
Santa Clara University Santa Clara University 

Scholar Commons Scholar Commons 

Information Systems and Analytics Leavey School of Business 

4-2005 

Monte Carlo approximation in incomplete information, sequential Monte Carlo approximation in incomplete information, sequential 

auction games auction games 

Gangshu (George) Cai 
Santa Clara University, gcai@scu.edu 

Peter R. Wurman 

Follow this and additional works at: https://scholarcommons.scu.edu/omis 

 Part of the Management Information Systems Commons 

Recommended Citation Recommended Citation 
Cai, G., & Wurman, P. R. (2005). Monte Carlo approximation in incomplete information, sequential auction 
games. Decision Support Systems, 39(2), 153–168. https://doi.org/10.1016/j.dss.2003.10.004 

© 2005. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
https://creativecommons.org/licenses/by-nc-nd/4.0/ 

This Article is brought to you for free and open access by the Leavey School of Business at Scholar Commons. It 
has been accepted for inclusion in Information Systems and Analytics by an authorized administrator of Scholar 
Commons. For more information, please contact rscroggin@scu.edu. 

https://scholarcommons.scu.edu/
https://scholarcommons.scu.edu/omis
https://scholarcommons.scu.edu/business
https://scholarcommons.scu.edu/omis?utm_source=scholarcommons.scu.edu%2Fomis%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=scholarcommons.scu.edu%2Fomis%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0
mailto:rscroggin@scu.edu


MonteCarlo Approximation in Incomplete

Information, Sequential Auction Games

Gangshu Cai & Peter R. Wurman∗

Computer Science

North Carolina State University

Raleigh, NC 27695-7535 USA

gcai@unity.ncsu.edu, wurman@csc.ncsu.edu

June 26, 2003

Abstract

We model sequential, possibly multi-unit, sealed-bid auctions as a sequential

game with imperfect and incomplete information. We develop an agent that con-

structs a bidding policy by sampling the valuation space of its opponents, solving

the resulting complete information game, and aggregating the samples into a pol-

icy. The constructed policy takes advantage of information learned in the early

stages of the game, and is flexible with respect to assumptions about the other

bidders’ valuations. Because the straightforward expansion of the complete infor-

mation game is intractable, we develop a more concise representation that takes ad-

vantage of the sequential auctions’ natural structure. We examine the performance

of our agent versus agents that play perfectly, agents that also create policies using

Monte Carlo, and other benchmarks. The technique performs quite well in these

empirical studies, though the tractability of the problem is bounded by the ability

to solve component games.

Keywords: Sequential auctions, game theory, Monte Carlo sampling, incom-

plete information.
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1 Introduction

Online auctions have rapidly permeated both business-to-business negotiation and pub-

lic marketplaces. The vast number of trading opportunities and the increasingly fluid

markets bolsters the need for automated trading support in the form oftrading agents—

software programs that participate in electronic markets on behalf of a user. Simple

bidding tools, like eSnipe1 and AuctionBlitz2 enable bidders to automate submission

of last-second bids on eBay. However, these tools lack the sophistication that bidders

require when faced with a plethora of auctions possibly hosted at multiple auction sites.

Recently, the design of more sophisticated trading agents has attracted the attention

of researchers in artificial intelligence and other related fields [4, 8, 21, 25, 29]. In

most of these studies, the agents are designed for a particular marketplace and lack

flexibility to adapt to other market configurations. In this paper, we develop a more

general approach to constructing trading agents based on game theory, and explore its

computational limitations.

We develop our technique in the context of a sequence of (possibly multi-unit) auc-

tions with a small set of identified, risk-neutral participants, each of whom wants one

unit of the item for which they have an independent, private value. We assume that our

agent knows the distribution of the other agents’ valuations, but not their actual val-

ues. This is meant to model common procurement scenarios, and may fit some markets

on eBay in which it is apparently common for a small community of expert traders

to recognize each other. In both situations, the relatively small number of significant

opponents creates the opportunity to directly model one’s competitors.

We cast the problem as an incomplete, imperfect information game. However, the

straightforward expansion of a sequence of auctions creates a game that is intractable

even for very small problems, and it is beyond the capability of the current software

to solve for the Bayes-Nash equilibria. Thus, we construct a bidding policy through

Monte Carlo sampling. In particular, we sample the opponents’ valuations, assume they

play perfectly, and solve the resulting imperfect information game. We accumulate the

1http://www.esnipe.com
2http://www.auctionblitz.com
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results of the sampling into a heuristic strategy for the incomplete information game.

The resulting strategy implicitly  captures the belief updating associated with ob-

serving the opponents’ bids in earlier auctions. Underlying this work is the assumption 

that information we gain about the other bidders can be used to improve play in later 

stages of the game. In particular, our observations of a bidder’s actions in previous 

auctions should affect our belief about her valuation. For example, if we notice that 

Sue has placed bids at high values in previous auctions but not yet won anything, we 

are more likely to believe that Sue has a high valuation, which may influence how we 

should bid in future auctions.

