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ABSTRACT

Natural and human-caused disasters devastate and displace civilian populations. Over the past century, the rate at
which these catastrophes occur has increased dramatically. Climate change and unsustainable human behaviors are
large contributors to the occurrence of natural disasters, therefore it is likely this upward trend will continue. The
region of the world where a disaster takes place often determines how severe the implications are for the a↵ected
civilians. The devastation that occurs from a disaster is much greater in low-resourced regions of the world.

Unmanned aerial vehicles (UAVs) are commonly used to assist first responders during disaster response. The
existing UAV technologies focused on disaster recovery have proven to be quite e↵ective, however, they are cost
prohibitive, therefore limiting their use in developing regions of the world. Unlike the existing UAV-based disaster
response technology, we propose a solution that enables indigenous first responders to reap the benefits of UAV-based
disaster response technology.

Through extensive evaluation of cutting-edge single-board computers, UAV hardware, and computer vision mod-
els, we have created a UAV system that has comparable flight time and flight capabilities as the existing industry
standard solutions. Additionally, our system capitalizes on the functional drawbacks of the current solutions. It is
more modular, allowing for a single UAV to be used in a variety of disasters, and it boasts the capability of real-time
computer vision. Most importantly, our system can be recreated for one-eighth the cost of a consumer alternative with
similar functionality. As a result, first responders in low-resourced regions have access to a↵ordable disaster response
technology that can be used to save lives.
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Chapter 1

Introduction

1.1 Motivation

Natural and human-caused disasters can cripple, displace, and diminish civilian populations. Disasters are not only

physically damaging to the a↵ected communities, they also create a major economic cost. In 2017 alone, there were

335 disasters and, on average, 68,273 deaths per year attributed to natural disasters. In 2017, there was a global

economic loss of $335 billion dollars due to natural disasters [1]. Over the past century, the rate at which these

catastrophes occur has skyrocketed. Because global climate change and unsustainable human practices contribute to

the occurrence of a disaster, it is likely this trend will continue.

Unmanned aerial vehicles, or UAVs, are used as technological solutions to increase the e↵ectiveness of first re-

sponders during the search and rescue phase of disaster response. Existing UAV-based disaster response technology

has proven to be quite e↵ective when applied to various emergency situations. Currently, UAVs are being used for

disaster relief situations such as hazardous chemical spills, the need for mapping high risk areas, assessing structural

damage, delivering emergency infrastructure and supplies, and extinguishing wildfires.

Developing countries and non-governmental organizations (NGOs) need access to a↵ordable disaster response

technology. The current industry standard solutions are cost-prohibitive, which limits first responders in low-resourced

regions to traditional search and rescue practices. These practices are less e↵ective and provide much higher risk to

the first responders.

At Santa Clara University, a Jesuit institution, we are expected to uphold a high ethical standard in both our

professional and personal lives. This requires us to continually evaluate our moral duties, virtues, and obligations.

Each member of this team recognizes that engineers have a moral duty to assist others who are less fortunate than

us in areas of competence. Additionally, we understand that every contribution we make as engineers should benefit

society and improve human well-being. This project provided an opportunity for us to fulfill our moral obligations as

engineers and show the culmination of our Jesuit engineering education.
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1.2 Related Works

We began by familiarize ourselves with the industries that are relevant to this project. Understanding the industries

surrounding UAVs, computer vision, and disaster response was critical to ensuring our solution was novel. This section

first discusses research projects that provided valuable information that was used during the design and construction

of our solution. Second, we will address the industry standard UAV technology that was developed to be used during

disaster response.

1.2.1 Research

Nanonets specializes in developing convolutional neural networks (CNNs) for aerial UAVs [2]. As it turns out, UAVs

are used for a variety of industry applications such as surveillance over solar panel farms and monitoring progress

in construction projects. This latter example proved to be very insightful for our project. This construction progress

monitoring solution revolves around using computer vision models to both track the outlines of the building or other

infrastructure being built within a construction zone, and using the density of human subjects within the zone to

act as a proxy for the manpower currently working to make progress on construction tasks. Although there was

minimal written documentation regarding this use-case, investigating Nanonets proved that su�cient research exists

within industry applications to implement accurate and useful computer vision models on-device to solve real-world

problems.

