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Abstract

We model sequential, possibly multi-unit, sealed-bid auctions as a sequential
game with imperfect and incomplete information. We develop an agent that con-
structs a bidding policy by sampling the valuation space of its opponents, solving
the resulting complete information game, and aggregating the samples into a pol-
icy. The constructed policy takes advantage of information learned in the early
stages of the game, and is flexible with respect to assumptions about the other
bidders’ valuations. Because the straightforward expansion of the complete infor-
mation game is intractable, we develop a more concise representation that takes ad-
vantage of the sequential auctions’ natural structure. We examine the performance
of our agent versus agents that play perfectly, agents that also create policies using
Monte Carlo, and other benchmarks. The technique performs quite well in these
empirical studies, though the tractability of the problem is bounded by the ability
to solve component games.

Keywords: Sequential auctions, game theory, Monte Carlo sampling, incom-

plete information.

*Correspondindiuthor.



1 Introduction

Online auctions have rapidly permeated both business-to-business negotiation and pub-
lic marketplaces. The vast number of trading opportunities and the increasingly fluid
markets bolsters the need for automated trading support in the faradaig agents—
software programs that participate in electronic markets on behalf of a user. Simple
bidding tools, like eSnigeand AuctionBlitZ enable bidders to automate submission

of last-second bids on eBay. However, these tools lack the sophistication that bidders
require when faced with a plethora of auctions possibly hosted at multiple auction sites.

Recently, the design of more sophisticated trading agents has attracted the attention
of researchers in artificial intelligence and other related fields [4, 8, 21, 25, 29]. In
most of these studies, the agents are designed for a particular marketplace and lack
flexibility to adapt to other market configurations. In this paper, we develop a more
general approach to constructing trading agents based on game theory, and explore its
computational limitations.

We develop our technique in the context of a sequence of (possibly multi-unit) auc-
tions with a small set of identified, risk-neutral participants, each of whom wants one
unit of the item for which they have an independent, private value. We assume that our
agent knows the distribution of the other agents’ valuations, but not their actual val-
ues. This is meant to model common procurement scenarios, and may fit some markets
on eBay in which it is apparently common for a small community of expert traders
to recognize each other. In both situations, the relatively small number of significant
opponents creates the opportunity to directly model one’s competitors.

We cast the problem as an incomplete, imperfect information game. However, the
straightforward expansion of a sequence of auctions creates a game that is intractable
even for very small problems, and it is beyond the capability of the current software
to solve for the Bayes-Nash equilibria. Thus, we construct a bidding policy through
Monte Carlo sampling. In particular, we sample the opponents’ valuations, assume they

play perfectly, and solve the resulting imperfect information game. We accumulate the

http://www.esnipe.com
2http://www.auctionblitz.com



results of the samplinipto a heuristicstrategyfor the incompleténformationgame.

The resultingstrategyimplicitly captureghe belief updatingassociatedavith ob-
servingtheopponentsbidsin earlierauctions.Underlyingthiswork is theassumption
thatinformationwe gain aboutthe otherbidderscanbe usedto improveplay in later
stagesof the game. In particular,our observationf a bidder’s actionsin previous
auctionsshouldaffect our belief abouther valuation. For example,if we noticethat
Suehasplacedbids at high valuesin previousauctionsbut not yet won anything,we
aremorelikely to believethat Suehasa high valuation,which may influencehow we
should bid in future auctions.

The primary motivationof this line of work is to explorethe potentialbenefitsand
the practicallimitationsof this approachWe find thatthe straightforwardexpansiorof
theimperfectinformationgamecannotbesolveddirectly by currentgamesolvers(e.g.,
GAMBIT %). Thus,wedevelopmethodgo takeadvantagef thesequentiastructurethat
greatlyreduceghe spacerequiredto representhe game. Thoughthis decomposition
enablesus to solvelargergames,GAMBIT’s ability to solvethe decomposedgjames
remains a bottleneck.

In Section2 we formalize our model of the sequentialauctionscenarioand set
up the gametheoreticanalysis.Section3 describesow we leveragethe substructure
to significantly decrease¢he amountof computationmnecessaryo solvethe game. In
Section4 we useMonte Carlo samplingto generatea heuristicbidding policy for our
agent. Section5 presentour empirical results,including comparisondetweenour
heuristicpolicy andperfectplay in marketghatcontainbothsingle-unitandmulti-unit
auctions.Section6 developgherelationshipbetweerour approactandthe mathemat-
ics underlyingsequentiakquilibria. We presentrelatedwork in Section7 andthen

conclude.