The primary motivation of this line of work is to explore the potential benefits and 

the practical limitations of this approach. We find that the straightforward expansion of 

the imperfect information game cannot be solved directly by current game solvers (e.g., 

GAMBIT 3). Thus, we develop methods to take advantage of the sequential structure that 

greatly reduces the space required to represent the game. Though this decomposition 

enables us to solve larger games, GAMBIT ’s ability to solve the decomposed games 

remains a bottleneck.

In Section 2 we formalize our model of the sequential auction scenario and set 

up the game theoretic analysis. Section 3 describes how we leverage the substructure 

to significantly decrease the amount of computation necessary to solve the game. In 

Section 4 we use Monte Carlo sampling to generate a heuristic bidding policy for our 

agent. Section 5 presents our empirical results, including comparisons between our 

heuristic policy and perfect play in markets that contain both single-unit and multi-unit 

auctions. Section 6 develops the relationship between our approach and the mathemat-

ics underlying sequential equilibria. We present related work in Section 7 and then 

conclude.
3The GAMBIT toolset is a software program and set of libraries that support the con-

struction and analysis of finite extensive form and normal form multi-player games. See 

http://www.hss.caltech.edu/gambit/Gambit.html .
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2 Model

Consider an agent,i, that has the task of purchasing one item from a sequence of

auctions,K. Let c be the number of auctions, andk an individual auction. We refer to

the collection of auctions as themarketplace. Individual auctions may offer multiple

units and differ in the manner in which they form prices. The specification of the order

and rules of the collection of auctions is themarket configuration.

Let q(k) be the number of units offered in auctionk, and the total number of objects

beq =
∑

k q(k). The auctions close in a fixed, known order, and in this model, all are

treated as sealed bid auctions.4

Let J denote the other bidders in the market, andA = J ∪ i. The total number of

bidders, includingi, is n = |J | + 1. In a particular auction, a subset,A ⊆ A, of the

agents will place bids. Let the bid of bidderj in auctionk be denotedbk
j .

Naturally, the rules of the auctions will affect the bidders’ choices of actions. A

multi-unit auction must have a policy for setting prices.5 In this study, we consider

only two such policies. TheM th-price policy sets the price paid by all winners to

the value of the lowest winning bid (this is the policy used in eBay’s Dutch Auction

format).6 Under thepay-your-bidpolicy, each winner pays the price she offered. Pay-

your-bid is the policy used on Yahoo’s multi-unit auctions. In the case of a single unit

for sale, the two policies are equivalent.

Given a sequence of sealed-bid auctions, the agent must select a bid to place in each

auction. LetW k be the set of bid choices that are acceptable in auctionk. Typically,

we assume thatW k is the set of integers in some range and is identical across all of

the auctions. However, the techniques we develop admit different bid choices in each

auction. The number of bid choices ism = |W k|. We assume that ties are broken

randomly.

Our agent has a valuevi(k) for an item ink, and bidderj ∈ J , has valuation

4The sealed bid assumption may not be as restrictive as it seems. In fact, the sniping strategy used by

many bidders on eBay [20, 23] reduces the open-outcry auction to the equivalent of a sealed bid auction.
5See [30] for a survey of some pricing policies.
6TheM th-price policy derives its name from an analysis in whichM is the number of units for sale, the

M highest bidders win, and each winner pays the price associated with theM th highest bid.
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vj(k). In this study, we assume that the items available inK are identical and that all

participants are interested in only a single unit. We anticipate that the techniques we

develop in this paper can be extended to auctions of heterogeneous items if an agent’s

valuations for the items are correlated, that is, if learning about an agent’s valuation of

one item helps predict its valuation of another item.

Agenti does not know bidderj’s true value for the items, but knows that it is drawn

from a distribution,Dj . In this model, we assume that valuations are independent and

private, but we do not make any particular assumptions about the functional form of the

distributions, nor do we assume that the distributions are identical for all of the bidders.

We will make various assumptions about whether the bidders inJ know each other’s

valuations or agenti’s valuation.

We assume that each participant is present for the first auction, and continues to

participate in each auction until either she wins or the sequence ends. Thus, a buyer

that does not win in auctionk will participate in auctionk + 1. We assume that the

auctioneer makes public a list of all of the bids once the auction is complete. This is

consistent, for instance, with eBay’s policy. Lethk
j be the sequence of bids that agent

j placed in the auctions up to, but not including,k. That is,hk
j = {b1

j , . . . , b
k−1
j }.

We callhk
j bidderj’s historyup to auctionk. The history of allJ bidders leading to

auctionk is denotedHk
J .

2.1 Sequential Game Representation

We model the sequential auction scenario as an extensive form game,Γ(A, VA,K,WK),

whereA = J ∪ i andWK denotes the bid choices for all of the auctions. Asubgame

has the same structure, except that part of the game has already been played. For exam-

ple, the subgame that results when bidderj wins the first item isΓ(A′, VA′ ,K ′, WK′
)

whereA′ = i ∪ J \ j andK ′ = K \ {1}.
It is also useful to identify the game structure of individual auctions. Denote a

component auction game γ(A, VAk, W k), in which agents A, with valuations VAk for the 

items in auction k, choose bids from the domain W k. Note that a game (or subgame) 

is a sequence of component games. In game theoretic terms, γ is the game in which
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A is the set of players,W k are the actions, and the payoff isvj(k)− bk
j for the bidder

with the highest bid, and zero for everyone else. Because the auction is sealed bid, all

of the bidders’ actions are simultaneous, and the game involves imperfect information.

