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ABSTRACT

Roadways play an essential role in toady’s society by contributing to economic growth and development, providing
social benefits and fast routes to travel around e�ciently. With more and more cars on roads, the quality of the streets
is deteriorating faster than before. This decrease in road health contributes to hazards such as potholes and can cause
significant damage to vehicles on the road. Currently, the process of improving and monitoring roads’ health is done
infrequently and is time-consuming for the government. Therefore, many road quality issues are manually reported
by the people who drive on them. This requires filling out forms or making phone calls while also remembering the
pothole or road hazard location. In this paper, we present Drive Health, an Internet of Things (IoT) system developed
to monitor the health of roadways and to inform the transit authorities of poor road quality. This device also has the
potential to inform the driver on how to be a safer and more e�cient driver. Drive Health includes a smart sensor and
performs machine learning on accelerometer data to process and analyze the device without using the cloud. If the
system determines the data indicates the existence of a pothole, its location is recorded and sent to a web server.
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Chapter 1

Introduction

1.1 Motivation

Roadways are a vital part of the infrastructure of any country. They play an essential role in the economic development

and growth of countries, as they allow easy access to more remote regions that would previously require much slower

travel with much less cargo. Even more importantly, they allow quick and e�cient travel methods across the country

at speeds that were previously unheard of. Before trains, a trip across the United States could take four months or

more. Once the United States’ transcontinental railroad was built, people could go from New York to San Francisco

in three days. This was a rather unpleasant form of travel as it did not include many stops nor was very flexible as it

required sticking to the train’s schedule. But once paved roads began expanding across the country, people were able

to travel at their leisure and stop where they wanted to—allowing people from cities to go out and actually see the

beautiful landscape that exists rather than viewing it through a boxcar window. Thus, roads have allowed travelers to

see things that they previously may never have. This opportunity (as well as the chance of expansion) have caused

people to build roads that cover quite a large portion of their countries.

According to a 2015 U.S. Department of Transportation report, California has over 432 thousand miles of public

road lanes which 29.4 million registered cars drive an annual 335 million miles on [1]. These numbers have only

increased since then, causing the roads to be under more use and thus faster deterioration. The deterioration of road

quality causes dangerous road hazards such as potholes and cracks which are exacerbated by weather conditions such

as rain, snow, and ice. A study conducted by AAA shows that potholes cause $3 billion of damage to American cars

every year [2]. That amount only grows when considered worldwide, and can have more dire e↵ects on the people and

local economies in countries where cars and mechanics are in short supply.

To check the roadway conditions, the local transit authority has to collect data on road health periodically, but these

projects are di�cult for many cities and nearly impossible for most. If the city of San Francisco for instance tried to

survey its 1,200 miles of road, it would need to hire a large team of people to complete the survey in a reasonable

amount of time. Multiple people have walked every street in San Francisco, and in one particular case, it took a single
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man eight years to complete [3]. Although it would take a much shorter time, it would still be a quite large project

for the city of San Francisco to undertake. Once the roads are mapped, the city then needs to shut each down for

repairs which is something that San Francisco can hardly a↵ord to do with its already limited street space and the large

number of people that commute there daily.

People have been working on solutions for this problem, but most of the existing solutions depend on manual

reporting of potholes or other hazards to the city. These solutions provide the city with valuable information, but are

time-consuming, manual, and not always accurate. They are not real time reports and rely on people remembering

where the hazard was located, as hazards are not being reported during a drive but after. If people need to choose

between swerving around the same pothole that they have been for years, or taking a step to get it fixed, most people

continue to swerve around it purely out of habit. A better solution is to automate the detection and reporting of these

hazards to the city, as it would involve less human interaction and error. Internet of things provides an opportunity for

this. A city employee could simply put Drive Health’s Sensing Unit in their car, plug it into their auxiliary power outlet

(commonly known as a cigarette lighter) for power and leave it there. The only inconvenience being that the power

outlet is commonly used to charge phones or other small electronics while driving. To mitigate this, Drive Health’s

Sensing Units can be powered by a double USB port system as it has very low power consumption.