Microsoft is one multinational technology company that is investing a lot of resources into computer vision re-

search using UAVs, especially those that utilize a very small chassis and low-power embedded computational hard-

ware; these systems are referred to as micro aerial vehicles (MAVs). MAVs can be exceptionally powerful in practice

because of their low cost, relative to those that use much larger frames, thereby allowing much easier deployment of

vehicles ”swarms” where many UAVs work in tandem to accomplish a task while communicating amongst each other

throughout the process to remain e�cient. Microsoft published research on one such project wherein MAVs swarms

can be deployed using monocular camera systems and mapping entire environments in a distributed to fashion [3].

This paper was very useful in the ideas it explored regarding methods that could prevent the need for constant com-

munication between UAVs. Since this was research originating from Microsoft, naturally, there was a fair amount of

emphasis put on Microsoft AirSim as a testing platform for simulating results. Although we did not use this software

suite in our approach, we believe it could be very useful for future projects within the field of UAV computer vision

research.

A student research project from Indiana University [4] created a low-cost UAV-system that was capable of real-

time object detection. The paper discusses how CNNs are the standard solution for solving image-related machine

learning problems as this class of model is extremely powerful. However, the paper concludes that CNNs are too
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computationally demanding to be used for real-time object detection onboard a UAV. This is because the CNNs require

a high-performance GPU, which do not come in small form factors. As a result, the paper proposes that a bulk of the

computation should be done on a computing cloud. This would allow for the UAV to still be capable of on-board low-

level object detection, while, removing the need to have a powerful computation device on-board. This paper prompted

us to examine cloud-based computing options for our UAV-system. However, this was not necessary as NVIDIA

had released a single-board computer, after this paper was published, that meets the computing power requirements

necessary to use CNNs to perform object detection on-board the UAV.

1.2.2 Industry Standard Solutions

Industry standard UAV solutions for disaster response, such as the DJI Mavic 2 Enterprise Advanced and the Parrot

ANAFI USA, are cutting edge and available for purchase as a single o↵-the-shelf product. Our team extensively

researched these systems to understand what attributes makes a UAV system e↵ective in a disaster scenario. In other

words, our research allowed us to define requirements that our frugally designed system must have to be considered

a competitive market solution. These requirements are: autonomous flight, high maximum flight time, and real-time

image capture.

Researching existing UAV systems for disaster response also allowed us to identify the shortcomings of the indus-

try standard solutions and capitalize on them within our system. The shortcomings we identified are: low modularity,

high cost, and the absences of on-board real-time image analysis. These drawbacks helped direct the project and define

additional requirements for our UAV system. The additional requirements for our system are: high modularity, low

cost, and the ability to perform on-board real-time image analysis.

1.3 Problem Statement

Natural and human-caused disasters are often more devastating to developing countries and low-income areas. These

regions are more vulnerable to disasters because individuals residing in these areas often occupy housing that does not

have the structural integrity to withstand earthquakes, damaging winds, or floods. In addition, low-income communi-

ties are more likely to be located on river banks, reclamation ground, and steep slopes. These locations increase the

devastation, injury, and mortality caused by a disaster.

The technological gap between developed and developing countries is mirrored by the disproportionate devastation

caused from a disaster. Technological innovation enhances human well-being, however, when technology is widely

inaccessible only some can reap the benefits. Accessibility becomes increasingly important when the technology has

the ability to relieve human su↵rage or save lives. Disaster response technology has these abilities, unfortunately,

commercial UAV-based disaster response technology is cost prohibitive, and therefore it is not accessible by non-

governmental organizations or first responders in developing countries.
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1.4 Solution

The primary objective for our project is to make disaster response technologies accessible to NGOs and first responders

in low-resource regions of the world. To do so, we designed and developed a low-cost UAV-based solution to assist in

disaster response. Our solution greatly increases the accessibility of UAV-based disaster response technology because

it is comparable to the current industry standard solutions, while costing an eighth of the price. Additionally, the

solution is novel because of the high modularity, low-cost, and the ability to perform on-board real-time image analysis.

Throughout this project we will also be working in parallel with another group consisting of two members,

Cameron Burdsall and Mark Rizko. Cameron and Mark are working to create a drone mesh Wi-Fi system for dis-

aster scenarios. When both projects have been completed, we will combine the technologies to create a more complete

solution for disaster recovery. Our combined solution will have the capabilities to assist in safely identifying victim

locations, and resurrecting destroyed communication infrastructure.
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Chapter 2

Requirements

2.1 Functional Requirements
2.1.1 Critical

1. Precise & Accurate Identification

A system based mainly on object-detection capabilities is only as useful as the accuracy of the resulting data.