A simple example with three agents, two items, and two bid levels is shown in

Figure 1. The circles are labeled with the ID of the agent, and the arcs with the bid

value ({1, 2}). The game consists of two stages, the first of which corresponds to the

first auction involving all three agents. The second stage involves the two agents who

did not win the first item, and for conciseness, we have substituted labeled triangles

for subgames on the leaves of the first auction. There are fifteen subgames, labeled

γ1 . . . γ15, but only three possible unique structures, labeled A, B, and C.

Dotted lines connect decision nodes in the same information set. The small squares

at the leaves of the subgames represent terminal states that would be labeled with the

payoffs to the agents. The actual value of the payoffs would depend upon each agent’s

actual value for the item, the path taken, and the auction’s policy for setting prices.

The diamonds denote the random move by nature to break ties among the bids (with

the probabilities indicated in parenthesis). This type of move by nature can be handled

relatively easily because it does not introduce any asymmetric information. Moreover,

it is amenable to the decompositions we introduce in the next section.

It is obvious from Figure 1 that a particular component game,γ, can appear many

times in the overall gameΓ. Each second level component game appears on five dif-

ferent paths of the top level game. When necessary, we will distinguish a component

game using its history as a subscript:γHk
J
. The history information is sufficient to

uniquely identify each component game instance.

In addition to the imperfect information generated by the sealed bids, the agent

also faces incomplete information because it does not know the other bidders’ true

values, and therefore does not know the other bidders’ payoffs. Harsanyi (1967-68)

demonstrated that incomplete information games can be modeled by introducing an

unobservable move by nature at the beginning of the game which establishes the un-

known values. This approach transforms the incomplete information game into a game

with imperfect information.

Unfortunately, the move-by-nature approach is computationally problematic. The
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numberof possible moves available to nature ismn, wherem is the size of the domain

of vj(k), andn is the number of agents. Our model permits a continuous range for val-

uation functions, so the number of choices is not enumerable. In some special cases,

analytic solutions can be found to auction games with continuous types [6]. However

this analysis is complex and typically requires restrictive assumptions about the distri-

butions of values. Moreover, whether valuations are drawn from discrete or continuous

domains, each different market configuration requires a separate analysis.

For these reasons, we investigate the use of Monte Carlo sampling to generate

heuristic bidding policies for the incomplete information game. Our approach to the

problem can be summarized as follows:

1. Create a sample complete-information game by drawing a set of valuations for

other bidders.

2. Solve for a Nash equilibrium of the sample game.

3. Update the agent’s bidding policy.

The first step is straightforward Monte Carlo sampling. The second and third steps

are the subject of the next two sections.

3 Leveraging Substructure in the Complete Informa-

tion Game

We built our agent on top of the GAMBIT Toolset. Although GAMBIT includes algo-

rithms that can solve multi-player games with imperfect information, it cannot solve the 

straightforward expansion of even very small instances of the complete-information, 

sequential auction game in a reasonable amount of time.

To see why, consider the size of the extensive form of a complete information se-

quential auction game with ties broken randomly. The assumption that bidders want 

only one item means that the winners of a particular auction will not participate in fu-

ture auctions. Thus, auction k+1 has q(k) fewer participants than auction k. In general,

8

 



the number of agents participating in component gamek is z(k) = n − ∑k−1
x=1 q(x).

The number of nodes in the extensive form representation of this game withc auctions

is

mn − 1
m− 1

+
c∑

k=2


mz(k) − 1

m− 1
×

k−1∏

j=1

(
mz(j) + EXT [z(j),m, q(j)]

)

 .

The core of the equation captures the number of nodes in the tree without tie breaking,

and the EXT term represents the number of additional terminal nodes added to each

component game due to tie breaking. The EXT term expands as

EXT [z(j),m, q(j)] =

m∑
v=1

z(j)∑
i=q(j)+1

(
z(j)

i

)
(v − 1)z(j)−i

[(
i

q(j)

)− 1
]
+

m∑
v=1

z(j)−1∑
i=2

(
z(j)

i

) H(j,i)∑
h=L(j,i)

(
z(j)−i

h

)
(m− v)h(v − 1)z(j)−i−h

[(
i

q(j)−h

)− 1
]
,

where
H(j, i) = min(q(j)− 1, z(j)− i), and

L(j, i) = max(q(j)− i + 1, 1).

A five agent, four item sequential auction with five bid choices and random tie 

breaking has 4.5 billion decision nodes and is unsolvable with GAMBIT on current 

workstations. However, as Figure 1 suggests, there is structure in the problem that we 

can leverage to improve our representation of the game.