3The GAMBIT toolset is a software program and set of libraries that support the con-
struction and analysis of finite extensive form and normal form multi-player games. See

http://www.hss.caltech.edu/gambit/Gambit.html



2 Model

Consider an agent, that has the task of purchasing one item from a sequence of
auctions,K. Let ¢ be the number of auctions, akdan individual auction. We refer to
the collection of auctions as thmearketplace. Individual auctions may offer multiple
units and differ in the manner in which they form prices. The specification of the order
and rules of the collection of auctions is tmarket configuration.

Letq(k) be the number of units offered in auctibnand the total number of objects
beq = )", q(k). The auctions close in a fixed, known order, and in this model, all are
treated as sealed bid auctidghs.

Let J denote the other bidders in the market, ahd- J U i. The total number of
bidders, including, isn = |J| 4+ 1. In a particular auction, a subset, C A, of the
agents will place bids. Let the bid of bidd¢imn auctionk be denoteal);?.

Naturally, the rules of the auctions will affect the bidders’ choices of actions. A
multi-unit auction must have a policy for setting pricesn this study, we consider
only two such policies. Thé/th-price policy sets the price paid by all winners to
the value of the lowest winning bid (this is the policy used in eBay’s Dutch Auction
format)® Under thepay-your-bidpolicy, each winner pays the price she offered. Pay-
your-bid is the policy used on Yahoo’s multi-unit auctions. In the case of a single unit
for sale, the two policies are equivalent.

Given a sequence of sealed-bid auctions, the agent must select a bid to place in each
auction. LetlW* be the set of bid choices that are acceptable in auétioFypically,
we assume thatl’”* is the set of integers in some range and is identical across all of
the auctions. However, the techniques we develop admit different bid choices in each
auction. The number of bid choicesiis = |W¥|. We assume that ties are broken
randomly.

Our agent has a value, (k) for an item ink, and bidderj € J, has valuation

4The sealed bid assumption may not be as restrictive as it seems. In fact, the sniping strategy used by

many bidders on eBay [20, 23] reduces the open-outcry auction to the equivalent of a sealed bid auction.
5See [30] for a survey of some pricing policies.
6The Mth-price policy derives its name from an analysis in whidhis the number of units for sale, the

M highest bidders win, and each winner pays the price associated will1 thdighest bid.



vj(k). In this study, we assume that the items availabl&iare identical and that all
participants are interested in only a single unit. We anticipate that the techniques we
develop in this paper can be extended to auctions of heterogeneous items if an agent’s
valuations for the items are correlated, that is, if learning about an agent’s valuation of
one item helps predict its valuation of another item.

Agenti does not know biddef’s true value for the items, but knows that it is drawn
from a distribution,D;. In this model, we assume that valuations are independent and
private, but we do not make any particular assumptions about the functional form of the
distributions, nor do we assume that the distributions are identical for all of the bidders.
We will make various assumptions about whether the biddessknow each other’s
valuations or agenits valuation.

We assume that each participant is present for the first auction, and continues to
participate in each auction until either she wins or the sequence ends. Thus, a buyer
that does not win in auctioh will participate in auctiork + 1. We assume that the
auctioneer makes public a list of all of the bids once the auction is complete. This is
consistent, for instance, with eBay’s policy. Ll%‘t be the sequence of bids that agent
j placed in the auctions up to, but not includirig, That is,hf = {bjl-, .. .,bf‘l .

We callhf;? bidder ;s history up to auctionk. The history of allJ bidders leading to

auctionk is denoted%.

2.1 Sequential Game Representation

We model the sequential auction scenario as an extensive form §ame/ 4, K, W),
whereA = J Ui andW ¥ denotes the bid choices for all of the auctionssubgame
has the same structure, except that part of the game has already been played. For exam-
ple, the subgame that results when biddeiins the first item id(A’, V4, K’, WK/)
whered’ =iU J\ jandK' = K \ {1}.

It is also useful to identify the game structure of individual auctions. Denote a
componenauctiongamey (A, V%, W*), in whichagentsA, with valuationsV% for the
itemsin auctionk, choosebids from the domain’¥*. Notethata game(or subgame)

is a sequencef componengames.In gametheoreticterms,~ is the gamein which



Ais the set of playersy* are the actions, and the payoffis(k) — bf for the bidder
with the highest bid, and zero for everyone else. Because the auction is sealed bid, all
of the bidders’ actions are simultaneous, and the game involves imperfect information.

A simple example with three agents, two items, and two bid levels is shown in
Figure 1. The circles are labeled with the ID of the agent, and the arcs with the bid
value ({1, 3). The game consists of two stages, the first of which corresponds to the
first auction involving all three agents. The second stage involves the two agents who
did not win the first item, and for conciseness, we have substituted labeled triangles
for subgames on the leaves of the first auction. There are fifteen subgames, labeled
~1 .. .715, but only three possible unique structures, labeled A, B, and C.