1.2 Related Work

Several methods already exist to monitor roadways and report the issues that arise. Most of the reporting comes from

people noticing or experiencing a hazard and reporting it to their local public works administration. If they call the

city, as most do, they get redirected to the county. This translates to more phone calls and thus more time to forget the

location of the hazard, or giving up altogether.

To solve some of these issues, a British based company called Mobilized Construction operating in London and

Bristol, England; Cardi↵, Wales; Kenya; and Uganda is placing smart sensors in vehicles in an attempt to monitor and

improve the quality of their roads.[4]. The smart sensors collect and transfer data automatically without the need for

interaction from the driver. The data collected is sent to the cloud, where the company performs data analytics and

AI on it. They then use the results to assist in monitoring and assessing the roads where the data was collected. With

these findings, they hope that the digitized road networks will accelerate data-driven decision making for road work.

In rural areas, the communities in Kenya and Uganda utilize a smartphone application to gather the necessary data

[5]. The app makes use of the phone’s built-in accelerometer, GPS, and camera to identify hazards on the road. The

phone needs to be securely mounted in the car to follow the car’s movements and experience everything that the car

does. If the smartphone is not mounted firmly, the data that the accelerometer gathers may include false information

from the vehicle turning or stopping that would otherwise not appear. The data collected from the di↵erent sensors

2



on the phone creates a topographical map of the road. This map is then sent to a platform to make repair schedules,

deploy individuals to fix the detected road hazards, and monitor road performance [6].

1.3 Our Solution

This paper presents a low-cost, modular device that can evaluate how the user drives and reports road hazards. This

device is easy to replicate and use as it includes only o↵-the-shelf components. These o↵-the-shelf components o↵er

a lower cost while retaining the accuracy and reliability needed to collect the necessary data. Due to the components

being o↵-the-shelf, they are easy to replace if a part of the hardware is damaged. To further decrease the cost and allow

smooth reproduction, machine learning classification is performed locally, rather than on a cloud platform. Therefore,

the device only sends the GPS location of the data point that was classified as a pothole to a web server for data basing

and visualization. The device only sends the location and does not include a timestamp to reduce the risk of the data

being used to track a person’s whereabouts.
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Chapter 2

Project Requirements

Because our system is relatively minimalistic, there are very few necessary requirements for us to build it. However,

that makes the small number of requirements we have also extremely important. Without correctly identifying and

fulfilling these requirements, our system would not function.

2.1 Critical Functional Requirements

These requirements are necessary for the functionality of our system, and without them the system would not work.

• Machine learning to detect potholes

• Online database to store locations of probable potholes and their probability

• Web app to view stored locations and probability

• Accurate GPS to provide location within 10 meters

• Accelerometer that can detect both large and small potholes

2.2 Suggested Requirements

These requirements are not necessary for the most important features of the system (detecting potholes). However,

they would make the system much more useful beyond its basic functionality.

• Power e�ciency

• Machine learning Machine learning user’s driving safety and e�ciency

• Integration with driving apps to report the location of potholes to other users without the device

4



Chapter 3

Use Cases

Figure 3.1: Use Case Diagram
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3.1 Report Road Data

• Goal: User will report data the road data that the device gathers.

• Actors: Users

• Pre-condition: User hits a pothole and wants to upload the accelerometer data and location

• Post-condition: Data is uploaded to the database

• Exceptions: None

3.2 Manage database

• Goal: Administrator is able to remove information from the database as needed.

• Actors: Administrator

• Pre-condition: Data is uploaded to the database.