The computational aspects of game theory have been studied by economists and 

computer scientists in the past few years [12, 13, 14, ?, 26]. A very promising thread 

of work is focused on representations of games that capture their inherent structure 

and facilitate solution computation. Koller and Pfeffer’s GALA language (1997) can 

be used to represent games in sequence form, and the authors have developed solution 

techniques for two-player, zero-sum games represented in this format. The success of 

GALA is based on the intuition that significant computational savings can be achieved 

by taking advantage of a game’s substructure. This intuition holds for the sequential 

auction model, and we have employed it to improve upon GAMBIT ’s default approach.
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Thedefault representation of this game in GAMBIT is to expand each of the leaves

with an appropriate subgame. Given that the bidders have complete information, all

subgames with the same players remaining have the same solution(s). Thus, a single-

unit, sealed-bid (component) auction withn agents has at mostn uniquesubgames—

one for each possible set of non-winners. The three component games—A, B, and

C—are illustrated in Figure 1.

Our agent’s approach is to create all possible component games and solve them

using GAMBIT ’s C++ libraries. The process is essentially dynamic programming, and

equivalent to standard backward induction with caching. The expected payoffs from

the solution to a component gameγ involving biddersJ are used as the payoffs for

the respective agents on the leaves of any component games inΓ which immediately

precedeγ. The agent solves all possible smallest component games (i.e., wherek = c),

and recursively constructs higher-order subgames until it solves the root game (i.e.,

k = 1).

The number of decision nodes required to express a game in its component form is
c∑

k=1

(
n

z(k)

)
mz(k) − 1

m− 1
.

The component form representation is exponential in the number of agents and the 

number of bidding choices. However, the total number of nodes required to express the 

game is exponentially less than in the full expansion. For example, five agent, four item 

sequential single-unit auctions with five bid choices and random tie-breaking requires 

only 1931 nodes to encode in its component form, compared to the 4.5 billion required 

for the naive expansion.

It should be noted that the solutions that we are using in the above analysis are 

Nash equilibria found by GAMBIT for each particular subgame. These solutions may 

involve either pure or mixed strategies. It is well known [19], that at least one mixed 

strategy equilibrium always exists, however it is also often true that more than one Nash 

equilibria exist. In this study, we simply take the first equilibria found by GAMBIT , 

and leave the question of how, and even whether, to incorporate multiple equilibria to 

future research. We recognize that our results may be influenced by the order in which 

GAMBIT finds solutions, but also consider it a concern inherent in using off-the-shelf

10



solutiontechnology.

It should also be noted that the procedure described above is consistent with the

definition ofsubgame perfect equilibrium (SPE), a well-known specialization of Nash

equilibria. A profile of strategies is subgame perfect if it entails a Nash equilibrium in

every subgame of the overall game [22]. All subgame perfect equilibria are Nash, but

the reverse is not necessarily true.

While the decomposition provides an exponential improvement in the number of

nodes needed to represent (and hence solve) the game, the computational cost of find-

ing equilibria for the component games remains a severely limiting factor. Indeed,

though the number of bid choices is the base, not the exponent, of the complexity of

the extensive form game, we will see in Section 5 that GAMBIT is unable to solve

subgames if we increase the number of bid choices beyond a small number.

4 Monte Carlo Approximation

In order to participate in this environment, the agent must construct apolicy, Π, that

specifies what action it should take in any state of the game that it might reach. There

are many conceivable policies available to our agent.

One simple strategy is to compute the equilibrium strategy in each component

game, and to bid accordingly. For example, the equilibrium strategy of a single first-

price, sealed-bid auction in which the other bidders’ valuations are drawn uniformly

from [0, 1] is to bidbk
i = (1 − 1/n)vi(k), wheren is the number of bidders [17]. We

defineΠmyopic to be the strategy in which the agent bids according the the equilibrium

of each individual sealed-bid auction. Thus, the strategy has one element for each po-

tential game size,Πmyopic = {πz} wherez is the size, in number of bidders, of the

component game.

In a sequence of sealed-bid, single-unit auctions, a Bayes-Nash equilibrium strat-

egy is for a bidder to bid the expected price of the(q + 1)st valuation under the as-

sumption that her bid is among the topq (see [27] for details). We denote this policy

Π(q+1)st and use it as a benchmark in our empirical evaluation.

If the distributions from which the bidders draw values are not identical, then it

11



would behoove our agent to have a policy that accounted for which other bidders were

in the subgame. Thus,Πnot−id = {πJ⊆J}. That is, the actions in the policy depend

upon which subset,J , of agents remain.

All three policies mentioned thus far are memoryless; they ignore the bids the re-

maining opponents made in previous auctions. On the other extreme is a policy that

uses all possible history information.Πhistory = {πJ ,Hk
J
} encodes the entire tree

because the decision at each decision node is a function of the entire history.

The policy that our agent learned in this study isΠagg−hist = {πJ ,Hk
J
} where

Hk
J = {hk

j∈J }, the histories of all other agents still in the game. This differs from

Πhistory in that policies are classified by the histories of only those bidders that remain

active (J ), rather than by the previous actions of all bidders inJ . It is based on the

assumption that bidders who are no longer active in the sequential auction (because

they have won an item) are irrelevant. Therefore, all component games that have the

same opponents and identical previous actions by those agents, are aggregated into a

class of component games,γJ ,Hk
J

.