Dotted lines connect decision nodes in the same information set. The small squares
at the leaves of the subgames represent terminal states that would be labeled with the
payoffs to the agents. The actual value of the payoffs would depend upon each agent’s
actual value for the item, the path taken, and the auction’s policy for setting prices.
The diamonds denote the random move by nature to break ties among the bids (with
the probabilities indicated in parenthesis). This type of move by nature can be handled
relatively easily because it does not introduce any asymmetric information. Moreover,
it is amenable to the decompositions we introduce in the next section.

It is obvious from Figure 1 that a particular component gamean appear many
times in the overall gamE. Each second level component game appears on five dif-
ferent paths of the top level game. When necessary, we will distinguish a component
game using its history as a subscrip,t;,;j. The history information is sufficient to
uniquely identify each component game instance.

In addition to the imperfect information generated by the sealed bids, the agent
also faces incomplete information because it does not know the other bidders’ true
values, and therefore does not know the other bidders’ payoffs. Harsanyi (1967-68)
demonstrated that incomplete information games can be modeled by introducing an
unobservable move by nature at the beginning of the game which establishes the un-
known values. This approach transforms the incomplete information game into a game
with imperfect information.

Unfortunately, the move-by-nature approach is computationally problematic. The
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each auction, and two bid levels.



numberof possible moves available to naturen$, wherem is the size of the domain
of v;(k), andn is the number of agents. Our model permits a continuous range for val-
uation functions, so the number of choices is not enumerable. In some special cases,
analytic solutions can be found to auction games with continuous types [6]. However
this analysis is complex and typically requires restrictive assumptions about the distri-
butions of values. Moreover, whether valuations are drawn from discrete or continuous
domains, each different market configuration requires a separate analysis.

For these reasons, we investigate the use of Monte Carlo sampling to generate
heuristic bidding policies for the incomplete information game. Our approach to the

problem can be summarized as follows:

1. Create a sample complete-information game by drawing a set of valuations for

other bidders.
2. Solve for a Nash equilibrium of the sample game.

3. Update the agent’s bidding policy.

The first step is straightforward Monte Carlo sampling. The second and third steps

are the subject of the next two sections.

3 Leveraging Substructure in the Complete Informa-
tion Game

We built our agenton top of the GAMBIT Toolset. Although GAMBIT includesalgo-
rithmsthatcansolvemulti-playergameswith imperfectinformation,it cannotsolvethe
straightforwardexpansiorof evenvery smallinstancesf the complete-information,
sequentiahuctiongamein a reasonablamountof time.

To seewhy, considerthe sizeof the extensiveform of a completeinformationse-
guentialauctiongamewith ties brokenrandomly. The assumptiorthat bidderswant
only oneitem meanghatthe winnersof a particularauctionwill not participatein fu-

tureauctions.Thus,auctionk+1 hasq(k) fewerparticipantg¢hanauctionk. In general,



the number of agents participating in component gatris z(k) = n — E:;} q(z).

The number of nodes in the extensive form representation of this game auittions

c z(k) _ 1 k—1

<11 (m* + BXT [2(j), m, q(7)])

k=2 j=1

The core of the equation captures the number of nodes in the tree without tie breaking,
and the EXT term represents the number of additional terminal nodes added to each

component game due to tie breaking. The EXT term expands as

EXT [2(j),m, q(j)] =

m z(4) N ;
X (-0 () -1+
v=li=q(j)+1

z()=-1 o H)

U5 (9) S (9 m -0 - 0= () 1],

1
v=1 =2 h=L(j,i)

H(j,i) =min(q(j) — 1,2(j) — ), and
L(j,7) = max(q(j) —i+ 1,1).

A five agent,four item sequentialauctionwith five bid choicesand randomtie
breakinghas4.5 billion decisionnodesandis unsolvablewith GAMBIT on current
workstations. However,asFigure 1 suggeststhereis structurein the problemthatwe
can leveragéo improveour representatioof the game.

The computationabspectof gametheory havebeenstudiedby economistsand
computerscientistan the pastfew years[12, 13, 14, ?, 26]. A very promisingthread
of work is focusedon representationsf gamesthat capturetheir inherentstructure
andfacilitate solutioncomputation.Koller and Pfeffer's GALA languagg(1997)can
be usedto represengamesn sequencéorm, andthe authorshavedevelopedsolution
techniquedor two-player,zero-sungamesepresenteth this format. The succes®f
GALA is basedntheintuition thatsignificantcomputationasavingscanbe achieved
by taking advantageof a game’ssubstructure This intuition holdsfor the sequential

auctionmodel,andwe haveemployedt to improveuponGAMBIT's defaultapproach.