Most of the popular object-detection frameworks that currently exist display results based on a certain confidence

threshold generated by the model itself. Therefore, it is imperative that this threshold be set to a very high value,

in order to limit the number of false positive results. On the other hand, false negatives are similarly problematic

and contingent on the training data used to train the model.

2. Fast Inference Speed

The term inference refers to the speed at which a computing device can process a set of data and output a

result using a mathematical model. In this project, the “sets of data” that will be processed are digital images

representing each frame of the video. The model that we will employ is likely to be one of the many industry

standard deep learning models that are commonly used for computer vision. Inference speed in such a scenario

is more accurately represented as the number of video frames that can be processed per second. Due to the

state of low-power computing and wireless communication at this time, it is likely not feasible to display this

video feed in real time to users, but every extra frame that can be captured and processed each second makes the

resulting data more accurate and provides more data points to first responders.

3. Real-Time Notification of Detection

As mentioned above, the power usage and computing overhead necessary to transmit an annotated video stream

to users is likely to high to be technically feasible in this application. However, the data that will be generated

by the imaging array on each UAV is incredibly useful to disaster response teams. As a result, it was deemed a
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critical requirement that the system must provide instantaneous notification to users when a human (or other ob-

ject class, depending on circumstances) is detected by the system. This notification allows the disaster response

teams to modify their flight path or, where necessary, take manual control of the flight in order to procure more

data that may save additional lives.

4. Lowest Possible Power Footprint

The maximum flight time of the UAV is completely contingent on the battery capacity available to its DC

motors while in flight. Therefore, it is imperative that any auxiliary functions require as little power as possible.

Preliminary calculations showed us that the maximum power draw of most single board computers that exist

today are significantly lower than that of drone flight, but every optimization is useful, and incredibly important,

when such a system is deployed into a disaster scenario.

2.1.2 Recommended

1. Metrics

It is exceptionally di�cult to build a UAV system from scratch that is capable of streaming video capture back

to a base station in real-time, especially with the resources we have available, but it could be just as useful to

provide users with real-time data that acts as a synthesis of the data captured and processed on the UAV. One

such metric might be to transmit a count of the number of victims that have been identified along a flight path.

2. UAV Cooperation

Allow for multiple UAV’s to be used simultaneously during a disaster response scenario. This would be useful

as it would allow users to deploy a large fleet of UAVs in a disaster scenario and optimize their flight paths such

that they do not overlap and can produce the largest amount of actionable data for each battery charge cycle.

2.1.3 Suggested

1. Multiple Sensing Technologies

Implement sensor fusion to utilize other classes of sensors, such as infrared (IR) cameras for heat detection or

high sensitivity microphones to detect victims that may not be visible due to rubble or other physical obstruc-

tions.

2.2 Non-Functional Requirements

The system must be:

• Buildable and usable by non-technical users.
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The UAV must be able to be assembled easily without expertise or the assistance of expensive machinery.

Additionally, the documentation for each product should be clearly written so that others can recreate our system.

The software required to make the system function as expected should not need to be altered in any way.

• A↵ordable

Hardware suggested by the team should be extensively researched and a cost-benefit analysis should be con-

ducted to ensure that the components are a↵ordable, accessible, and reliable. The cost of the complete system

should be less than one-thousand dollars to ensure our system is not cost prohibitive.

• Reusable

All hardware components purchased for the UAV system should be reliable. Similarly, the hardware selected

should be from a dependable manufacturer who o↵ers replacements for individual parts.

• Modular

The system must have high modularity as it should be configurable for various types of disasters. This means

that the selected components need to be universally compatible. Similarly, the single-board computer of choice

should be able to handle a variety sensors.
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Chapter 3

Technologies Used

3.1 Description

Figure 3.1 provides a visual representation of the main components of our system, their relation to one another, and

the processes that each fulfills. This chapter will detail the important decisions made regarding hardware and software

selections for our final implementation, as well as the rationale for why we believe a certain component was well-

positioned to satisfy our objectives and requirements.

Figure 3.1: Overview of system architecture

3.2 Hardware
3.2.1 Single Board Computer

Nvidia Jetson Nano - 4 GB

A single board computer was imperative to achieve the non-functional design requirements outlined in Section 2,

because of their low cost, energy e�ciency, size and modularity. After researching performance metrics for single

board computers (SBCs) across a variety of industry standard computer vision models, it was determined that the
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NVidia Jetson Nano would be the most cost-e↵ective and performant SBC choice, especially compared to competing

platforms. On one hand, the Raspberry Pi series of SBCs would be satisfactory in regard to power usage, but signifi-

cantly underpowered for computer vision applications. On the other hand, the Google Coral TPU Dev Board boasted

incredible inference speeds where comparison was possible, but its major caveat consisted of only being capable of

running Tensor Flow Lite (TFLite) models, which would have a significant detriment on the modularity and flexibility

of the overall platform.

