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Optimal Reserve Prices in Name-Your-Own-Price Auctionhwi
Bidding and Channel Options

Gangshu (George) Cai Xiuli Chao ' Jianbin Li*

January 12, 2009

Abstract

Few papers have explored the optimal reserve prices in tme{yaur-own-price (NYOP) channel
with bidding options in a multiple channel environment. histpaper, we investigate a double-bid
business model in which the consumers can bid twice in the R'¢@annel, and compare it with the
single-bid case. We also study the impact of adding a retaila list-price channel on the optimal
reserve prices. This paper focuses on achieving some hadérstanding on the potential gain of adding
a second bid option to a single-bid system and on the potdrgizefits of adding a list-price channel
by the NYOP retailer. We show that a double-bid scenario eapayform a single-bid scenario in both
single-channel and dual-channel situations. The optiesdnmve price in the double-bid scenario is no
less than that in the single-bid case. Furthermore, thdiaddif a retailer-own list-price channel could
push up the reserve prices in both single-bid and doubledsdarios.

Key words: Reserve Price; Name-Your-Own-Price (NYOP); Single-Bidyuble-Bid; Dual-Channel
History: Received: November 2007; Revised: April 2008, Septemb8B82and November 2008; Ac-
cepted: November 2008

1 Introduction

The Name-Your-Own-Price (NYOP) auction has become pomifere the inception of Priceline in 1998,
because consumers can pay less in an NYOP channel thanmidistchannels. In an NYOP auction, a
consumer submits a bid on Priceline, and Priceline infolmscbnsumer whether he/she wins the bid after
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a short period of time. Typical items for sale on Pricelinelile hotel rooms, rental cars, airline tickets,
and cruises.

Implied by its name and as first claimed by Priceline, NYOPsisuike a reverse auction in which sell-
ers compete for the bid. However, “Priceline isn't an autti(Gegan, 2005). Like other list-price retailers,
Priceline has a given (minimum) price for every item. This@iis calledeserve priceand a customer wins
the item only if his/her bid is higher than the reserve priberfviesch et al., 2005). Since consumers do not
have complete information of the products/prices, Pmegti deals arepaque For example, the consumers
cannot know the exact hotel when they bid for hotel rooms ipexsied area, nor do they know whether
the bidding prices will be accepted. Opaque fares are gignéraer than most list-prices on the Internet,
which results from the contracts between Priceline anduppkers “give Priceline really low rates” (Segan,
2005). However, consumers might also incur other costd aadime, emotion, etc, which is referred to as
frictional or haggling cost (Hann and Terwiesch, 2003; Tiesgh et al., 2005). Thus, the consumers have to
tradeoff their convenience with the low price. In theory,NMOP channel could be better than a list-price
channel (Fay, 2004; Terwiesch et al., 2005). As argued byymesearchers, the NYOP channel provides a
niche market where consumers are sensitive to price or p&ygically prefer this kind of auction (Clark,
2000; Fay, 2004; Segan, 2005).

Priceline has made some significant changes over the yearexemple, Priceline used to allow the
consumers to repeatedly bid on the same item within sevesa dfter the first bid; however, this policy
is no longer available from several years ago. Although gomss can continue to submit a different bid
by modifying at least one bidding option, this alteratiompwlicy has changed the consumer behavior and
might affect Priceline’s profit. Additionally, Pricelineah launched a list-price channel allowing customers
to buy items directly without bidding. These changes md¢ivie following questions: Is a single bid
scenario better than a double-bid scenario? What are trseiomrs’ behaviors in single-bid and double-bid
scenarios? What are the optimal reserve prices in the alsevasos? What is the impact of dual-channel
on optimal reserve prices?