In the example in Figure 1, suppose player 1 is our agent. All paths that lead to

subgame A can be ignored because our agent won the item in the first auction. Of the

remaining subgames, the set{γ2, γ4, γ10} have identical histories—bidder 2 bid $1 in

all of them. Similarly, the sets{γ6, γ14}, {γ3, γ5, γ12}, and{γ7, γ15} can be formed

by their common histories.

The agent constructs the policy by sampling the distributions of the other bidders

and solving the resulting complete information game. LetL be the collection of sample

games constructed, andl a single instance. Denote the solution returned by GAMBIT to

instancel asΩl. Ωl is a profile of (possibly mixed) strategies—one for each player—

that constitute an equilibrium for this game instance. Let,Ωl
i specify the policy for

agenti, andωl
i(γ) is the policy for subgameγ. Note that some decision nodes may

not be reachable if the actions that lead to them are played with zero probability. To

simplify the notation, we include these unreachable nodes in the following even though

they have no effect on the solution.

To compute the policyπJ ,Hk
J

for a decision in gameγJ ,Hk
J

we take the weighted

12



sumof the equilibrium solutions across all sample games. Let

w(bk
i |πJ ,Hk

J
) =

∑

l∈L

∑
γ∈γ

Hk
J

Pr(γ|Ωl) Pr(bk
i |ωl

i(γ)) (1)

be the weight assigned to actionbk
i in the class of games identified byγHk

J
. Here,

Pr(γ|Ωl) is the probability that the game would reach subgameγ given that everyone

is playingΩl (i.e., the product of the probabilities in the mixed strategies on the path

leading toγ), andPr(bk
i |ωl

i(γ)) is the probability associated with bidbk
i in solution

ωl
i(γ).

In previous work [31], we examined a version of the update function with a bias

towards actions that generate a higher utility for our agent. The inclusion of utility in

the equation biases the agent toward maximizing its expected utility—a useful heuris-

tic, perhaps, but one that is not necessarily consistent with equilibrium behavior. In

this paper, we compare the effect of using the biased update function rather than the

unbiased one in equation (1). The biased updated function has the form:

w(bk
i |πJ ,Hk

J
) =

∑

l∈L

∑
γ∈γ

Hk
J

Pr(γ|Ωl)ui(γ, Ωl) Pr(bk
i |ωl

i(γ)), (2)

whereui(γ, Ωl) is out agent’s expected utility of the subgame rooted atγ.

Finally, we normalize the computed weights to derive the probabilities,

Pr(bk
i |πJ ,Hk

J
) =

w(bk
i |πJ ,Hk

J
)

∑
b∈W k w(b|πJ ,Hk

J
)
. (3)

The result of this process is a policy that specifies a (possibly mixed) strategy for each 

unique class of component games. We refer to a policy constructed in this manner as a 

Monte Carlo Approximation (MCA) policy.

5 Empirical  Results

To evaluate the efficacy of the approach, we simulated several market configurations 

in which we varied the functional form of the valuation distributions, the form of the 

update equation, and the strategies of the other bidders. Each of these experimental

13



variables are described in more detail below. The experimental design is similar to our

previous work [31]. However, in the results reported herein, we have added random

tie-breaking rule and multi-unit auctions.

• Market Configuration: The market configuration includes the number of agents,

the domain of the bid messages, and the number and types of auctions. We used

the following configurations:

– {5,5,s-s-s}contains five agents, four bid levels, and a sequence of three

single-item auctions.

– {5,5,s-2Mth} contains five agents, five bid levels, and an auction sequence

in which a single-unit auction is followed by aM th-price auction for two

units.

– {5,5,s-2PYB} contains five agents, five bid levels, and an auction sequence

in which a single-unit auction is followed by a two-unit auction in which

the winners pay their bid values.

– {5,4,s-s-s-s}contains five agents, four bid levels, and a sequence of four

single-item auctions.

– {6,5,s-2Mth-2PYB} contains six agents, five bid levels, and an auction

sequence of a single-unit auction, followed by anM th-price auction for

two units, followed by a pay-your-bid auction for two units.

• Valuation Distribution: we used three types of distributions: uniform, left-

skewed Beta, right-skewed Beta. With the exception of{5,4,s-s-s-s}, the valua-

tions of the other agents were drawn from [1, 6], while our agent’s valuation is

always fixed at 3.5. In the left-skewed distribution, our agent is likely to have

a valuation significantly above average, while in the right-skewed distribution it

will be significantly below average. In experiments with{5,4,s-s-s-s}, the valua-

tions of the other agents drawn from [1,5] while our agent’s valuation is fixed at

3; this combination was chosen to draw comparisons with our earlier work [31].

• Update Equation: we examined the difference between using equation (1) and

using equation (2), which biases the policy aggregation by the agent’s expected

14



utility.

• Bidder Strategies: we studied the effects of various combinations of bidder

strategies.

