining highly performing prediction models
in various tasks has become increasingly difficult. In particular, the processs of hyperparameter optimization (HPO)
contributes a significant portion of this cost. This work examines a specific graph-machine learning model, graph
convolutional networks (GCN), to derive a hyperparameter configuration with optimal performance across a variety
of datasets. We motivate our configuration theoretically and validate it empirically through comprehensive experi-
mentation. We find that for GCN semi-supervised classification tasks, our configuration performs nearly optimally
when compared against traditional HPO while only requiring a fraction of the budget. We further propose using this
configuration to warm-start subsequent HPO as a means of accelerating its convergence.
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Chapter 1

Introduction

In recent years, considerable effort has been made to apply machine learning to tasks involving arbitrarily-structured

data like those of graphs. Most notably, [3] introduces graph convolutional networks (GCN), a fast and powerful

layer-wise propagation rule for neural networks that generalizes convolutions to operate directly on graphs. In semi-

supervised representation learning tasks like vertex classification, GCN offers significant performance increases over

previous competing methods.

Despite the efficiency of GCN being best-in-class, the growing complexity of real-world datasets produces a multi-

plied increase in the complexity and cost of obtaining an accurate model. In particular, model selection, which involves

the steps of model training and hyperparameter tuning, is acutely sensitive to this increase. As it stands currently, this

model selection stage can consume weeks of compute resources and expert attention. Despite platforms like RayTune

[4] offering distributed tuning and implementing efficient hyperparameter optimization (HPO) algorithms, the cost of

performing HPO can still remain prohibitively expensive in sufficiently complex tasks.

In this work we derive a generalized hyperparameter configuration for GCN and show its performance to be

nearly optimal across various datasets. In particular, we focus on the task of semi-supervised vertex-classification

and consider the simultaneous performance over multiple datasets in our derivation. In contributing this, we hope to

reduce the cost of hyperparameter tuning that currently prevents comprehensive HPO over massive datasets. That is,

by using this configuration as a warm-start in subsequent tuning, convergence time is vastly accelerated. This practice

of warm-starting HPO is preceded by similar work in literature [5]. Further, for those with especially limited compute

budget, this warm-start can be used directly as a drop-in configuration to achieve nearly optimal performance even on

unseen datasets.
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Chapter 2

Methodology

2.1 Preliminary: On Graph Convolutional Networks

In motivating the development of graph machine learning models we introduce the problem of graph-based vertex-

classification. That is, over a network in which only a small subset of nodes contain ground-truth labels, we wish to

predict the labels for those remaining. This problem can be framed as a semi-supervised learning task in which label

information is transformed through the network topology.

Various approaches have been presented in literature to solve this problem, but GCN [3] represents the most

promising of these. The authors of [3] draw from the success of traditional convolutional neural networks (CNN)

by deriving an approximate form for convolutions that operate directly on graph-structured data. For an in-depth

derivation of this form and its relation to traditional CNNs, the reader is referred to [3]. In general, GCN allows for

representation learning of many sorts, not just that of vertex-classification.

The layer-wise propagation rule of GCN is described in equation 2.1.

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2 H(l)W(l)) (2.1)

Here, Ã = A + In is the adjacency matrix with added self-loops. D̃ is the diagonal degree matrix of the matrix Ã,

defined as Dii =
∑

j Ãi j. W(l) is the matrix of trainable filter parameters for to the l-th layer. σ(·) can be any activation

function such as ReLU or softmax. Finally, H(l) is defined as the hidden feature matrix for the l-th layer. We note that

values on the input layer are simply those provided from the initial node feature matrix: H(0) = X.