• Post-condition: Administrator leaves the data where it is or removes it as needed

• Exceptions: None

3.3 Operate Device

• Goal: User operates device by placing it in their car and connecting to the internet

• Actors: Users

• Pre-condition: User has device and car

• Post-condition: Device is connected to the internet

• Exceptions: None

3.4 View Road Data

• Goal: User and administrator operate a webpage

• Actors: Users and administrators.

• Pre-condition: User/administrator has access to the internet
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• Post-condition: User/administrator operates webpage and is able to view the location of the potholes that have

been detected

• Exceptions: None
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Chapter 4

User Interface

A very simple and functional UI for the web interface was designed that displays the necessary information. The

information that is displayed is the longitude and latitude of a detected pothole that has been reported by the device.

Figure 4.1: User Interface for Website
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Chapter 5

Solution

As aforementioned, the system is split into two main components: the web server and database side and the Sensing

Units. In this section the hardware and software used to create the Sensing Units, and the software used to implement

the web server are discussed, as well as the reasoning behind the choices. The machine algorithm and its data set and

model used for classifying the road data will be covered in the Sensing Unit software section.

The two di↵erent Sensing Unit designs explored and prototyped are depicted in Figures 5.1 and 5.2.

Figure 5.1: Sensing Unit without Arduino

5.0.1 Sensing Unit Hardware
Raspberry Pi

The Raspberry Pi was chosen because, at its core, it is simply a small and easily powered Linux computer. It can be

powered directly from a car’s auxiliary power outlet, making it extremely simple to use. It is able to communicate
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Figure 5.2: Sensing Unit with Arduino

with the Arduino through the USB/Serial port, making reading the data extremely easy.

Arduino

The Arduino was chosen for its simplicity as well as available physical modules that can be bought cheaply online. It

can be powered through the Raspberry Pi, because its power requirements are much less than those of the Raspberry

Pi. In the first prototype, it was used to operate the accelerometer and filter out specific unnecessary data so that

the machine learning algorithm is not continually interrupted. However, after more testing was performed, it was

determined that a constant data stream from the sensor was not as large a strain on the Raspberry Pi as expected.

Hence, the design was simplified to eliminate the Arduino and connect the accelerometer directly to the Raspberry Pi.

Accelerometer

To ensure the reliability and generality of the design, two di↵erent models of accelerometers were used in the Sens-

ing Units: ADXL345[7] and ADXL326[8]. Both accelerometers were found to successfully communicate with the

Arduino and the Raspberry Pi, and have flexible working ranges from ±2g to ±16g.

GPS

The GPS chosen was an Adafruit Ultimate GPS. This sensor has the ability to track 22 satellites on 66 channels [9] as

well as to update its location at 10Hz. This allows the Sensing Unit to location stamp the potholes as they are being
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Figure 5.3: Sensing Unit Schematic without Ardunio

recorded.

Figure 5.3 shows the schematic for the finalized Sensing Unit that includes a Raspberry Pi, an accelerometer, and

GPS module. The Raspberry Pi uses I2C to communicate with the accelerometer and a Serial Port Interface (SPI) to

communicate with the GPS module.

5.0.2 Sensing Unit Software
Sensing Unit

The Sensing Unit was programmed using Python and the Arduino coding language (a simplified form of C/C++).

Python was chosen for ease of use on the Raspberry Pi, and to use libraries already written for the chosen sensors. In

the Sensing Unit’s first prototype, the serial connection from the Raspberry Pi to the Arduino was extremely easy to

monitor using Python.
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Machine Learning

Machine learning was used to determine whether or not the data coming from the accelerometer sensor was a pothole.