Existing research on NYOP auctions is recent and relatialiged. Hann and Terwiesch (2003) study
consumer behavior in NYOP auctions. The bidders are alldavedbmit bids repeatedly; however, by doing
so, substantial frictional costs occur. Hann and Terwid26€i03) show that consumers might have lower
frictional costs by learning from previous bidding expades. Terwiesch et al. (2005) provide dynamic
programming models to identify the optimal bidding strgtégr consumers who might submit multiple
bids, but incur more haggling costs if they continue to bigtrafosing their initial bids. Terwiesch et al.
(2005) obtain an optimal number of bids and the correspgndatues for consumers and further suggest an
optimal reserve price. The optimal reserve price is constamich is supported by collected data and is also
adopted in our model. Terwiesch et al. (2005) show that allmggodel may be better than a list-price
model if the consumers are rather heterogeneous.
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Fay (2004) studies a partial double-bid scenario in a dligtifferent NYOP. In the model, the seller
announces a higher reserve price and then a lower rese tprithe consumers in sequential selling;
however, the number of items for sale is determined by nafline consumers can submit the second bid
if they lose the first sale. Fay (2004) suggests that a paitiable-bid could be better than a single-bid for
the retailer although the result is conditional on someiasin. In his model, a list-price is better than an
NYOP for the retailer; however, as explained by the authodNJOP has its advantages, e.g., the retailer
might collect more information about the consumer demantitamight appeal to a “segment that receives
a psychological benefit.”

In a model to find the haggling cost for consumers, Spann €@04) allow repeat bidding in the NYOP
channel. With unlimited inventory capacity, they sugghat tepeated bidding can be better than single bid-
ding for the seller. In an experimental work, Spann et al0BGssume that “consumers are often uncertain
about their exact valuations of a particular product.” @itkat only one bid is allowed, consumers can
exchange the information of how much they wish to bid witheothidders in three different experimental
designs: name-your-price, select-your-price low range, select-your-price high range. Consumers then
predict the optimal bid based on the price elicitation. $panal. (2005) suggest that the form of price
elicitation has a significant impact on the seller’s profihe@hev (2003) also explores the price elicitation
in reserve pricing by showing that select-your-price mightetter than name-your-price in several exper-
iments because, as he explains from a psychologic pergpettie name-your-price approach “is likely to
be associated with a greater degree of uncertainty and toegeifort.” Based on the data of NYOP for
airline tickets, Spann and Tellis (2006) classify the comsts’ bidding into different patterns. In a model
that the consumers can revise their bids based on the wipnaizability function provided by the retailer,
Wilson and Zhang (2008) show that there existg-@ptimal solution for the retailer to design the winning
probability function.

While the literature has been focused on a single NYOP chafemehave studied the coexistence of an
NYOP channel and list-price channels. Ding et al. (2005)stuPriceline-like reverse auction by assuming
that consumers might buy from list-price market, if they faiwin in the NYOP channel. Ding et al. (2005)
suggest that bidders are emotional because they will fextegkwhen winning and frustrated when losing.
Thus, a consumer incurs an emotional utility, in additioratsimplified monetary utility which is linear
to the difference between the bid and the list-price. Wangl.ef2005) assume that a bidder’s valuation
is discounted due to the opacity of the NYOP channel, whithwal a single bid. It is the seller’'s task
to optimize the opacity in the NYOP channel. Note that thecdpds identical for every customer once
the seller determines the optimal level. The service pewvid their model is a monopolist, such that all
unsatisfied bidders buy from his/her own direct list-pricarket. However, due to their special focuses,
Ding et al. (2005) and Wang et al. (2005) do not explicitly sider the double-bid scenario. Other work
on multi-channel supply chains (Cai et al., 2009; Chen e¢28D7; Chiang et al., 2003; Etzion et al., 2006;
Caldentey and Vulcano, 2007; Tsay and Agrawal, 2004; varirRyad Vulcano, 2004; Zhao, 2008) and



auctions (Cai and Wurman, 2005; Chen et al., 2008; Rothkodf\&hinston, 2007; Shen and Su, 2007)
does not consider NYOP auctions.

In this paper we study the optimal reserve prices in a vapésjtuations, including different combina-

tions of single-channel, dual-channel, single-bid, dedtitl, abundant inventory capacity, and constrained

inventory capacity in the NYOP channel. We show that a deblilescenario can outperform a single-bid

scenario in both single-channel and dual-channel sitagtiorhe optimal reserve price in the double-bid

scenario is no less than that in the single-bid case. Theiawldif a retailer-own list-price channel could

push up the reserve prices in both single-bid and doublesdztharios. We obtain the conditions where the

double-bid is a better choice for the retailer than the sitimtl. We further suggest that the double-bid may

become more significant if it can attract more consumers imad-channel environment.

The remainder of this paper is organized as follows. In $acdi we present the model. In Section 3,

we describe the single-bid scenario. We study the doultlesténario and compare it with the single-bid

scenario in Section 4. Research conclusions are presentekction 5, and all proofs are relegated to the

Appendix.