– All SPE: as a benchmark scenario, we assume that all agents have com-

plete information for a test case and all of them play the subgame perfect

equilibrium computed using our structural decomposition technique with

the GAMBIT engine.

– MCA/n-SPE:we assume the other agents had complete information, while

our agent has incomplete information. Our agent implements the strategy

learned from the Monte Carlo policy construction, while the other agents

implement their SPE strategies. Since our agent is not playing perfectly,

there is no guarantee that the other agents’ SPE strategies are equilibrium

responses to our imperfect play.7 To generate the MCA strategy, the agent

trained with 200 samples.

– All MCA: In this scenario all agents construct and play strategies generated

with Monte Carlo policy construction. Note that for these simulations, each

opponent must be retrained with each new draw of its valuation.

– (q + 1)-Equilibrium: Another benchmark for the sequence of single-unit

auctions, in the(q + 1)-equilibrium strategy all agents play the sequential

auction equilibrium strategy [27]. Each agent bids the expected price of the

(q + 1)st valuation under the assumption that their bid is among the topq.

In the experiments, we measure the utility  for our agent (computed as the difference 

between its value and the price it pays if it wins), the social welfare (the aggregate value 

of all of the winning agents), and the revenue achieved by the seller. The experiments 

were run on a Beowulf cluster of eight Linux computers.

In some cases, our agent may find that the game has progressed down a path for 

which it learned no policy. In such cases, our agent picks the most similar subgame
7In theory, it would be possible to determine the opponents’ best responses to our heuristic strategy by 

marginalizing our agent and computing a reduced game in which the other agents’ payoffs are impacted by 

our fixed behavior.
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for which it does have a policy. The similarity measure favors subgames with the same 

bidding pattern, but possibly different agents, over subgames with the same agent but 

different bidding patterns.

Figure 2 shows our agent’s utility  on thirty randomly selected problem instances 

from the {5,4,s-s-s-s} market scenario with other agents’ valuations drawn from the 

uniform distribution. For each problem instance, the four strategy combinations were 

tested, and update equation (2) is used. The performance of the Monte Carlo strategy 

is quite close to that of the subgame perfect equilibrium both when the other agents 

play perfectly and when they construct their own Monte Carlo strategies. From this 

result we conclude that the approximation technique generates policies that perform 

quite well in this environment.

The (q + 1)-equilibrium strategy is included in Figure 2, though it is important to 

note that it represents a slightly different game than the other three. Agents must be 

allowed to place real-valued bids in the (q + 1)-equilibrium strategy, while in the other 

three we are restricting bids to integer values. This distinction explains, for instance, 

why our agent achieves zero utility  in Figure 2 under the (q + 1)-equilibrium strategy 

when it has the lowest value among the five agents. However, when bid values are 

restricted, it is more likely that our agent will end up in a tie and therefore achieve a 

positive surplus with some probability. Nevertheless, the pattern of the payoffs for the 

(q + 1)-equilibrium strategy is quite similar to our empirical results.

One aspect of our previous work which we wanted to examine was the effect of the 

utility  term in equation (2). Figure 3 shows our agent’s expected utility  on the same 

30 test cases when trained with the same training data and equation (1). Although 

Figures 2 and 3 look nearly identical, close inspection shows that equation (2) performs 

slightly better than equation (1), in the sense that it more closely approximates the 

subgame perfect outcomes. For this reason, we continue to use equation (2) in the rest 

of the empirical tests.

Figures 4 and 5 show similar correspondence between the strategies when the other 

agents’ valuations are drawn from right-skewed and left-skewed Beta distributions, 

respectively. Notice that the in the left-skewed distribution our agent achieves higher 

payoffs, while in the right-skewed case our agent receives lower payoffs. This result is
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Figure2: Our agent’s expected payoff in the{5,4,s-s-s-s}market scenario with the

other agents’ valuations drawn from a uniform distribution and equation (2) is used to

update policies.
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Figure3: Our agent’s expected payoff in the{5,4,s-s-s-s}market scenario with the

other agents’ valuations drawn from a uniform distribution and equation (1) is used to

update policies.
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expected given that the expected average valuation will be lower when the opponents

are drawn from a left-skewed distribution, and higher when drawn from a right-skewed

distribution.

The next set of experiments involved five-agent, three-item scenarios. We com-

pared two multi-unit auction scenarios,{5,5,s-2Mth} and{5,5,s-2PYB}, against a se-

quence of three single unit auctions,{5,5,s-s-s}, over the same thirty uniform-distribution

sample instances tested above. Figures 6 and 7 show how closely the performance of

the MCA strategy tracks that of the subgame perfect strategy for{5,5,s-2Mth} and

{5,5,s-2PYB}, respectively. Figure 8 contrasts our agent’s payoff for the three scenar-

ios. The results from{5,5,s-2Mth} and{5,5,s-2PYB}are nearly identical (and may

appear to be a single line), while significant variation exists in results from{5,5,s-s-s}.
Notice that our agent performed significantly better in both{5,5,s-2Mth} and{5,5,s-

2PYB} than in{5,5,s-s-s}. It is clear that, overall, the agents are bidding lower in the

multi-unit scenarios, and our agent is playing a mixed strategy that is more successful.