Thedefault representation of this game imBBIT is to expand each of the leaves
with an appropriate subgame. Given that the bidders have complete information, all
subgames with the same players remaining have the same solution(s). Thus, a single-
unit, sealed-bid (component) auction withagents has at mostuniquesubgames—
one for each possible set of non-winners. The three component games—A, B, and
C—are illustrated in Figure 1.

Our agent’s approach is to create all possible component games and solve them
using GAMBIT's C++ libraries. The process is essentially dynamic programming, and
equivalent to standard backward induction with caching. The expected payoffs from
the solution to a component gamdnvolving bidders7 are used as the payoffs for
the respective agents on the leaves of any component ganheslinch immediately
precedey. The agent solves all possible smallest component games (i.e., iwhers,
and recursively constructs higher-order subgames until it solves the root game (i.e.,
k=1).

The number of decision nodes required to express a game in its component form is

- n \m**k) —1
; (z(k)) m—1

Thecomponenform representatiors exponentialn thenumberof agentsandthe
numberof biddingchoices However thetotal numberof nodesrequiredto expresshe
gameis exponentiallylessthanin thefull expansionForexamplefive agentfouritem
sequentiakingle-unitauctionswith five bid choicesandrandomtie-breakingrequires
only 1931nodeso encoddn its componentorm, comparedo the4.5billion required
for the naiveexpansion.

It shouldbe notedthat the solutionsthat we are usingin the aboveanalysisare
Nashequilibriafoundby GamBIT for eachparticularsubgame Thesesolutionsmay
involve eitherpureor mixed strategies|t is well known[19], thatat leastone mixed
strategyequilibriumalwaysexists howeveliit is alsooftentruethatmorethanoneNash
equilibria exist. In this study, we simply take the first equilibria found by GAmBIT,
andleavethe questionof how, andevenwhether,to incorporatemultiple equilibriato
futureresearchWe recognizethatour resultsmay beinfluencedby the orderin which

GAMBIT findssolutions,but alsoconsiderit a concerninherentin usingoff-the-shelf
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solutiontechnology.

It should also be noted that the procedure described above is consistent with the
definition ofsubgame perfect equilibrium (SEE)well-known specialization of Nash
equilibria. A profile of strategies is subgame perfect if it entails a Nash equilibrium in
every subgame of the overall game [22]. All subgame perfect equilibria are Nash, but
the reverse is not necessarily true.

While the decomposition provides an exponential improvement in the number of
nodes needed to represent (and hence solve) the game, the computational cost of find-
ing equilibria for the component games remains a severely limiting factor. Indeed,
though the number of bid choices is the base, not the exponent, of the complexity of
the extensive form game, we will see in Section 5 thaiM8IT is unable to solve

subgames if we increase the number of bid choices beyond a small number.

4 Monte Carlo Approximation

In order to participate in this environment, the agent must constrpotiay, II, that
specifies what action it should take in any state of the game that it might reach. There
are many conceivable policies available to our agent.

One simple strategy is to compute the equilibrium strategy in each component
game, and to bid accordingly. For example, the equilibrium strategy of a single first-
price, sealed-bid auction in which the other bidders’ valuations are drawn uniformly
from [0, 1] is to bidb¥ = (1 — 1/n)v;(k), wheren is the number of bidders [17]. We
definellyopic t0 be the strategy in which the agent bids according the the equilibrium
of each individual sealed-bid auction. Thus, the strategy has one element for each po-
tential game sizell,yopic = {7} Wherez is the size, in number of bidders, of the
component game.

In a sequence of sealed-bid, single-unit auctions, a Bayes-Nash equilibrium strat-
egy is for a bidder to bid the expected price of the+ 1)st valuation under the as-
sumption that her bid is among the tggsee [27] for details). We denote this policy
II(441)st @nd use it as a benchmark in our empirical evaluation.

If the distributions from which the bidders draw values are not identical, then it

11



would behoove our agent to have a policy that accounted for which other bidders were
in the subgame. Thu$l,i—iq = {m7cs}. Thatis, the actions in the policy depend
upon which subset7, of agents remain.

All three policies mentioned thus far are memoryless; they ignore the bids the re-
maining opponents made in previous auctions. On the other extreme is a policy that
uses all possible history informatiomlyisiory = {7 7 H§} encodes the entire tree
because the decision at each decision node is a function of the entire history.

The policy that our agent learned in this studylig,s nist = {wj,Hg} where
HY% = {n}_;}, the histories of all other agents still in the game. This differs from
Ihistory iN that policies are classified by the histories of only those bidders that remain
active (7), rather than by the previous actions of all bidderg/inlt is based on the
assumption that bidders who are no longer active in the sequential auction (because
they have won an item) are irrelevant. Therefore, all component games that have the
same opponents and identical previous actions by those agents, are aggregated into a
class of component games; .