For this problem, a binary classification method was chosen as the requirements were to classify a data point as either

a pothole or a ”good” road. Once the binary classification method was decided on, a couple of di↵erent algorithms

were tested to see what produced the best result based on the data set created. The algorithms tested were Support

Vector Machine (SVM), K-Nearest Neighbor (KNN), and Logistic Regression. The data that the models were trained

on was gathered using the first prototype of the Sensing Unit. The data set has a total of 430 samples, which consists

of 231 potholes and 199 ”good” road data points. Each data point has three features; the X, Y, and Z acceleration data

coming from the accelerometer, with the target being whether the data is a pothole (1) or not (0). When training the

di↵erent models based on the mentioned algorithms, the data set was split into 80% for training the model and the

remaining 20% was used for testing the trained model. All three algorithms trained a model in a matter of milliseconds

and produced similar accuracy, which is probably due to the small amount of features and lack of complexity of the

data set.

To verify and check the accuracy of the model, the stratified k-fold method was used for cross-validation. This

method shu✏es the data, then splits the data into n folds. Each fold contains approximately the same percentage of

each target class as the complete data set. The folded data is then tested and trained on; in this test, 10 folds were

used. In the end, the SVM algorithm was used to train the model using the gathered data set. The SVM method

was chosen as the algorithm to train the model as it best classifies any outlier data points that may come in from the

accelerometer. SVM works by finding the optimal hyper-plane that creates the maximum margin between the two

classes. The trained model with the hyperplane can be seen in Figure 5.4. The red squares represent the pothole data

points, while the blue dots represent the good road or non-pothole data points. Once the model was trained, it was

deployed onto the Raspberry Pi for real-time on-board classification. The algorithms and cross-validation used were

implemented by Scikit-learn [10].

5.0.3 Web Server Software

PHP is used in the backend to communicate between the Raspberry Pi and MySQL database in order to store the data

received from the Sensing Units into the database. The web interface uses a mixture of HTML, CSS, and JavaScript

to display the pothole information stored in the database.
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Figure 5.4: SVM Result Graph
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Chapter 6

Testing

Gathering the data needed to train the machine learning algorithm was done by driving around the streets surrounding

Santa Clara University, having the Raspberry Pi write its gathered GPS and accelerometer data to a local CSV file

which was later uploaded to the server for processing.

Once enough data points were gathered, the machine learning algorithm was trained and tested. Figure 6.1 shows

the gathered data set with the green dots being good roads while the red dots representing the potholes. As mentioned

before, three algorithms were tested for speed and accuracy on the data. The chosen machine learning algorithm

produced the prediction model depicted in Figure 5.4 in which the red points are potholes and the blue points are

”good” road.

Figure 6.1: Data Set Visualization Graph

Next, the model was downloaded onto a Sensing Unit to test its ability to classify data while on the road. However,

the machine learning model had a compatibility error as it was trained using a di↵erent version of the machine learning
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library than the one used on the Sensing Unit. Due to this, the model was re-trained on the Raspberry Pi rather than on

a separate machine. This issue can be addressed in the future by ensuring all Python library versions on the Sensing

Units are up to date.

The Sensing Unit was secured to the dashboard of the vehicle in order to accurately transfer the movement of the

vehicle when driving through potholes. For testing purposes only, a small screen was included on the Sensing Unit

that allowed the local visualization of the gathered raw data and resulting classification. Adding the screen increased

the power consumption of the Sensing Unit and it required a second power source, for which an external battery was

utilized. The data was displayed as an array of three numbers, where each element of the array was an acceleration

value in each plane: [x Accel, y Accel, z Accel]. With the result of the machine learning classification, a 0 (good road)

or a 1 (pothole), being displayed immediately following the array.
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Chapter 7

Project Timeline

For this project to run smoothly and on schedule, a timeline was created to act as a reference point for this project.

Due to the situation with CONVID-19, many of these goals where changed or pushed back from what is represented

here, especially during the Spring quarter. By trying to follow what was planned, there was enough time to adjust to

problems that arose over the development process of Drive Health Due to COVID-19 a higher quality product was

unable to be produced, but nevertheless the product is functional and works as initially planned. It just lacks a few of

the extraneous features that are not necessary for functionality.