Using this form, we can therefore implement a multi-layer GCN by repeated composition of the forward-passing

rule. We set the activation on the output layer as softmax and use existing methods of stochastic gradient descent to

train our model. In doing so, we can ultimately obtain a GCN model capable of performing semi-supervised vertex-

classification.
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2.2 Preliminary: On Hyperparameter Optimization

The validation accuracy of a machine learning model can be expressed as a function P : X → R of its hyperparameters

x ∈ X. Thus, the HPO problem can be defined as finding the configuration of hyperparameters x∗ ∈ X such that

x∗ = arg maxx∈X P(x). Further, P is considered to be both blackbox and expensive. That is, x∗ cannot be obtained

analytically leaving the only method of finding x∗ as repeated evaluation of P for various x ∈ X. Since dimensions of

X are allowed to be continuous, evaluating any finite number of configurations {x1, x2, . . . , xk} is not always guaranteed

to produce x∗. Recalling that P is also expensive to evaluate implies k is prevented from being very large. Because

of both of these limitations, it is often considered sufficient to approximate x∗ with a configuration ξ∗ such that

P(ξ∗) ≈ P(x∗) = maxx∈X P(x).

Because of the well-studied nature of the blackbox optimization and HPO problems, efficient algorithms to ob-

tain ξ∗ have been proposed. In particular, [1] proposes a HPO algorithm that combines the approaches of Beyesian

optimization (BO) and Hyperband (HB) to create a novel method called BOHB. [1] performs in-depth benchmark-

ing comparisons to other state-of-the-art methods and finds that BOHB consistently outperforms competing methods

on the basis of final model performance for a set budget. Thus, BOHB offers a means of obtaining ξ∗ for a given

performance function P and search space X.

2.3 On Maximizing Simultaneous GCN Model Performance

Objective Function. For a single dataset, S, the performance function PS of a GCN can be defined in any number of

ways with the most common choices being validation accuracy and validation loss. Note with the latter, the problem

becomes one of minimization. However, since P can be defined arbitrarily, we are able to employ BOHB to solve a

more general problem provided P remains well-defined. In our case, we consider many datasets U = {S1,S2, . . . ,Sn}

and wish to find a single configuration ξ that performs nearly optimally over all datasets. That is, to obtain ξ satisfying

the criteria in (2.2).

ξ ∈ X : ∀Si ∈ U, PSi (ξ) ≈ max
x∈X
PSi (x) (2.2)

This configuration ξ represents the best trade-offs between individual datasets’ performances that maximizes the

universal performance. Thus, finding ξ becomes a problem of simultaneously maximizing all performance func-

tions PS1 ,PS2 , . . . ,PSn . To quantify this universal performance we denote PU to be a function that aggregates

{PS1 ,PS2 , . . . ,PSn }. Thus finding such a configuration satisfying the initial optimization criteria reduces to solving

for ξ = arg maxx∈X PU(x). This takes the identical form of the HPO problem above; therefore, we can now explicitly

apply BOHB using PU to obtain ξ.

Universal Metric. The definition of PU deserves discussion since it will affect the resulting configuration ξ. An

initial approach would be to definePU as the classification accuracy over the union of all validation samples of datasets
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in U as in equation (2.3).

PU(x) =
∑
Si∈U # correct predictions∑
Si∈U # validation samples

(2.3)

However, as shown in section 3.2, the size of datasets vary considerably. This method would unintentionally weight

larger datasets (those with larger validation splits) more heavily in this summation. With sufficient variance in dataset

size, we may observe thatPSi (ξ) ≈ maxx∈X PSi (x) only when |Si| is large. Maximizing such a function would therefore

fail to provide a configuration satisfying the desired criteria in (2.2). We can solve this problem by defining PU as the

arithmetic mean of the classification accuracies PS1 ,PS2 , . . . ,PSn as shown in equation (2.4).