2 TheModed

The following notation is used in the subsequent analysis:

SRS

i)

s ™ QT

>

capacity quote for the NYOP auctions by either the suppli¢he retailer,
a random consumer’s bid, including the premium charged éydtailer,
list price from either the retailer or competitors,

consumer preference of shopping directly from the listg@channel,
domain off,

domain of a consumer’s belief in winning an NYOP auction hydiig x,
total cost of a customer when purchasing an item,

reserve price that the retailer sets for a specific item ilN\H®P channel,
wholesale price to the retailer from a specific supplier,

fixed cost of adding a list-price channel to the existing NYébRnnel,
ratio of customers who fail in NYOP buy from the NYOP-retaitgvn list-price channel.

We consider both single-channel and dual-channel mark&igruoations, as illustrated in Figure 1.

In the first market configuration, the retailer only offersnNaYour-Own-Price (NYOP) auctions to the

consumers, who will buy from other competitors’ list-prickannel(s) if they fail to win in the auctions.

In the second market configuration, the retailer provideBl'¥@P channel along with a list-price channel.
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Figure 1: Market configurations of the retailer’s singlewhel and dual-channel scenarios.

Among these consumers who do not win from the NYOP channeisseme that a percentagep < A <

1, of them buy directly from the NYOP-retailer-own list-peichannel while the remaining— A of them
buy from other competitors. Both market configurations hagen observed in Priceline.com history. In
line with Fay (2004) and without loss of generality, the katamber of consumers, regardless of whether
they win in NYOP auctions or not, is normalized to one.

Suppose the consumer has a winning probability’6f ), called belief probability, if the consumer bids
x. The support ofF'(z) is on the intervala, B]. This winning probability is similar to the distribution
function for a threshold price in Fay (2004), Hann and Tesefe(2003), Terwiesch et al. (2005), and has
been seen in practice by some NYOP retailers, such as Reaadim (Allbusiness.com, 1999). Lgtx) be
the corresponding probability density function.

The retailer and the supplier have agreed on a fixed wholgsale, as reported by Segan (2005). Let
w denote the wholesale price, and to simplify the discussi@nassume that has absorbed other variable
costs to the retailer. We normalize the fixed cost of the NY®@&hael to zero, but lef’; denote the fixed
cost to the retailer for adding the list-price channel todkisting NYOP channel.

Clearly, the consumer has no information about the reseree &, which is set by the retailer in
advance (Hann and Terwiesch, 2003). In other words, theuooaiss belief of the winning probability is
independent of the actual reserve prigeFor the retailer, ift < R, the bid is rejected; otherwise, the bid
is accepted. We assume thatremains the same for a specific item during the auction. T¢ssraption
is consistent with realistic data, see Hann and Terwies@3f Spann et al. (2004), and Terwiesch et al.
(2005). To avoid triviality, we assume thatax{a, w} < R < B.

The NYOP auctions have opaque prices. According to Segaibj2the retailer treats its customers
as price-sensitive travelers who are willing to give up saoevenience for a lower price. For example,



consumers do not know exactly what hotel or location for Whiey are bidding. Different consumers have
heterogeneous preferences toward these opaque fare® hetthe preference of an arbitrary consumer
toward the list-price channel, which is a random variabldhe®Wo = 6, thend is the disultility incurred by
the consumer for losing the convenience when winning ttme ftem the NYOP. Assume that the consumer
preferenced is uniformly distributed on an intervat, d]. Typically ¢ > 0, which means that consumers
prefer the list-price to the NYOP in general, if the pricehis same in both channels. The list-price is denoted
by B and is assumed to be the same in both the NYOP-retailer-@ivprice channel and the competitors’
list-price channels, which can be observed on Pricelinectimer list-price competitors, e.g., Hotels.com.

We investigate two scenarios. The first one is cadliedjle-bidscenario, in which all consumers can bid
only once in the NYOP. The second is callgaluble-bidscenario, in which all consumers can bid twice in
the NYOP. Current practice on Priceline is widely consideas a single-bid scenario, while a scenario of
multiple (more than two) bids was abandoned by Pricelinersdyears ago. However, it remains arguable
whether the retailer should allow one more bid in the NYOPtiancsince the consumers could still bid
a second time by using a different user name, changing tltit @&d number and so on. Similar to Fay
(2004), we compare these two scenarios but in a differertegon

In addition to the study of the abundant capacity case, weidenthe impact of an inventory capacity
guote @y on the NYOP channel. This capacity quote may be enforced thgreihe supplier, due to the
low price caused by the opacity, or by the retailer to maxarttze profit. Note thaf), is the normalized
capacity, not the real capacity, since the number of custeimes been normalized to 1.