Figure 7.1: Fall Development Timeline
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Figure 7.2: Winter Development Timeline

Figure 7.3: Spring Development Timeline
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Chapter 8

Risk Analysis

Once work began on Drive Health, risks were identified that would hinder the completion of the project. In the table

below the biggest risks and their likelihood are identified. They are also sorted by how much of an impact they would

have on the project. The risk that caused the most issue was lack of training data. Because data had to be gathered

by going through situations that could potentially damage the vehicles used (by driving into potholes), data gathering

had to be done using only team members and their vehicles rather than gathering assistance from friends and family

members. An interior risk to gathering training data was that with the screen on the device to check and see that data

was being gathered, there was the potential to become distracted by the device and drive unsafely. This was mitigated

by bringing a second person along to monitor the device and make sure that it was functioning correctly.

Risk Consequences Probability Severity Impact Mitigation

Time System or device not
completed on schedule 0.5 9 4.5 Set deadlines,

prioritize main features

Lack Training Data System does not work,
delays in production 0.5 7 3.5

Talk with company to get data,
built enough devices and
users to gather data

Bugs System does not work,
delays in production 0.99 3 2.97

Comment code,
maintain consistent style,
read documentation

Hardware Issues System does not work,
delays in production 0.3 5 1.5 Buy from trusted sites,

purchase multiple

Project Scope Delays in production 0.25 6 1.5 Meet required features
then add flu↵

Loss of dev environment Loss of productivity 0.05 5 0.25
Take care of personal computer,
take care of hardware,
create backup of environment
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Chapter 9

Societal Considerations

Considering the ethics behind this project is also very important. A major ethical issue that could be asked about

Drive Health is whether or not it could be used to track people. Privacy and accountability were two big aspects of

this project. The user’s privacy is paramount as this Sensing Unit can track a user’s movement while in their vehicle.

To help reduce the risk of being completely tracked, the Sensing Units are kept anonymous and are not given IDs in

the system, as well as not keeping track of when the information is recorded in the system. Social issues have very

little impact on the project, as the intent is to only use this to mark and keep track of potholes. Political issues, much

like social issues, have little to no influence on Drive Health as it is only related to the condition of roads. Economic

considerations can apply, as there is a cost to create the Sensing Units. This cost was kept as low as possible over

the course of the project and could potentially be lowered more if a cheaper version of the Raspberry Pi was used.

However, this would impact one key feature of the Sensing Units by potentially not allowing machine learning to be

done on the device and instead the machine learning would need to be moved elsewhere. This secondary location

(a cloud server) would cost significantly more than a singular device as it would need to handle information from

many devices at once. Health and safety is one of the main features, as keeping potholes out of roads would mean

fewer potential injuries and damage to vehicles (which can cause issues in the future). This this system a city can

better keep track of the potholes in their roads and the people are able to have an easier time to get the attention of

the city through reporting this data by driving on the roads. Manufacturability was not a large consideration. Sensing

Units could feasibly be manufactured, but the desire was to make something that people at home could easily get

the parts for and assemble over the course of an afternoon. Sustainability in the scope of Drive Health was brought

into play by allowing cities a resource to better maintain their roads with. This means less repairs done on cars, less

goods consumed to do the repairs (metal used to manufacture suspension parts), and also a longer overall use time for

peoples cars. Sensing Units have little environmental impact. It doesn’t produce any waste and uses very few valuable

resources in the form of the parts for the internal computers. The usability threshold for Drive Health is fairly low. The

most intensive thing is being able to install the operating system onto the Raspberry Pi, which would require a laptop
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and being able to use a USB flash drive. From an end user standpoint, using the final device is extremely easy and only

requires plugging in and pressing a button. Lifelong learning applies to Drive Health as it introduced the team to new

aspects of computer engineering in web design. Implementing the website and server to store data gave the developers

more of an insight into self education and the process behind learning a new product that isn’t being explained to us in

a classroom. Compassion played a part through Drive Health attempting to make it possible for cities to fix the roads

that they built and promise that they will maintain. This responsibility is sometimes di�cult for cities to uphold, and

as such the deteriorating roads can cause damage and financial hardships to people. We wish to make an impact and

make it so the potential for damage is not there in the first place rather than the onus being on drivers to avoid damaged

parts of the road.
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Chapter 10