PU(x) = PSi (x) =
1
|U |

∑
Si∈U

PSi (x) (2.4)

However, in doing so, we potentially invite another concern. Under such a formulation PU weights the classification

accuracy of all datasets with equal regard. Consider two datasets S h, S l whose maximum performance differ by a

significant margin (maxPSh � maxPSl ). By nature of their respective magnitudes, any constant performance change

to PSl is relatively more significant than the equal change to PSh . Thus, an appropriate formulation for PU would be

one which maximizes the classification accuracy of all datasets relative to their maximum performance. We do so by

weighting each dataset by a factor inversely proportional to its maximal accuracy as shown in (2.5)

PU(x) =
1
|U |

∑
Si∈U

PSi (x)
maxPSi

(2.5)

We note that this form for PU has the added, non-trivial prerequisite of knowing of the maximal performance PSi (x∗)

for all datasets Si ∈ U. With PU defined as above, our desired configuration ξ can be obtained by directly applying

the BOHB algorithm to find its maximal argument.

2.4 On Tuning GCN with Warm-Start Configuration

The hope for this warm-start configuration is universal performance extending beyond the datasets known to it from

U. That is, for some dataset S j < U, of which ξ has no former information, we still hope ξ can generalize to this

unseen dataset and perform nearly optimally (PS j (ξ) ≈ maxPS j ). This objective is motivated by the argument that for

a sufficiently large and diverse U, an unseen dataset S j is likely to have structural similarity to at least one S i ∈ U.

Knowing ξ performs well on S i, we can expect a similarly high performance for ξ on S j.

Thus the overarching objective for ξ is to be a single, highly performing configuration for GCN vertex-classification

tasks regardless of dataset used. We therefore encourage this generalization for our final configuration by including

a number of diverse datasets in our experimentation (see section 3.2). We likewise perform generalization testing in

section 3.4 to verify this claim.
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Chapter 3

Experiments

We perform a number of experiments for the purposes of obtaining the warm-start configuration (section 3.3) and

measuring its performance (section 3.4). The implementation of GCN is done using the deep learning framework

provided by PyTorch [6]. For the experiments involving a BOHB search, we directly use the implementation provided

by RayTune [4].

3.1 Hyperparameter Search Space

We enumerate our hyperparameter search space in Table 3.1. We note the inclusion of one extra hyperparameter

“dropedge” not originally included in [3]. We incorporate the DropEdge technique as described in [7] and thus include

its configurable hyperparameter, the dropedge preservation rate, in our experimentation. We confirm the results of [7]

in finding that the inclusion of DropEdge decisively promotes the performance of GCN.

We further note the irregular shape of this space. Since we allow the dropout rate to be configurable on a per-layer

basis, the number of dropout variables increases with the number of layers in our network. Likewise, the residual

mechanism in deep learning is only defined over layers whose shapes are identical. Therefore, the inclusion of this

hyperparameter is conditioned on the number of layers being greater than 2.

Table 3.1: Hyperparameter Space

Hyperparameter Type Range Description

nlayers integral {2..4} number of hidden layers
nhidden integral {8..64} length of hidden feature vectors
bias categorical {True,False} include bias parameter
residual categorical {True,False}nlayers>2 apply residual mechanism
weight decay real [0, 1e−3] L2 regularization weight
learning rate real [0, 0.1] learning rate
dropedge real [0, 1] edge preserving rate
dropout real vector [0.1, 0.9]nlayers−1 layerwise dropout rates
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Table 3.2: Dataset Statistics
Partition Dataset Type Nodes Edges Classes Features Label Rate

Tuning

Cora Citation Network 2708 5278 7 1433 0.0517
CiteSeer Citation Network 3327 4552 6 3703 0.0361
Actor Wikipedia Graph 7600 26659 5 932 0.0132
WikiCS Wikipedia Graph 11701 221447 10 300 0.0170
Computers Product Network 13752 245861 10 767 0.0145
Photo Product Network 7650 119081 8 745 0.0209

Validation PubMed Citation Network 19717 44324 3 500 0.0030
Coauthor CS Co-Authorship Graph 18333 81894 15 6805 0.0164

3.2 Datasets

We use a total of eight datasets in our experiments, summarized in Table 3.2. Each dataset represents some real-world

network previously studied in literature. Copies of these datasets and their splits is provided in a consistent format

by the PyTorch Geometric library in [2]. Label rate denotes the ratio of nodes in the training set to total nodes in the

network.