3 A Single-Bid Scenario

In line with other work (Caldentey and Vulcano, 2007; Etzairal., 2006) on multi-channel marketing, we
assume that a particular consumer first bids in the NYOP @uetind then buys directly from the list-price
channel if he/she fails in the NYOP auction. Since the coresumas only one chance to win in the NYOP
auction, to minimize the total expected cost (Wilson andrngh2008), we have

min, C(0) = F(z)(x +6)+ (1 — F(x))B (1)

st. a<zxz<B.

SubstitutingF’ by the uniform distribution and optimizing the above egoativithout considering the con-

straint yields
_B—-0+a

2

*

(2)

Clearly, the optimal bid increases B anda but decreases ith. The existence af* requiresa < z* <
B which is equivalenttee — B < 8 < B — a. The case ofi — B < @ is trivial, sincea — B < 0 < c.



Conside® < B — a. If a consumer’s preference to the list-price is larger than a, the consumer does not
bid on NYOP. This assumption can be supported by the facpigple still buy flight tickets directly from
major airlines, opposed to the NYOP auctions on Pricelieeabse they strongly prefer exact flight times
and specific airlines. Excluding such consumers, we carowitloss of generality assuni¢— a > d. That

is to say, if a bidder is willing to bid at NYOP, his/her preference to the list-price channel shoot be
larger thand. We utilize this condition throughout this paper. Thus, Bq.holds with the constraint.

The consumer demand to the NYOP chanih&l;y o p, can be described by comparing the consumers’
optimal bids with the reserve price as follows.

DNYOP = Pr(m*zR):P(@SB—Fa—ZR)

1, if RelwVa, B+§_d);
— B+ad—_20R—c’ if Re [B-l-él—d V w, B+2a—c];
0, if R e (2H=¢vw, Bl

whereV is a maximization notation exemplified by vV « = max{w,a}. The demand is constrained by
w, because it is subject tB > w. We first explain the second case whétes [BH2=4 v , BEa=¢]. A
consumer wins an item if his/her bid is higher than the resgmice, i.e..x* = B‘T““ > R, which is

equivalent tod < B + a — 2R. Hence, the portion of all consumers who eventually win gamgiven

by %. The expected number of customers who qualified as the saxmm®dcan be expressed as
Bro-2h-c _ Bta—c _ _Z R which is a linear demand function with respectto In this sense, the

maximal market size of NYOP is given b@%, andﬁ is the decreasing rate in terms of the reserve
price. For the first case whet® € [w V a, 2£2=2) given thatw v a < B+2=¢, all consumers win in
NYOP auctions. In fact, iR* < B+T“‘d, there will be multiple optimal reserve prices such that eaye

in [w Vv a, 2£2=4) is an optimal reserve price, becauSgyop = 1. Given thata < £+2=¢ conditional

on B —a > d, this case can occur i < ZE=2_|f w v o > £H2=4 this case is suppressed. For the
third case whereR € (%, BJ, no consumer can win in NYOP auctions because the reseree igri
too high. Similarly, there are multiple optimal reservecps such that any value (l% V w, B] is an
optimal reserve price ifz* > Z£2=¢ v . This case must occur iff > Z£2=¢_ Thus, the situation of
multiple optimal reserve prices occurs whRris too small or too big, because the retailer’s profit functio
becomes independent of the reserve price. To be conciskeiseiquel we ignore the multiplicity of the

optimal reserve prices in the first and third cases.

3.1 The Abundant Capacity Case

Abundant capacity is a special case in which the NYOP chammekufficient items. This situation might
occur such as in off seasons when the consumer demand is weak.

Single-Channel: NYOP only



The case where the retailer has a single channel and abuingantory capacity can be considered
as a benchmark situation because of its simplicity. We fiosisiler the case that < W. If the

retailer sets? < W, then every bid is higher than the reserve price, the exdextit from each bid is

_1
w, and the retailer's expected profit is given by

B+a—3(c+d
M(R) = +a 22(C-|- )—w.

The abovdI(R) is independent oR. Otherwise ifR > B+T“‘d, the retailer’s expected profit is given by

B+ta—2R—c [BH=<+R
II(R) = g ( 22 —w).