3.2.2 UAV Frame

HolyBro S500v2 Kit

In order to satisfy the requirements of high flight time, low cost, and suitable size to mount all components, the

choice was quickly narrowed down to a quadcopter, meaning a UAV with four motors. A UAV with more than four

motors, such as a hexacopter or octocopter, would provide a greater upward force, however, our drone will not need to

carry objects. Additionally, more motors would causes our system to consume more power and therefore have a lower

maximum flight time.

3.2.3 Flight Controller

Pixhawk 4

The flight controller acts as the brain of a UAV system. The PixHawk 4 was chosen because it provides the

functionality listed below at a competitive price point.

– Autonomous flight

– Detailed logging

– Interface to companion computer

3.3 Software
3.3.1 Flight Software

QGroundControl

QGroundControl boasts a high degree of compatibility with many flight controllers and UAV systems, including the

HolyBro S500 and PixHawk 4 flight controller. We selected QGroundControl for our project because of its capabilities

that are listed below. Additionally, we tried other flight software such as MavProxy that have similar capabilities but

we found that QGroundControl was the most intuitive and user-friendly.

– Various route-planning tools

9



– Universal compatibility

– Open-souce software

3.4 Development Tools
3.4.1 JetPack Software Development Kit

– Jetson Linux Driver Package (L4T)

– Ubuntu 18.04 LTS Build

– CUDA accelerated libraries and APIs

– Samples, documentation and developer tools

3.4.2 NGC Catalog

NVIDIA Ecosystem Package Manager

Easy access to AI building blocks that allow for a more e�cient development process. A subset of assets within

the catalog are specifically built, optimized, and tested to work with the Jetson Nano family of single-board computers

and allows for smooth deployment of these components:

– Machine Learning Models

– Development Containers

– Software Development Kits

10



Chapter 4

System Evaluation

4.1 Computer Vision Performance

The first step toward achieving the goals outlined for this project was to investigate capabilities of our chosen single-

board computer, the NVIDIA Jetson Nano, in regard to deep learning inference performance. It was also very im-

portant for us to profile the power consumption of the computing hardware while under specific, realistic workloads.

This was done by utilizing the benchmarking utilities provided by NVIDIA through their jetson benchmarks utility,

found on GitHub[5]. However, this utility only performs the benchmarking on the inference speed itself. To also log

the power consumption of the hardware while running these benchmarks, we modified the codebase to also leverage

NVIDIA’s jtop system monitor utility and python package that allows a direct interface with power consumption and

system load metrics throughout the running time of the benchmarking utility[6].

The results of these benchmarks can be seen in Table 4.1. One interesting observation we found after executing

these benchmarks was that there was minimal, or even zero, performance penalty for using the 5 Watt power mode.

This behavior can be attributed to the way in which the 5 Watt power profile functions in comparison to the Full

Power (10W) profile on the Jetson Nano. The main di↵erence between the two is related to how many CPU cores are

enabled; in the 10W mode, all 4 cores are activated and usable, whereas the 5W profile disables two of those cores.

Since computer vision and deep learning models are generally extremely GPU intensive, this result is rather logical,

since it is likely that any performance bottlenecks are a result of components other than the CPU. This allowed our

team to make the decision on proceeding with our implementation using the lower power consumption profile for its

benefits to power consumption, and therefore UAV flight time, without concerns about large reductions in performance.

Our goal was to build our final implementation around the most versatile use case for disaster scenarios. For this

reason, we chose to focus on Object Detection, because we believed that it would be the most useful in the widest

variety of disaster recovery applications. Object Detection refers to computer vision models that take an image, or

series of images in the case of videos, and produce classification of objects within the input image, while providing

bounding boxes that can be used to overlay where the model believes that an object is within the image. This di↵ers
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from its nearest relative, Classification, because it has the ability to classify more than one object in a scene, rather

than classify the contents of the image as a whole. In a disaster recovery scenario, it is entirely possible that there

will only be one useful ”object” to identify in a scene, but this is far from a given. If we chose to only pursue

general classification models for our implementation, it would greatly hinder our system’s ability to e↵ectively provide

information to first responders in situations with high victim density or with many objects in the scene, even non-

human objects. The reason for this latter example stems from the nature of object detection models within computer

vision. Generally, they tend to have the capability to detect many types of objects in a scene, such as dogs or cars, in

comparison to simply attempting to identify humans.