In the example in Figure 1, suppose player 1 is our agent. All paths that lead to
subgame A can be ignored because our agent won the item in the first auction. Of the
remaining subgames, the detb, 74,710} have identical histories—bidder 2 bid $1 in
all of them. Similarly, the set§ys, v14}, {73, 75, 712}, and{y7, 715} can be formed
by their common histories.

The agent constructs the policy by sampling the distributions of the other bidders
and solving the resulting complete information game. IL.be the collection of sample
games constructed, ahd single instance. Denote the solution returned by&IT to
instance asQ'. Q! is a profile of (possibly mixed) strategies—one for each player—
that constitute an equilibrium for this game instance. K&tspecify the policy for
agenti, andw!(v) is the policy for subgame. Note that some decision nodes may
not be reachable if the actions that lead to them are played with zero probability. To
simplify the notation, we include these unreachable nodes in the following even though
they have no effect on the solution.

To compute the policyrj)Hg for a decision in game ; yx we take the weighted

12



sumof the equilibrium solutions across all sample games. Let

wbf|rr ) =Y Y Pr(y|Q)Pr(btflwi(y) (1)
lEL YEY K
T
be the weight assigned to actio in the class of games identified beg- Here,
Pr(v|Q) is the probability that the game would reach subganggven that everyone
is playing©* (i.e., the product of the probabilities in the mixed strategies on the path

leading tov), and Pr(b¥|w!(v)) is the probability associated with bigf in solution

w (7).

In previous work [31], we examined a version of the update function with a bias
towards actions that generate a higher utility for our agent. The inclusion of utility in
the equation biases the agent toward maximizing its expected utility—a useful heuris-
tic, perhaps, but one that is not necessarily consistent with equilibrium behavior. In
this paper, we compare the effect of using the biased update function rather than the

unbiased one in equation (1). The biased updated function has the form:

wbf|rr ) =Y Y Pr(vQ)ui(y, Q) Pr(v}|wi (7)), 2)
lEL YEY [k
J
whereu; (v, Q') is out agent’s expected utility of the subgame rootegl. at

Finally, we normalize the computed weights to derive the probabilities,

w(bf T 7 ps)
Ebewk‘ w(b|77j,H§,)

@)

Pr(b|mg.ms) =

Theresultof this processs a policy thatspecifiesa (possiblymixed) strategyfor each
uniqueclassof componengamesWe referto a policy constructedn this mannerasa

Monte Carlo ApproximatioMCA) policy.

5 Empirical Results

To evaluatethe efficacy of the approachwe simulatedseveralmarketconfigurations
in which we variedthe functionalform of the valuationdistributions,the form of the

updateequation,andthe strategief the otherbidders. Eachof theseexperimental

13



variables are described in more detail below. The experimental design is similar to our
previous work [31]. However, in the results reported herein, we have added random

tie-breaking rule and multi-unit auctions.

e Market Configuration: The market configuration includes the number of agents,
the domain of the bid messages, and the number and types of auctions. We used

the following configurations:

— {5,5,s-s-s}contains five agents, four bid levels, and a sequence of three

single-item auctions.

— {5,5,s-2Mh} contains five agents, five bid levels, and an auction sequence
in which a single-unit auction is followed by /& th-price auction for two

units.

— {5,5,5-2PYB contains five agents, five bid levels, and an auction sequence
in which a single-unit auction is followed by a two-unit auction in which

the winners pay their bid values.

— {5,4,s-s-s-skontains five agents, four bid levels, and a sequence of four

single-item auctions.

— {6,5,s-2Mh-2PYB} contains six agents, five bid levels, and an auction
sequence of a single-unit auction, followed by &fth-price auction for

two units, followed by a pay-your-bid auction for two units.

e Valuation Distribution: we used three types of distributions: uniform, left-
skewed Beta, right-skewed Beta. With the exceptiofi®mf,s-s-s-}, the valua-
tions of the other agents were drawn from [1, 6], while our agent’s valuation is
always fixed at 3.5. In the left-skewed distribution, our agent is likely to have
a valuation significantly above average, while in the right-skewed distribution it
will be significantly below average. In experiments with4,s-s-s-5, the valua-
tions of the other agents drawn from [1,5] while our agent’s valuation is fixed at

3; this combination was chosen to draw comparisons with our earlier work [31].

e Update Equation: we examined the difference between using equation (1) and

using equation (2), which biases the policy aggregation by the agent’'s expected

14



utility.

e Bidder Strategies: we studied the effects of various combinations of bidder

strategies.