The abovdI(R) is concave inR, and the optimal solution is given by* = w. Since this result is obtained
conditional onw < ££2=4, so any value ifw, 2£¢=2) including R* = w can be an optimal reserve price.
If w > B+2=4 since the case d® < £t2=¢ s suppressed, the retailer can &t= w. Neverthelessy

is an optimal reserve price for all situations. This ressiiniuitive because every qualified bid generates a
positive profit for the retailer due to abundant capacity.

Dual-Channel: NYOP and List-Price

After the retailer adds a list-price channel, the optimakrge price will change since some consumers
who do not win in the NYOP channel will purchase directly fréme list-price channel. We summarize the
observations in the following proposition.

Proposition 3.1 In the single-bid dual-channel scenario with abundant @afya R* = w, wherew =
w4+ NB — w).

Due to the existence of a retailer-own list-price chanrted, rietailer sets a higher reserve price. The
higher the portion of consumers who would purchase from igteptice channel, the higher the optimal
reserve price. The value ofl B — w) is the expected profit from a customer whose bid is rejecteah fr
the NYOP auction. Since the retailer has abundant itemggthder will not sell any item at a price below
w = w+ A(B — w) in the NYOP channel. Indeed, we can regdras the opportunity cost to the retailer
for selling an item in the NYOP channel in a single-bid duadienel scenario.

3.2 The Constrained Capacity Case

Single-Channel: NYOP only

The number of total transactions in the constrained capaeite i&nin{%, QO} given that
(B+a—d)/2 <R < (B+a-—-c)/2 If Bre=2izc - 0 the situation is equivalent to the abundant

8



B4+a—c
capacity case. However, @y < £+2=2f=¢ e havell(R) = Q wa —w | . Hence, the optimal
reserve price increases until it touches the upper boundamynparing the constrained capacity case with
the abundant capacity case, we obtain the following result.
Proposition 3.2 Inthe single-bid single-channel scenario with constrdicapacity, ifw < B*‘1+Q°(d_c)
then R* = Zra—c-Qold-9): othenyise,R* = w.

To explain Proposition 3.2 more intuitively, we illustrate relation betweehl and R in Figure 2. The

n(RrR) Bra-c
7 NR=Q(—2-——-w

\

|
|
:
|
Y
|
|
|
|
|
|
|

N

o
N
w
+
N
|
(e}
]
9
—
w
+
N
|
o
)

B+a-c-Q(d-9
2

Figure 2: Relation betweeH and R in a single-bid scenario single-channel scenario with ramsed
capacity.

concave quadratic curve is associated with the abundaacitgase given thatB + a — d)/2 < R <
(B +a—c)/2. The case ofv > w is associated with Line 1 in Figure 2, and the case of

w < BroceQoldoq) jg associated with Line 2. 1y = Z2—c-@(@9) ' jnes 1 and 2 meet & = w.

B+a—c—Qo(d—c)
2

Fromw = , we obtain

Q55 (d—0)
. B+a—c— 02—F—+
I(R) = Qo . ®)

where
c—SS B+a_C—2w

0 a d—c

The superscripb.S represents single-bid single-channel. We refefoas thecritical abundant capacity

valuethroughout this paper. If the retailer has more inventoantthe critical point (e.g., Line 1 in Figure 2),

the retailer will setR* = w; otherwise (e.g., Line 2 in Figure 2), the retailer will $&t = w.

Dual-Channel: NYOP and List-Price



Similar to the dual-channel scenario with abundant capaaitsatisfied customers from the NYOP
auctions might switch to buy directly from the list-priceacimel. We have the following result.

Proposition 3.3 In the single-bid dual-channel scenario with constrainagacity, ifio < 1 [B +a — ¢ — Qo(d — ¢)],

R = Brae-Qold9): gtherwise,R* = 1, whered = w + A(B — w).

Compare Proposition 3.3 with Proposition 3.2. The optineakrve price is higher in the dual-channel
scenario than in the single-channel scenariopifi{w,w} > % [B +a—c— Qo(d — c)] or equivalently
Qo is big. If Qg is small such thatnax{w,w} < % [B+a—c— Qo(d— c)], the optimal reserve prices
are the same in both single-channel and dual-channel soen&ifferent from the abundant capacity case
in Proposition 3.1, the optimal reserve price is determimgdot only consumer preference to the list-price,
but also the inventory capacity and ratio of unsatisfied goress from the NYOP channel to buy from the

retailer-own list-price channel.