Conclusion

Drive Health attempts to assist cities in solving a challenging problem. Potholes in densely populated cities cause a lot

of damage to vehicles. The transit authorities have di�culty fixing these potholes because they can be hard to locate

and repairing them requires the shut down of busy roads.

The solution is to create an automated system for identifying potholes, and IoT lends itself to this task well.

Since the system’s Sensing Units need to be quick to set up and easy to use, they only require the loading of the

essential libraries and code before deployment. The hardware components were chosen to be readily available o↵ the

shelf in order to ease repairs should they become necessary. SVM was chosen as the machine learning algorithm for

classifying the data, because it is more e↵ective at identifying outlying data points than other examined algorithms.

After the software was deployed onto the Sensing Unit, gathering data and tracking down the remaining issues was

done. Once the bugs were found and removed, final testing was done in order to confirm the entire system worked

together.

Dive Health will help reduce the impact that potholes have on people and the damage they cause to motor vehicles.

10.1 Future Work

The Sensing Unit’s software can be expanded to evaluate the user’s driving. The Progressive Insurance company

is currently using a device called the ”Progressive Snapshot” [11] which records data on how the user drives. This

data is reported back to the company for evaluation and the individual adjustment of the customer’s insurance policy

pricing. Progressive Snapshot plugs into the On-Board Diagnostics (OBD) port, commonly used by mechanics to get

error codes for diagnosing purposes. The OBD port outputs a lot of data, such as the current speed of the car, any

error codes that the car’s electronic control unit (ECU) is outputting, even the vehicle identification number (VIN).

Progressive Snapshot gets total distance driven from the OBD port and has an onboard accelerometer to detect if the

user brakes too hard. The Progressive Insurance Company could potentially use the Progressive Snapshot for the

same purpose as Drive Health. However, their device is not powerful enough to run the machine learning algorithms
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necessary. Drive Health’s Sensing Units can easily be extended to collect similar data and evaluate driving safety.

To extend the Sensing Units, a backup power supply could be added in order to continue data gathering even if the

connection to the auxiliary power outlet is lost.

A program that makes calibration of the accelerometer more e�cient than what is currently implemented could

also be added. As it stands, calibration is done on the accelerometer by rotating the Sensing Unit and calibrating all

axes.

Additions to the machine learning program could be done to detect the severity of the potholes. Currently, the

machine learning only indicates the existence of a pothole and not the pothole’s depth for instance. This would then

allow the transit authority to rank the potholes by severity and attend to the worst ones first.

Another aspect is to improve the design of the website and database in order to allow for a more user friendly

visualization of the results. Currently, the results are simple latitude and longitude values stored in a database table

which is displayed directly onto the web page. Integration with a world map system would allow the locations to be

displayed onto a map for easier viewing.

Linking the Sensing Unit to a smartphone using Bluetooth or a USB cable could enable the real-time communica-

tion of the reading to the server and eliminating the need for uploading the results after returning to a WiFi connection.

This smartphone connection could also allow integration into apps like Waze, Google Maps, or Apple Maps to po-

tentially provide the location of potholes to other users of the app. Currently Waze allows community reporting, so

people know if there is a highway patrolman on the freeway, or if there are road hazards. However, these have to all be

manually reported. A Waze-Drive Health integration could for instance automate the reporting. This would increase

the likelihood that people would see locations where the road condition is bad enough to cause damage to their cars so

they could route themselves around anything too severe.
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Appendix A

Source Code

The source code and data set gathered for this project is available at https://github.com/Drive-Health/Driv

e_Health.
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