The benchmarking application was designed to utilize the two most widely used and performant object detection

models for embedded applications at the time of its design: TinyYOLO v3 and SSD MobileNet v1 [7][8]. YOLO is an

acronym that stands for ”You Only Look Once,” pertaining to the underlying design of the model which requires only

one pass of input image to produce a result, which is not necessarily the approach taken by many models designed

for more powerful or accurate object detection algorithms. The ”tiny” portion of the model’s name describes the

heavily optimized nature of the model’s neural network, which grants significant increases in speed, at the cost of

some accuracy. Although the Jetson Nano is by far one of the most powerful SBCs within its class, it will struggle to

generate usable frame rates in practice due to the processing power of its GPU and its relatively small available RAM

(4GB). Similarly, SSD stands for ”Single-Shot multibox Detection” which is a di↵erent way of explaining the same

approach utilized by YOLO. ”Mobilenet” is also the signifier used to describe the optimized model of the original SSD

model and carries the same advantages and disadvantages as the YOLO’s ”tiny” variant. In our testing, TinyYOLO

performed slightly better in practice, while also using significantly less power on average compared to SSD Mobilenet.

Although, our team decided to use the latter in our final implementation, because of its reduced model size and greater

ability for end-user retraining in comparison to TinyYOLO, something we investigated and discuss in 4.4.

Model Application Power Profile Inference Speed Power Consumption GPU Latency GPU Load CPU Load

Inception v4

Classification

5W 10.58 FPS 5.029 W 94.477 ms 56.16% 85.03%
10W 10.60 FPS 5.570 W 94.340 ms 70.30% 40.31%

VGG-19 5W 10.09 FPS 5.150 W 99.121 ms 58.92% 84.74%
10W 10.04 FPS 5.004 W 99.596 ms 39.79% 49.45%

ResNet 50 5W 36.67 FPS 5.029 W 27.268 ms 54.56% 86.90%
10W 36.88 FPS 5.564 W 27.116 ms 63.80% 41.56%

SSD MobileNet v1
Object Detection

5W 42.56 FPS 4.360 W 23.498 ms 58.49% 94.82%
10W 42.64 FPS 5.097 W 23.454 ms 77.88% 44.77%

TinyYOLO v3 5W 47.65 FPS 3.541 W 20.987 ms 14.25% 95.31%
10W 47.60 FPS 4.325 W 21.008 ms 24.64% 50.62%

UNet Semantic Segmentation 5W 16.59 FPS 3.281 W 60.266 ms 0.45% 92.68%
10W 16.62 FPS 5.882 W 60.177 ms 89.76% 36.53%

Super Resolution Image Processing 5W 15.26 FPS 6.396 W 65.524 ms 86.82% 78.00%
10W 15.26 FPS 5.943 W 65.547 ms 82.51% 36.94%

OpenPose Pose Estimation 5W 14.64 FPS 3.258 W 68.313 ms 0.26% 92.46%
10W 14.64 FPS 3.968 W 68.320 ms 0.00% 46.42%

Table 4.1: NVIDIA Jetson Nano model performance
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4.2 Price

One of our non-functional requirements, outlined in Section 2.2, was to produce a system that was a↵ordable and

accessible to those living in developing countries or working for a non-profit NGOs. It was critical that our system

was accessible to these individuals as they might not have the funding to invest in enterprise solutions created by

popular UAV manufacturers. It was hard to decide upon an upper limit to what our team could reasonably consider

a↵ordable, but our decision-making process when selecting components revolved around finding the most inexpensive

option that did not sacrifice any of our other requirements in the process. After implementing our system, we strongly

believe that we produced the most inexpensive system feasible given our constraints at the time of the project. All the

components and their market prices are included in Table 4.2 which shows our system’s price was around $835 before

shipping and tax at the time of purchase. A comparison with the comparable UAVs in the enterprise disaster recovery

segment can be found in Table 4.3.