We additionally partition the total collection of datasets into tuning and validation sets. In doing so, we can obtain

ξ by optimizing over the tuning split and used the withheld validation datasets for generalization testing.

3.3 Obtaining the Warm-Start

To obtain the warm-start configuration ξ as described in section 2.3, we perform a BOHB search over the hyperparam-

eter space defined in section 3.1 to maximize PU of the form described in equation (2.4). We argue that the relative

similarity between maximum performance PSi (ξ
∗) between datasets shown in section 3.5 justifies using this definition

in place of the more robust form in equation (2.5). Though this leaves room for a more optimal configuration, we

deem this improvement negligible against the stochasticity inherent to model training. We select the set of datasets,

U, for this experiment to be only those in the tuning split described in section 3.2; those part of the validation split are

withheld.

We further configure RayTune’s implementation of BOHB with the following: {num samples = 729, reduction factor =

η = 3,max t = Tη/(η−1)} This choice budget (max t) for the experiment ensures that the longest trials run for exactly

T epochs. The form of this expression derives from the geometric nature of Hyperband’s successive trial reduction.

We also explicitly set T = 400 as the maximum number of epochs since we find it to be a good estimate of the mini-

mum necessary iterations for convergence. We note that GCN training occurs faster on some datasets, but our choice

ensures sufficient iteration in the most difficult cases.

Thus, for each sample configuration x ∈ X suggested by BOHB, we simultaneously train GCN models across
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all tuning datasets to obtain PS1 (x),PS2 (x), . . . ,PSn (x) for all Si ∈ U. We then aggregate and report the universal

performance PU(x) of that configuration for each epoch. After completing BOHB, we are left with the configuration

ξ that maximizes PU over X. This final configuration is shown in section 3.5.

3.4 Measuring Warm-Start Performance

To verify that our obtained configuration ξ indeed satisfies the criteria described in Sections 2.3 and 2.4, we perform the

following experiments: (i) model training with ξ across all datasets and (ii) comprehensive, independent HPO across

all datasets. Thus, for each dataset Si we are able to compare the performance PSi (ξ) from (i) with the maximum

attainable performance PSi (ξ
∗) given by (ii). In these experiments, we consider all datasets described in 3.2: both

those in the tuning and validation splits are included.

(i). We perform direct model training using the configuration ξ previously obtained by the search described in

section 3.3. Considering each dataset Si individually, we conduct 32 repeated trials in which we allow GCN to train

for T = 400 epochs. Finally, we record the highest test prediction accuracy over these trials as PSi (ξ). We repeat this

process for all datasets in the tuning and validation splits.

(ii). We perform BOHB searchs nearly equivalent to the one described in section 3.3 with the sole change be-

ing to choice of performance function used. Instead of simultaneous evaluation, we now consider each dataset

individually. In this way, we forgo the constraint of simultaneous maximization on PU and instead measure the

maximum attainable performance of PSi considering solely that dataset. We configure BOHB identically to before

{num samples = 729, reduction factor = η = 3,max t = Tη/(η − 1)} with T = 400 and record the test prediction

accuracy of the highest performing trial as PSi (ξ
∗). As before, we repeat this process for all datasets.

We recall that the validation datasets included in parts (i) and (ii) were previously withheld from the search that

produced ξ. Thus, we consider the performance over these validation datasets as a measure of ξ’s ability to generalize

to unseen datasets. These results are enumerated and compared in section 3.5.

3.5 Experimental Results

Warm-Start Configuration. We directly present the warm-start configuration ξ obtained by the BOHB search (see

section 3.3) in Table 3.3. Of note is the inapplicability of the residual mechanism and there only being one dropout

rate resulting from nlayers being 2.