— All SPE: as a benchmark scenario, we assume that all agents have com-
plete information for a test case and all of them play the subgame perfect
equilibrium computed using our structural decomposition technique with

the GAMBIT engine.

— MCA/n-SPE:we assume the other agents had complete information, while
our agent has incomplete information. Our agent implements the strategy
learned from the Monte Carlo policy construction, while the other agents
implement their SPE strategies. Since our agent is not playing perfectly,
there is no guarantee that the other agents’ SPE strategies are equilibrium
responses to our imperfect playlo generate the MCA strategy, the agent

trained with 200 samples.

— All MCA: In this scenario all agents construct and play strategies generated
with Monte Carlo policy construction. Note that for these simulations, each

opponent must be retrained with each new draw of its valuation.

— (¢ + 1)-Equilibrium: Another benchmark for the sequence of single-unit
auctions, in théq + 1)-equilibrium strategy all agents play the sequential
auction equilibrium strategy [27]. Each agent bids the expected price of the

(¢ + 1)st valuation under the assumption that their bid is among the.top

In theexperimentsywe measuré¢heutility for ouragentcomputedasthedifference
betweerits valueandthepriceit paysif it wins),thesocialwelfare(theaggregatealue
of all of thewinning agents)andthe revenueachievedoy the seller. The experiments
were run on a Beowulluster of eighLinux computers.

In somecasespur agentmay find that the gamehasprogressediown a pathfor

which it learnedno policy. In suchcasespur agentpicks the mostsimilar subgame

7In theory, it would be possibleto determinethe opponentsbestresponseso our heuristicstrategyby
marginalizingour agentandcomputinga reducedyamein which the otheragents’payoffsareimpactedby

our fixedbehavior.
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for whichit doeshavea policy. Thesimilarity measurdavorssubgamesvith thesame
bidding pattern,but possiblydifferentagents over subgamesvith the sameagentbut
differentbidding patterns.

Figure 2 showsour agent’sutility on thirty randomlyselectedorobleminstances
from the {5,4,s-s-s-sjmarketscenariowith otheragents’valuationsdrawnfrom the
uniform distribution. For eachprobleminstancethe four strategycombinationsvere
testedandupdateequation(2) is used. The performanceof the Monte Carlo strategy
is quite closeto that of the subgameperfectequilibrium both whenthe otheragents
play perfectlyand whenthey constructtheir own Monte Carlo strategies.From this
resultwe concludethat the approximationtechniquegenerategoliciesthat perform
quitewell in this environment.

The (¢ + 1)-equilibrium strategyis includedin Figure2, thoughit is importantto
notethatit represents slightly differentgamethanthe otherthree. Agentsmustbe
allowedto placereal-valuedbidsin the (¢ + 1)-equilibriumstrategywhile in theother
threewe arerestrictingbids to integervalues. This distinctionexplains,for instance,
why our agentachieveseroutility in Figure2 underthe (¢ + 1)-equilibriumstrategy
whenit hasthe lowestvalue amongthe five agents. However,when bid valuesare
restricted,it is morelikely thatour agentwill endup in atie andthereforeachievea
positivesurpluswith someprobability. Neverthelesshe patternof the payoffsfor the
(¢ + 1)-equilibriumstrategyis quitesimilarto our empiricakesults.

Oneaspecbf our previouswork which we wantedto examinewasthe effectof the
utility termin equation(2). Figure 3 showsour agent'sexpectedutility onthe same
30 testcaseswhen trainedwith the sametraining dataand equation(1). Although
Figures?2 and3 look nearlyidentical,closeinspectiorshowsthatequation2) performs
slightly betterthan equation(1), in the sensethat it more closely approximateghe
subgameperfectoutcomesFor this reasonwe continueto useequation(2) in therest
of the empiricatests.

Figures4 and5 showsimilar correspondendeetweerthestrategiesvhentheother
agents’valuationsare drawn from right-skewedand left-skewedBeta distributions,
respectively.Notice thatthein the left-skeweddistributionour agentachieveshigher

payoffs,while in theright-skewedcaseour agentreceivedower payoffs. This resultis
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Figure2: Our agent’s expected payoff in tH&,4,s-s-s-sjmarket scenario with the
other agents’ valuations drawn from a uniform distribution and equation (2) is used to
update policies.
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Figure 3: Our agent's expected payoff in tH&,4,s-s-s-sjmarket scenario with the
other agents’ valuations drawn from a uniform distribution and equation (1) is used to
update policies.
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expected given that the expected average valuation will be lower when the opponents
are drawn from a left-skewed distribution, and higher when drawn from a right-skewed
distribution.