Product Price
NVIDIA Jetson Nano 4 GB $120
HolyBro S500 v2 Kit $355
Pixhawk 4 $70
8000mAh Battery & Charger $270
IMX219-77 Camera $20
Total $835

Table 4.2: System pricing

4.3 Comparitive Peformance

The relative success of our implementation was contingent upon its performance when compared to similar UAV

systems within the enterprise sector that are marketed toward disaster recovery use-cases. The two primary points of

comparison were the DJI Mavic Enterprise Advanced and the Parrot ANAFI USA. Table 4.3 shows the comparison

between our system and the average value for our primary requirements within these comparable systems. Although

there are some features that were not achieved in our implemented system that exist within the enterprise systems,

such as infrared imaging or high-quality video streaming, we accomplished our objective of meeting our critical

requirements while also doing so at a fraction of the price of comparable systems. We were able to reach near parity

with these systems on many dimensions and even surpassed them in some important categories, such as modularity,

on-device computer vision, and the aforementioned pricing characteristics.
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Prototype Industry Standard Averages
Flight Time 25.7 min 31.5 min
Computer Vision Real-time up to ⇠480p 45 fps No
Autonomous Flight Yes Yes
Modularity High Minimal
Price $835 $6,750

Table 4.3: Comparison to industry standard enterprise disaster recovery UAVs

4.4 Model Retraining - SSD MobileNet v2

As was mentioned previously in Section 4.1, most object detection algorithms are equipped to detect a wide variety

of di↵erent object classes within images. In a disaster scenario, humans are the top-priority and generally the only

priority for rescue teams when rescuing victims. When models, such as SSD MobileNet, are attempting to distinguish

between the 98 classes they support, there is a nontrivial amount of processing overhead to make this distinction that

could be eliminated by focusing solely on humans. For this reason, we explored the process of retraining our model

to only detect humans within a scene.

Although the benchmarking utility used to decide between TinyYOLO and SSD MobileNet utilized the original

version of the latter model, we chose to utilize the more recent and e�cient v2 of SSD MobileNet for retraining

because we believed it would yield better results. We utilized portions of the documentation found in NVIDIA’s ”Two

Days to a Demo” tutorial for Jetson systems to perform retraining on a pre-trained model designed for the Jetson Nano

[9]. The model was retrained using PyTorch and leveraged 20,000 total images with 79,000 labels procured from the

Google Open Images Dataset v6 [10]. Our model was retrained to only use the ”person” object class as this pertains to

humans, the top priority in disaster scenarios. Our training set consisted of 17,058 images, our validation set contained

2,212 images, and our test set contained 730 images. The model was retrained over 30 epochs at a learning rate of 0.01

on the Jetson Nano itself, which took around 30 hours to complete. Although this took an exceptionally long amount of

time, the training parameters used are viable for creating viable models, and it proved that it could be possible for end

users to perform similar retraining without the need to purchase expensive and high power consumption graphics cards.

Our results proved that this experimentation was successful in achieving this goal, providing an 8.16% improvement

in inference speed compared to the baseline model, while also reducing the model size by 25.8%. With larger training

datasets, more training time, and more powerful hardware, we expect that the improvements could be incredible for

those who want to tailor their model to very specific use-cases, as long as they have these resources at their disposal.

4.5 Assembled System

After assembling the fully-functional system, shown below, we began performing an indoor test flight. This flight

utilized the retrained SSD-MobileNet model previously discussed and allowed us to ensure that all components were
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truly compatible and capable of flight in a simulated scenario. Although we were only able to complete this flight inside

a large garage, the prototype implementation yielded nearly identical inference speeds to those found in our testing

environment and produced power draw metrics in line with our estimated 25.7 minute flight time. The model was

visibly able to lock onto the human subject with a high degree of accuracy both in a well-lit and darker environments.

This modification was done by reducing the amount of ambient light through closing the garage door in order to only

allow artificial lights to illuminate the environment. The prototype was flown at a designated height of 12 feet and was

tested using both a static hover and a 4 m/s oscillating route perpendicular to the camera’s field of view.

Figure 4.1 shows the method of mounting the IMX 219-77 camera to the UAV chassis. This was done using the

angled mount that conveniently came with the camera sensor. This angle provides a fantastic mounting position to hold

the camera for superior field of view at the altitude used for testing, although this may need to be adjusted if the UAV

is planning to be deployed at a significantly higher altitude. The camera module is connected to the Jetson Nano via a

Camera Serial Interface (CSI) ribbon cable. Since the Jetson Nano is specifically designed with embedded computer

vision workloads in mind, it comes with two such CSI camera ports built into the module’s carrier board. Although

this camera connector is not often utilized in consumer-facing imaging products, like webcams, it is very common

on camera modules designed for embedded systems applications because of the standard connection interface that

allows the imaging sensors to directly interface with the module’s CPU, without any hardware translation that may be

necessary for more universal component standards such as Micro-USB or USB Type-A. This flexibility in connection

methods further supports our objective of modularity as it provides three possible connection methods, CSI, Micro-

USB, and USB Type-A, to the Jetson Nano and therefore allows a wide range of components to be utilized within a

system using a Jetson Nano.