Performance Measures. As described in section 3.4, we evaluate the warm-start configuration ξ on a variety of

measures. For each dataset in column 1: column 2 shows the corresponding performance of our warm-start; column 3,

the maximum attainable performance over that dataset; and column 4, the ratio between them. The values of columns

2 and 3 are obtained by the experiments (i) and (ii) from section 3.4 respectively.
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Table 3.3: Warm-Start Configuration ξ

Hyperparameter Value

nlayers 2
nhidden 54
bias True
residual -
weight decay 8.218e−7
learning rate 7.52e−2
dropedge 0.8457
dropout [0.2190]

Table 3.4: Dataset Performance Measures

Dataset Warm-Start
Performance P(ξ)

Maximum Attainable
Performance P(ξ∗)

Relative Warm-Start
Performance P(ξ)/P(ξ∗)

Cora 0.804 0.823 0.977
CiteSeer 0.725 0.725 0.943
Actor 0.752 0.759 0.991
WikiCS 0.750 0.752 0.997
Computers 0.820 0.834 0.983
Photo 0.911 0.915 0.996
PubMed 0.775 0.798 0.971
Coauthor CS 0.901 0.907 0.993

In all datasets tested we find that the performance of ξ nearly equals that of the maximum. That is, over all the

datasets considered, ξ attains an average of 0.981 the performance of the optimal configuration. The generalization

performance of our configuration is likewise demonstrated by the nearly optimal performance of ξ even over the

validation datasets (PubMed, Coauthor CS) to which it had no introduction during tuning. We can thus expect ξ to

perform optimally on other unseen datasets. Therefore, we consider the results of Table 3.4 as sufficient in satisfying

the criteria set forth for ξ in section 2.3.
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Chapter 4

Conclusion

4.1 Summary

We present a hyperparameter configuration for GCN vertex-classification tasks that we show generalizes across various

datasets. By incorporating multiple diverse datasets in our derivation, we encourage the ability of this configuration to

generalize to real-world datasets beyond merely those discussed in this work. Extensive experimentation shows that

this configuration performs nearly optimally relative to the maximum performance attainable with a comprehensive

HPO tuning process. Considering the order-of-magnitude cost increase to perform HPO when compared against

simply performing model training with this configuration, the slight performance reduction (< 0.02) may be justified

in many cases. In other cases where marginal performance is extremely important, this configuration can assume the

role of a warm-start in accelerating the convergence of subsequent HPO.

4.2 Considerations

As this project differs from adjacent design work, the considerations likewise differ considerably: we discuss these

presently.

Ethically, this project represents no immediate error; however, we note that the pervasiveness of predictive mod-

eling can indeed invite moral wrongdoing. This has been thoroughly discussed recent years and is almost always

attributable to laziness in implementation. With predictive modeling taking the place of human actors in a variety of

functions, implicit trust is being given to these models. These models are fundamentally limited by the structure and

content of the training data, leaving considerable room for error should this responsibility not be taken seriously. Es-

pecially in a “high-stakes” environment where inaccurate model predictions can feasibly result in suffering, we must

tread extremely carefully in transferring our agency to these algorithms. We echo the recommendations of machine

learning experts who continually stress the need for extensive testing, especially with respect to unintended bias.

We designed this project with the purpose of furthering the knowledge and abilities of the field of machine learning.

In doing so, we subscribe to the idea that expanding the body of scientific knowledge is a noble pursuit with the ultimate
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benefactor being that of humanity. We likewise agree with the hope that, when used properly, the results of this project

and all engineering research will eventually manifest some increase in the standards of living for all of society.

We also warn of the environmental impact inherent to massive compute problems of which machine learning (and

HPO especially) belong. Despite a pursuit for improvements in efficiency, these problems often yet require massive

compute budgets. Since compute is nearly directly tied to energy use, we acknowledge the importance of this factor

when performing studies in this field. As it stands, all experiments performed in this project require a relatively low

budget (run on a single 6-core CPU on a timescale of hours), and further, our results explicitly encourage cost-reduction

in future work. However, this consideration is one which we weight heavily in our decisions, and thus communicate it

here.
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