The next set of experiments involved five-agent, three-item scenarios. We com-
pared two multi-unit auction scenarid®,5,s-2Mh} and{5,5,5-2PYB}, against a se-
quence of three single unit auctiof,5,s-s-s}, over the same thirty uniform-distribution
sample instances tested above. Figures 6 and 7 show how closely the performance of
the MCA strategy tracks that of the subgame perfect strategy5dr,s-2Mh} and
{5,5,5-2PYB}, respectively. Figure 8 contrasts our agent’s payoff for the three scenar-
ios. The results from{5,5,s-2Mh} and{5,5,s-2PYB}are nearly identical (and may
appear to be a single line), while significant variation exists in results {f&fs-s-s}.
Notice that our agent performed significantly better in b{#tb,s-2Mh} and{5,5,s-
2PYB}than in{5,5,s-s-$. It is clear that, overall, the agents are bidding lower in the
multi-unit scenarios, and our agent is playing a mixed strategy that is more successful.
However, it remains to be seen whether there is a game theoretic explanation for this
outcome, or whether it is a byproduct of our technique or the manner in whictsG
returns solutions.

Figure 9 shows the social welfare achieved in all three scenarios. The welfare
achieved in scenari5,5,s-s-slis slightly better than the two multi-unit cases, whose
graphs are again nearly coincident. This is consistent with the observation that the
agents are behaving more collaboratively in the multi-unit auction by bidding lower
and letting the tie-breaking determine the winner. When the agent with the highest
value allows the allocation to be determined by tie-breaking rather than by placing a
better bid, it is more likely that a less than optimal allocation will result.

Figure 10 shows the effect of the different auction scenarios on the sellers’ net rev-
enue. Again, because buyers are acting more competitively in the single-unit auctions,
the sellers achieve greater revenue than in the multi-unit auction scenarios.

To test the MCA construction on a more complicated problem, we {6¢sis-

2Mth-2PYB}. Figure 11 shows how closely the MCA strategy tracks the SPE results.
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6 MCA Strategies and Sequential Equilibria

The notion ofsequential equilibriumfirst introduced by Kreps and Wilson [16], is
closely related to the subgame perfect equilibrium concept proposed by Selten [22],
but extended to games of incomplete information. In particular, a sequential equilib-
rium is defined in terms of beliefs at decision points in the game, and requires that an
equilibrium policy be consistent with those beliefs. In this section, we show that the
MCA policy at a node implicitly captures the agent’s beliefs about which opponent
valuations would explain the fact that the agent arrived at a particular decision point in
the game tree.

Building on the notation above, 1€t be an equilibrium profile to the game when
agents have valuation profilé. In this analysis, we do not aggregate games that have
compatible histories, thus we develop the conditional probabilities in terms of unique
histories rather than subgame groups. RetH*|2"") be the probability that the poli-
cies selected b@" follow history H%. Let® be our agent's belief function, arie(V')
be our agent's belief that the other agents have valuation piéfi@iven historyH*,
the probability that the other agents have prdiiles given by

Pr(H5IQV) (V)

Pr(V|HY) = fg Pr(HYQ%)®(9)

In words, the probability that the other agents have préfilgiven the observed history
is the probability that the history is played given profifedivided by the probability
that the history is played among all possible valuation profiles.

In addition to beliefs, a sequential equilibrium must also define a policy for a sub-
game that is consistent with the beliefs. Here, we simply let the policy bavibiage
policy, that is, the policy constructed by taking an average over all action profiles,
weighted by the likelihood of seeing given that we have reached the subgame. In

other words, the probability that our agent pla§sn subgameyH;; is
Pr(bt1HS) = | Pr(VIHE) PrOFloY (1))
Vv

The MCA approach is a numerical approximation to the above. For a sufficient
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numberof samples.,

L Pr(HEQV)D(V)
Pr(V|H)) ~ S s pi(H§|Ql)<I>(l)'

Sinceall samples are equally likely to be drawb(1") = ®(I), and the above reduces

to
Pr(Hk\QV)
Pr(V|HY = ———J " 4
(VIH) ZleLPr(HﬂQl) )

Thenumerical approximation of the average policy is

Pr(bf|H}) = > Pr(V|HS) Pr(bf|w|(H})).
leL
Substituting in (4) gives

Pr(H%|QN Pr(bF |t (HE
[S

We can now show the correspondence between equation (3) and equation (5). First,

notice that the denominator of (3),
DD D Pr(y|Q) Pr(bf|wi(v)
beWk leL ’YE'YH]%

reduces to

> Pr(7|9h).

leL ’YE’YHLI%
Now the differencebetweenthe two formulationsreducego the variationsin the no-
tation. In equation(3) we haveusednotationconsistentvith 11, _nist, Which aggre-
gatesthe subgamesvith compatiblehistories. Thus,the conditionon the LHS of the
equationis in termsof the group of equivalentsubgamesandthe numeratoron the
RHS includesa summationover thosesamesubgames.Despitethat difference,the

functionalform of the twoequationgs identical.