Figure 4.2 is indicative of the mounting position of the NVIDIA Jetson Nano on the top of the Holybro S500 UAV

chassis. It was placed in this position out of necessity, in order to ensure proper weight distribution of the components

and available space on the chassis. It was mounted using modified mounting holes on the bottom of the Jetson Nano’s

case and screws that were long enough to secure the case directly to the chassis, while also having room to use rubber,

shock-absorbing spacers between the two mount points. This was done to limit the vibration that was transferred to the

Jetson Nano, in addition to ensuring that the weight of the circuit board would not shift during flight. In our testing, a

significant amount of oscillation can propagate throughout the system with components that were even slightly loose,

since the flight computer will expect a center of gravity that is stationary throughout flight and over-compensate for

this movement, creating a feedback loop that could very easily cause a severe malfunction if not addressed.
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Figure 4.1: Camera mounting and connection to the NVIDIA Jetson Nano
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Figure 4.2: NVIDIA Jetson Nano mounting configuration
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Chapter 5

Societal Impact

5.1 Ethical

The right to life is a fundamental human right. It is especially critical to uphold this right for individuals who are

a↵ected by natural disasters. Those who have been displaced or physically a↵ected by natural or human-caused

disasters are entitled to protection and assistance. The UAV-system presented in this paper enables first responders in

developing regions to use UAV-based technology earlier in the disaster response phase. This will increase the amount

of lives saved as it allows for survivors to be found in a shorter amount of time.

5.2 Social

Technological evolution has radically changed societies and improved the quality of life of individuals around the

world. As technology continues to develop we, as engineers, have a social obligation to ensure that technology is

widely available and not cost-prohibitive. This is critical to closing the technological gap that is currently seen in

low-resourced regions. Our UAV-system fulfills this social obligation by enabling the use of life-saving technology in

developing regions of the world.

5.3 Political

The Cisco tactical operations team responds to disasters world-wide. However, the team is primarily based in the

United States of America which causes a delay before the team and their technology can assist local first responders.

The delay exemplifies the need for government-sponsored disaster response teams in developing regions. These teams

in combination with a↵ordable disaster response technology would allow for more lives to be saved. The UAV-system

our team designed is low-cost and easily replicated. Therefore, it is both a↵ordable for, and, usable by government-

sponsored disaster response teams in low-resourced regions.
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5.4 Economic

Frugality was critical throughout the process of building the UAV-system as it is intended to be used by first respon-

ders in low-resourced regions of the world. To ensure our system was not cost-prohibitive, while maintaining high

functionality, we extensively researched each component and the alternatives before selection.

5.5 Health and Safety

The UAV-system created during this project is intended to be used in disaster response scenarios and therefore it

directly addresses the health, safety, and well-being of individuals. It is important to note that the UAV-system also

poses a risk to those in the areas it is being flown. This is because, like all aerial vehicles, there is a possibility of

failure during flight. Throughout our extensive testing the team has not experienced any errors during flight with the

UAV-system. Our team combated the possibility of failure to the best of our ability by taking all necessary precautions

and we recommend that any team working with UAV-based technology does the same.

5.6 Manufacturability

The UAV-system was built using o↵-the-shelf components that are available worldwide. Similarly, the components

used in the construction of the system were all well-documented and user-friendly. The UAV-system is compatible

with many computer vision models, many of which are open-source. The system created can be easily recreated by

anyone with a average computer competency.

5.7 Sustainability

Industry standard solutions for disaster response are not modular as they have a limited number of compatible sensors.

Ideally, UAV-systems for disaster response should have extensive sensor compatibility as di↵erent types of disasters

will require the use of di↵erent sensors. Additionally, these industry standard systems must be sent back to the

manufacturer if they are broken or non-functional. The solution we have built solves these issues as it is modular and

built on open-source technology. Our system boasts vast sensor compatibility allowing for it to be e↵ective in a variety

of disasters. Similarly, non-functional or broken parts are easily replaceable.

5.8 Environment Impact

The UAV-system we have created can be used to minimize the devastating e↵ects of environmental disasters. This

paper primarily focuses on minimizing the e↵ects to human populations, however, with slight modification it can be

used to minimize the e↵ects to the environment as well.
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5.9 Lifelong Learning

This project required extensive knowledge of UAV-systems, hardware, and various other fields our team was not

familiar with. Each member was challenged with the task of learning about these fields without the direction or

assistance a university course would provide. This experience helped each member enhance their self-learning abilities

which will be critical when we are in the workplace.