However, it remains to be seen whether there is a game theoretic explanation for this

outcome, or whether it is a byproduct of our technique or the manner in which GAMBIT

returns solutions.

Figure 9 shows the social welfare achieved in all three scenarios. The welfare

achieved in scenario{5,5,s-s-s}is slightly better than the two multi-unit cases, whose

graphs are again nearly coincident. This is consistent with the observation that the

agents are behaving more collaboratively in the multi-unit auction by bidding lower

and letting the tie-breaking determine the winner. When the agent with the highest

value allows the allocation to be determined by tie-breaking rather than by placing a

better bid, it is more likely that a less than optimal allocation will result.

Figure 10 shows the effect of the different auction scenarios on the sellers’ net rev-

enue. Again, because buyers are acting more competitively in the single-unit auctions,

the sellers achieve greater revenue than in the multi-unit auction scenarios.

To test the MCA construction on a more complicated problem, we used{6,5,s-

2Mth-2PYB}. Figure 11 shows how closely the MCA strategy tracks the SPE results.
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Figure4: Our agent’s expected payoff in the{5,4,s-s-s-s}market scenario with the

other agents’ valuations drawn from a right-skewed Beta distribution.
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Figure5: Our agent’s expected payoff in the{5,4,s-s-s-s}market scenario with the

other agents’ valuations drawn from a left-skewed Beta distribution.

21



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 6 11 16 21 26

Test Case #

O
ur

 A
ge

nt
's

 E
xp

ec
te

d 
P

ay
of

f 

All SPE MCA/4-SPE (q+1) Equilibrium

Figure 6: Our agent’s expected payoff in the{5,5,s-2Mth} scenario with the other

agents’ valuations drawn from a uniform distribution.

22



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 6 11 16 21 26

Test Case #

O
ur

 A
ge

nt
's

 E
xp

ec
te

d 
P

ay
of

f

All SPE MCA/4-SPE

Figure 7: Our agent’s expected payoff in the{5,5,s-2PYB}scenario with the other

agents’ valuation are drawn from a uniform distribution.
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by using MCA strategy while the other agents’ valuation are drawn from a uniform

distribution.
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6 MCA Strategies and Sequential Equilibria

The notion ofsequential equilibrium, first introduced by Kreps and Wilson [16], is

closely related to the subgame perfect equilibrium concept proposed by Selten [22],

but extended to games of incomplete information. In particular, a sequential equilib-

rium is defined in terms of beliefs at decision points in the game, and requires that an

equilibrium policy be consistent with those beliefs. In this section, we show that the

MCA policy at a node implicitly captures the agent’s beliefs about which opponent

valuations would explain the fact that the agent arrived at a particular decision point in

the game tree.

Building on the notation above, letΩV be an equilibrium profile to the game when

agents have valuation profileV . In this analysis, we do not aggregate games that have

compatible histories, thus we develop the conditional probabilities in terms of unique

histories rather than subgame groups. LetPr(Hk
J |ΩV ) be the probability that the poli-

cies selected byΩV follow historyHk
J . LetΦ be our agent’s belief function, andΦ(V )

be our agent’s belief that the other agents have valuation profileV . Given historyHk
J ,

the probability that the other agents have profileV , is given by

Pr(V |Hk
J ) =

Pr(Hk
J |ΩV )Φ(V )∫

ϑ
Pr(Hk

J |Ωϑ)Φ(ϑ)
.

In words, the probability that the other agents have profileV given the observed history

is the probability that the history is played given profileV divided by the probability

that the history is played among all possible valuation profiles.

In addition to beliefs, a sequential equilibrium must also define a policy for a sub-

game that is consistent with the beliefs. Here, we simply let the policy be theaverage

policy, that is, the policy constructed by taking an average over all action profiles,

weighted by the likelihood of seeingV given that we have reached the subgame. In

other words, the probability that our agent playsbk
i in subgameγHk

J
is

Pr(bk
i |Hk

J ) =
∫

V

Pr(V |Hk
J ) Pr(bk

i |ωV
i (Hk

J )).

The MCA approach is a numerical approximation to the above. For a sufficient
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numberof samplesL,

Pr(V |Hk
J ) ≈ Pr(Hk

J |ΩV )Φ(V )∑
l∈L Pr(Hk

J |Ωl)Φ(l)
.

Sinceall samples are equally likely to be drawn,Φ(V ) = Φ(l), and the above reduces

to

Pr(V |Hk
J ) =

Pr(Hk
J |ΩV )∑

l∈L Pr(Hk
J |Ωl)

. (4)

Thenumerical approximation of the average policy is

Pr(bk
i |Hk

J ) =
∑

l∈L

Pr(V |Hk
J ) Pr(bk

i |ωl
i(H

k
J )).