7 Related Work

This papercontinueghe studybegunby Zhu andWurman[31], which studiedsingle
unit sequentiabuctionswith deterministidie-breaking.In this paperwe admitmulti-
unit auctions randomtie-breakingrules,andslightly largerproblemsizes.Moreover,

we connecthe MCA approach directlyo beliefupdating and sequentiafjuilibria.
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Our main focus is to study the feasibility of using game theory as a solution tool
in a computational agent adaptable to various electronic market configurations. The
copious research on auctions and game theory provides a backdrop for our effort. See
Klemperer [11] for a broad review of auction literature, including a discussion of se-
guential auctions for homogeneous objects. Weber [27] shows that the equilibrium
strategies for the bidders when the objects are sold in sequential first-price, sealed-bid
auctions is to bid the expected price of the object in each auction. This result is devel-
oped under the assumption that only the clearing price is revealed in previous auctions.
In many current online auction environments, the actual bids and their associated bid-
ders are revealed. As far as we know, none of the theoretical results have addressed the
model with complete bid revelation. In addition, we are not aware of any research on
sequences of auctions with different rules.

Monte Carlo sampling has been previously used in conjunction with games of in-
complete information. Frank et al. [5] describes an empirical study of the use of the
Monte Carlo sampling method on a simple complete binary game tree. They draw the
discouraging conclusion that the error rate quickly approaches 100% as the depth of
the game increases. However, perhaps because Frank et al. consider only pure strategy
equilibrium in a two-person, zero-sum game, these negative results did not evidence
themselves in our study.

Howard James Bampton [2] investigated the use of Monte Carlo sampling to create
a heuristic policy for the (imperfect information) game of Bridge. In Bampton'’s paper,
he simply collected the player’s decision in every sampled game and accumulated the
chance-minimax values for each alternative at each decision node. Our method of
accumulating sampled data is quite different from Bampton’s approach, again because
our game is not a two-player zero-sum game.

Researchers in artificial intelligence have recently been studying trading agents.
A significant amount of work has gone into agents for the Trading Agent Competition
(TAC) [7, 24, 28]. The TAC environment is significantly more complex than the simple
scenarios presented here, and to date, none of the implemented agents model opponent
behavior in a significant way.

Anthony, et al. [1] investigate agents that can participate in multiple online auctions.
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The authors posit a set of “tactics” and then empirically compare the performance of
these tactics in a simulated market that consists of simultaneous and sequential En-
glish, Dutch, and Vickrey auctions. While the bidding strategies seem to resonate with
particular aspects of human behavior (e.g., the “desperateness” strategy), they do not
seem to have a foundation in any theory.

Boutilier et al. [3] develop a sequential auction model in which the agent values
combinations of resources while all other participants value only a single item. Unlike
our model, the Boutilier formulation does not explicitly model the opponents, though
like our model it benefits from a dynamic programming approach to solving the deci-
sion problem.

Hon-Snir et al., [10] propose an iterative learning approach to solve repeated first-
price auctions. They develop a repeated auction model which converges to an equilib-
rium strategy for a one-shot auction after many rounds of repeated auctions. In addition
to the differences in overall structure of the marketplace, their work differs from ours
in that they treat the other bidders as naive players. Specifically, they assume the oppo-
nents’ next bid vectors are distributed according a weighted empirical distribution of

their past bid vectors.

8 Conclusion

This study represents a first step in exploring the implementation of computational
game theory in a simple trading agent. We show how Monte Carlo sampling can be
used to construct a bidding policy that performs comparably to the subgame perfect
equilibrium. This strategy takes advantage of information revealed in prior auctions in
the sequence to improve play in later auctions. Importantly, the architecture is flexible,
in that it can handle a variety of simple auction types, and different types of other
bidders. Equally important, the approach is computationally limited by our ability to
solve the component games, which suggests that algorithms for solving component
games, particularly ones with well-structured payoff and action spaces, is an important
area for further research.

We plan to continue this work and integrate more auction types, and to explore sce-
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nariosin which the agent’s and other bidders’ preferences are more complex, including
scenarios in which the buyers may want more than one item. We would also like to add
an aggregate buyer to the model to represent the large number of unmodeled opponents
often found in public markets. Finally, we plan to explore auction sequences in which

the bidders’ valuations are correlated across the items, but not necessarily identical.
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