5.10 Compassion

Natural and human-caused disasters are devastating to any country or region of the world. However, the e↵ects of a

disaster are far more destructive to low-resourced regions of the world. Similarly, low-resourced regions are not as

well-equipped to handle the aftermath of a disaster due to the technological gap and resources available. Our team

recognized the su↵ering a disaster can cause, particularly in developing regions, and created a solution with the goal

of relieving the distress felt in these communities.
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Chapter 6

Limitations and Challenges

6.1 COVID-19

The COVID-19 pandemic has been a large challenge for our group. Each group member had to be isolated for the

duration of this project. This meant that we could not hold in-person meetings or work on the project in a collabora-

tive fashion. This was particularly challenging when multiple group members needed a specific component to make

progress on their tasks. Similarly, only one member could be present when testing our complete system. This was

a formidable task as the group member had to interact with the flight software, ensure the drone was functioning

correctly, and act as a test subject.

6.2 Testing

Due to city and university regulations all testing had to take place in an enclosed space. Flying in enclosed spaces hard

due to the close proximity of obstacles. This was a cumbersome process as we had to take extra precautions to ensure

the drone was not damaged. Indoor testing also prevented us from creating our own test data, this meant we had to

rely on third-party aerial imaging data sets to train our model.
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Chapter 7

Conclusion

The UAV-system we have designed had three main objectives: high modularity, low-cost, and the ability to perform

real-time computer vision. Throughout the process of designing our system we learned how important these aspects

are when creating a technology that is accessible to individuals in low-resourced regions.

Modularity was one of our primary objectives. Throughout the project, we researched a variety of solutions or

extensions to our computing architecture, including software packages and computer vision models, that proved to

be essential to building the successful prototype detailed in this paper. The integration of these components would

be exceedingly di�cult or likely impossible without the highly modular system we chose in the form of the NVIDIA

Jetson Nano and the accompanying software ecosystem provided by NVIDIA. Comparably capable single-board com-

puters, such as the Google Coral Dev Board, have limitations in the software that can successfully be deployed to their

hardware. Driver support was also a consistent issue our team has experienced throughout previous software engi-

neering projects and was not an issue throughout this thesis because of the first-class support from the developers at

NVIDIA, in addition to the passionate, helpful Jetson Nano community on the internet. Through this, we learned that

modularity, whether it be through open-source software, easy system integration standards, or the many other relevant

aspects to building a flexible system, is one of the most important aspects to designing and building a system that can

serve the most people e�ciently, easily, and at the lowest cost.

We selected this project because we saw the potential to make direct impacts on the lives of those in low-resourced

regions. To make an impact on their lives we had to ensure that our system was accessible and not cost-prohibitive.

Accessibility was achieved by emphasizing frugal design throughout the project, however, it was particularly important

during purchasing decisions. When making our purchasing decisions, we had two main considerations. First, we had

to analyze the price of the components in relation to their function within our system. For example, we selected the

NVIDIA Jetson Nano instead of the cheaper Raspberry Pi. This was because we felt the extra money was worth

the drastic increase in performance. The second consideration we made when purchasing components was their

availability to a variety of international markets.
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Real-time computer vision on low-cost hardware is one of the most exciting developments in computer science in

the last several years. At the same time, the innovation within the consumer and low-cost UAV segment has also been

essential to increasing the adoption of such systems for a variety of tasks. Throughout the preliminary research we

did for this project, we observed that these two domains have failed to be bridged in a meaningful way, especially at

a price point accessible to the low-resource users that could benefit the most from them. It is likely that this comes as

a result of two major factors, both related to manufacturability. One, it is di�cult to produce products that are on the

cutting edge of technology while adhering to strict pricing targets without attempting to first manufacture solutions

with the flexibility provided by a ”flagship” product’s development budget and resources. Second, even if a company

can produce such frugal solutions to these market deficiency, it is very di�cult to do so while generating a profit that

makes their development worthwhile. For these reasons, it leaves such innovation to the hobbyist and DIY markets, but

these engineers have even less resources to successfully produce a satisfying product with any amount of consistency.

Although we believe that we accomplished the goals we outlined throughout this paper, it is very easy to see why that

is not the case for every person or team that attempts to do so. With novel technology comes a severe lack of support

and documentation, which requires experienced developers to overcome.
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