Substituting in (4) gives

Pr(bk
i |Hk

J ) =
∑

l∈L Pr(Hk
J |Ωl) Pr(bk

i |ωl
i(H

k
J ))∑

l∈L Pr(Hk
J |Ωl)

. (5)

We can now show the correspondence between equation (3) and equation (5). First,

notice that the denominator of (3),

∑

b∈W k

∑

l∈L

∑
γ∈γ

Hk
J

Pr(γ|Ωl) Pr(bk
i |ωl

i(γ))

reduces to
∑

l∈L

∑
γ∈γ

Hk
J

Pr(γ|Ωl).

Now the difference between the two formulations reduces to the variations in the no-

tation. In equation (3) we have used notation consistent with Πagg−hist, which aggre-

gates the subgames with compatible histories. Thus, the condition on the LHS of the 

equation is in terms of the group of equivalent subgames, and the numerator on the 

RHS includes a summation over those same subgames. Despite that difference, the 

functional form of the two equations is identical.

7 Related Work

This paper continues the study begun by Zhu and Wurman [31], which studied single 

unit sequential auctions with deterministic tie-breaking. In this paper, we admit multi-

unit auctions, random tie-breaking rules, and slightly larger problem sizes. Moreover, 

we connect the MCA approach directly to belief updating and sequential equilibria.
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Our main focus is to study the feasibility of using game theory as a solution tool

in a computational agent adaptable to various electronic market configurations. The

copious research on auctions and game theory provides a backdrop for our effort. See

Klemperer [11] for a broad review of auction literature, including a discussion of se-

quential auctions for homogeneous objects. Weber [27] shows that the equilibrium

strategies for the bidders when the objects are sold in sequential first-price, sealed-bid

auctions is to bid the expected price of the object in each auction. This result is devel-

oped under the assumption that only the clearing price is revealed in previous auctions.

In many current online auction environments, the actual bids and their associated bid-

ders are revealed. As far as we know, none of the theoretical results have addressed the

model with complete bid revelation. In addition, we are not aware of any research on

sequences of auctions with different rules.

Monte Carlo sampling has been previously used in conjunction with games of in-

complete information. Frank et al. [5] describes an empirical study of the use of the

Monte Carlo sampling method on a simple complete binary game tree. They draw the

discouraging conclusion that the error rate quickly approaches 100% as the depth of

the game increases. However, perhaps because Frank et al. consider only pure strategy

equilibrium in a two-person, zero-sum game, these negative results did not evidence

themselves in our study.

Howard James Bampton [2] investigated the use of Monte Carlo sampling to create

a heuristic policy for the (imperfect information) game of Bridge. In Bampton’s paper,

he simply collected the player’s decision in every sampled game and accumulated the

chance-minimax values for each alternative at each decision node. Our method of

accumulating sampled data is quite different from Bampton’s approach, again because

our game is not a two-player zero-sum game.

Researchers in artificial intelligence have recently been studying trading agents.

A significant amount of work has gone into agents for the Trading Agent Competition

(TAC) [7, 24, 28]. The TAC environment is significantly more complex than the simple

scenarios presented here, and to date, none of the implemented agents model opponent

behavior in a significant way.

Anthony, et al. [1] investigate agents that can participate in multiple online auctions.
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Theauthors posit a set of “tactics” and then empirically compare the performance of

these tactics in a simulated market that consists of simultaneous and sequential En-

glish, Dutch, and Vickrey auctions. While the bidding strategies seem to resonate with

particular aspects of human behavior (e.g., the “desperateness” strategy), they do not

seem to have a foundation in any theory.

Boutilier et al. [3] develop a sequential auction model in which the agent values

combinations of resources while all other participants value only a single item. Unlike

our model, the Boutilier formulation does not explicitly model the opponents, though

like our model it benefits from a dynamic programming approach to solving the deci-

sion problem.

Hon-Snir et al., [10] propose an iterative learning approach to solve repeated first-

price auctions. They develop a repeated auction model which converges to an equilib-

rium strategy for a one-shot auction after many rounds of repeated auctions. In addition

to the differences in overall structure of the marketplace, their work differs from ours

in that they treat the other bidders as naive players. Specifically, they assume the oppo-

nents’ next bid vectors are distributed according a weighted empirical distribution of

their past bid vectors.

8 Conclusion

This study represents a first step in exploring the implementation of computational

game theory in a simple trading agent. We show how Monte Carlo sampling can be

used to construct a bidding policy that performs comparably to the subgame perfect

equilibrium. This strategy takes advantage of information revealed in prior auctions in

the sequence to improve play in later auctions. Importantly, the architecture is flexible,

in that it can handle a variety of simple auction types, and different types of other

bidders. Equally important, the approach is computationally limited by our ability to

solve the component games, which suggests that algorithms for solving component

games, particularly ones with well-structured payoff and action spaces, is an important

area for further research.

We plan to continue this work and integrate more auction types, and to explore sce-
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nariosin which the agent’s and other bidders’ preferences are more complex, including

scenarios in which the buyers may want more than one item. We would also like to add

an aggregate buyer to the model to represent the large number of unmodeled opponents

often found in public markets. Finally, we plan to explore auction sequences in which

the bidders’ valuations are correlated across the items, but not necessarily identical.
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