Solvingw + A(B — w) = 4 [B+a — ¢ — Qo(d — ¢)] , we obtain the critical abundant capacity value

C_SD:B+G_C—2(1U+)\(B—TU))
0 d—c

The superscripb D represents single-bid dual-channel. We can infer that idpeeh \, the Ioweng‘SD.

Bta—c_,, . . .
We defineA? = —2——" When) > )P, we haveQ;°" < 0. At this point, the retailer sets
R* = w + A(B — w) and has no intention to sell products through the NYOP cHaboerather use the

B—w

NYOP as a mechanism to attract customers to buy from théeetaiin list-price channel. Whether to keep
the NYOP channel or not will depend on whether it can attrastamers to the retailer’s store.

Comparing the dual-channel scenario with the single-cblastenario, we find thaps =" < 59,
which suggests that the dual-channel retailer might watitih the sale in the NYOP channel so as to
obtain more profit from the list-price channel. In eitherrgéo, the stronger consumer preference to the
list-price, the smalle)§. If Qo > Q5°°, then the optimal reserve price, i. & = w + \(B — w), is
higher in the dual-channel than that, i.&% = w, in the single-channel scenario. With a higher reserve
price, the retailer can drive some consumers with low bidsutpfrom the retailer-own list-price channel.
Otherwise ifQy < QS‘SD, then the optimal reserve price is the same, ¥.= w, for both
the single-channel and dual-channel scenarios. In bothasos, the weaker the consumer preference to
list-price, the higher the optimal reserve price in the NY¢éhRannel.

4 A Double-Bid Scenario

In this section we investigate the benefits of allowing theosd bid. When focusing on a double-bid
scenario similar to Fay (2004) and Spann et al. (2004), wednce a different double-bid model. In our

10



model, the consumer chooses an optimaldidor the first bid, and then addsfadollar value to the second
bid if the first bid fails. This schema is consistent with teeammendation by Segan (2005), who suggests
that the consumer can add $5 to the previous bid, in addii@dding a new zone in rebidding a hotel on
Priceline. This might also be close to real situations, inclwltonsumers might determine how much more
to rebid based on the initial bid, rather than re-computeagptamal bid. In line with the literature, such
as Spann et al. (2004), we assume that the consumers ardingboch the same item and their preferences
remain the same during the bidding. The consumer’s inigtiebabout the winning probability of bidding
x is the same as in the single-bid scenario; however, the cosiswill update the belief if the consumer
fails to win with the initial bid. We denote the new belief Cl F» and the corresponding PDF Ify.
Thus,

r+A—zx A

Bz+a)= B-z B-z

and
A

(B —x)*
The consumer aims to minimize the cost, given that the coasumil switch to buy from the list-price

fQ(w + A) =

channel if he/she fails both bids. The objective function is
miAn CO)=F(x)(z+0)+ (1 - F(z))[Fa(z + A)(x + A+ 0)+ (1 — Fr(z + A))B], 4

where the first term is the expected cost of winning the item ahd the second term is the expected cost of
not winning the first bid but winning the second bid, or buyfram the list-price channel after failing both
bids. The optimal double-bid strategy is given as follows.

Proposition 4.1 In the double-bid scenario, the optimal initial bid for thensumer is

« B+a—0-A"
= 5 ,

x
and the optimal second bid is" + A*, where

A*:%(B—a—Q).

As compared to the single-bid scenario, a consumer firstAig® lower and then bidg\* /2 higher
than the optimal bid in the single-bid scenario. Furtheensubstituting the optimal bids into the objective
function, we can show that a double-bid scenario is a betieice for the consumer as long as" <
%(B — a — 0), which is true in Proposition 4.1. Thus, everything elsenge2qual, a double-bid scenario
could save costs for the consumers. As a result, a doubledadario can be more attractive than the

single-bid scenario to the consumers.
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4.1 Single-Channel: NYOP only

The retailer accepts bids higher than the reserve pricegharthe consumer’s optimal bidding strategy, the
first bid is accepted if and only # < B + 2a — 3R. As for the second bidy* + A* = Bra=+a" > Rig
equivalent t < B + a — 3R. For a givenR, we must haveB + 2a — 3R < B + 3a — 3 R. Based on
the consumer preference boundary values, we may divideioors into the following categories. To avoid
overlapping in the following cases, we assume #at a < 2d — ¢. This assumption is consistent with the
fact that consumer preference toward Priceline’s NYOPiands quite diversified such thatcould be a
value close taB andc could be a value close to zero. This is further supported &pbservation that some
customers never shop in the NYOP channel even if Priceliomiges up to 50% off the regular price in the
NYOP channel.

Casel. d < B+ 2a— 3R, equivalentlyR < Rz = %. In this case consumers very weakly prefer
the list-price channel, and every customer wins an item fiteerNYOP channel with the first bid.

Case2 ¢ < B+2a—3R<d< B+ }a— 3R, equivalentlyR; < R < Ry = 28+2=24 |n this
case the consumers weakly prefer the list-price channdlgaery customer wins an item from the NYOP
channel with either the first or second bid.

Case3. ¢ < B+2a—3R < B+ 1a— 3R < d, equivalentlyR, < R < R; = ££2=¢_|n this case
the consumers fairly prefer the list-price channel, andesaostomers win items from the NYOP channel
with either the first or second bid.

Cased. B+2a—3R < c< B+ 1a— 2R, equivalentlyRs < R < Rs = 28£2=2¢_|n this case the
consumers strongly prefer the list-price channel, and #vesy customer’s first bid is rejected while some
second bids are accepted.

Case5. B+ 3a— 3R < ¢, or R > Rg. In this case the consumers very strongly prefer the lisepr
channel, and no customer wins from the NYOP channel.

The above cases are illustrated in Scenario A of Figure 3.e @t Scenario A is for the abundant
capacity case, while Scenarios B, C, and D are for the cansttaapacity case. Notation ¢ and@, is
further described in Egs. (6) and (7).

To obtain tractability, we assume that the first bid has gyi@mver the second bid to be satisfied in this
double-bid scenario. Although it is reasonable for theiletéo sell items to higher bids, this assumption
can be considered as a tie-breaking rule. This rule has lzkspied in some online auction web sites, e.g.,
uBid.com, to encourage consumers to bid early. Retand D, be the demand to the NYOP channel from

12



_B+2a-c-Q(d- ¢ R = 2B+a-2c-2Q (d- 9

ScenarioA
3 3
B+2a-d 2B+a-2d B+2a-c 2B+a-2c
= - - R=—7 " = =-- - -
R 3 * 3 R 3 R 3
Case 1 . Case 2 . Case 3 . Case 4 . Case 5
R | ' ' | >
R, R, R R
ScenarioBQ]</(§
R R,
R | : : | >
R, R, R R,
Case 1Q i Case2Q | Case 3Q
_SC;n;rio_cag_Qo_sbf_g:_b_ Ll _____
R R,
R | ; ; | >
R, R, R R
Case 1Q T Case 2Q T Case 3Q
_S::er;ari_o[;(‘g}a\z _.._,._,._Rl_ _._,_R;_ Ll
R | ; ; | >
R, R, Rs R
Case 1Q |case2q| Case 3Q
=~ _ _B-a-c =~ _ _5y_2d+a-B-c
Q(R=R) 2d-0) Q(R=R)="" =

Figure 3: Case categories in terms of reserve price andnesoapacity wher);

the first and second bids respectively.

B-0+2
D = P{:p*zR}:P{%ZR}:P{0§B+2a—3R},

Dy = P{z*+A*>R}— P{z* >R).
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For the above Cases 1-5, we have

1, if RelwVa, B+2a_d)'
B+2a:ZC$R—c’ if Re [B+2a d V w, 2B+§l 2d)’
— B+2a—3R— H 2B 2d B 2a—c\.
D, = Biza—slizc - jf R e [28Hg=2d v/, BE20=c);
07 if Re [B-I—Za c V w, 2B+é1 20)’
L 0, if R e [22ta=2 vy, B].
0, ifRG[w\/a,W);
_ B-i-2a:ic’)R—c7 if Re [B-i-%a—d v w, 2B+g—2d) :
3
S(R— _ _
Dg — Q(d_ca)’ Rc [2B+§z 2d v w, B+§a c) :
B ——R— . _ —
+ Z : 07 if Re [B—i—%a c \/w’ 2B+§1 20);
0, if R e [28+2=2¢ vy, B).

Similar to the single-bid scenario, there will be multiplgtinal reserve prices iy > 28+4=2¢. For the
same reason, we skip the discussion on the multiplicity efgptimal reserve prices.

For the abundant capacity case, we have the following oaserv

Proposition 4.2 In the double-bid single-channel scenario with abundargacity, the optimal reserve

price is given by,

if w < 2d—|—9a;—c—3B7 R* = 2B+§1—2d’
if 2d+9a§-c—3B <w< B—l—%a—c’ R = B—l—%a—c7 (5)
Ifw>B+2a <, R* = w.

Proposition 4.2 is conditional oA*22t<=38 ~ . However, if 24H9te=38 0, Eq. (5) can be
rewritten asR* = max{%,w}. Overall, Proposition 4.2 shows that the optimal reserveepis
increasing step-wisely with respect to the wholesale psecompared to Proposition 3.1, Proposition 4.2
shows that the optimal reserve price in the double-bid scemahigher than that in the single-bid scenario
if % > w. This occurs because the retailer wants to avoid some eglydow bids because of a more

lenient policy.
We now consider the constrained capacity cas@lfc £+24=38=< je. R < R; = %Q“(),
the limited capacity can only satisfy partial demand of th& fids. 1fQy < % e, R< Ry =

2Bta-2c-200(d"c) the limited capacity can only satisfy partial demand ofgaeond bidsR; and R, are
illustrated in Scenarios B, C, and D of Figure 3. Compatifyg R> with R3, R4, Rs5, Rg, we can infer that
Ry will be betweenR3 and R, and Ry will be betweenR, and Rg. However, the relative positions between
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Ry and R4 and betweerR,; and R5 are determined by the capacity levgl. Let R, = R5, we obtain

N B—-a-c
= 6
Q1 2d—0) (6)
Similarly letting R; = R4 gives us
“ 2d4+a—B—c
Q=" (7)
— C

We categorize), into different scenarios as illustrated in Figure 3 wi@n < Q. In Scenario BQ,
satisfies all first bids in Case 3 and all second bids in Cade(#; increasesR; and R, move up to Case 3
in Scenario C and then to Case 2 and Case 3 respectively imusz&h We analyze the above situations in
more detail and obtain the following proposition.

Proposition 4.3  In the double-bid single-channel scenario with constrdicapacity, ifQ, < Q, R* =

max{ 2Bra=2e-200(dze) ) otherwise,
if w < 9a—3B+c+2d—62(1—Q0)(d—c)’ R* — 2B+a—2cg2Qo(d—c)’
if 9a—3B+c+2d—62(1—Q0)(d—c) <w< B+§a—c’ R* = B+§a—c’
if w > %, R* = w.

Comparing Proposition 4.3 with Proposition 4.2 shows thatdptimal reserve price is set to the whole-
9a—3B+c+2d—2(1—-Qo)(d—c)
6

sale price if the wholesale price is high. If the wholesalegis low such thaty < ,

the retailer will use a higher reserve price than that in thendant capacity case as shown in Proposition 4.2.
We partially demonstrate Propositions 4.2 and 4.3 in tHevighg example.

Example 1. Suppose that the constrained capaciy = 0.6. The list-price isB = 100. The consumer
preference is orc,d] = [0,60]. The winning probability is oria, B] = [35,100]. The wholesale price
isw = 20. Hence, we obtai); = 54.17 and ), = 91.67 and it is belonging to Scenario C, i.e.,
Q1 < Qo < Q.. Two curves of Cases 1-4 and 1Q-3Q as shown in the proof ofdBiign 4.2 and
Proposition 4.3 for a double-bid situation can be describdeigure 4. The optimal reserve price is given
by R5 = 56.67. The corresponding profit 7, ;. 5iq = 25.73. In contrast, for the single bid scenario,
the optimal reserve price is given by* = 49.5 and the optimal profit idIg,, /. ;s = 23.1. This
empirically shows that the double-bid can outperform tingle-bid, i.e., the retailer’s profit is higher in the
double-bid case.

We now consider the special case thiat < @ andw is small enough such thgf+e—2¢_2@o(d—c)
is the global optimal reserve price. We can prove tHaEe—2¢2o(d=c) » Bra—c-Qold=c) giyen that

B — a > d. Thus, the optimal reserve price is more likely to be higlnethie double-bid scenario than in
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Figure 4: Relation betweeli and R in a double-bid single-channel scenario with < Qo < Q.

the single-bid scenario. This occurs especially wigris small and the retailer wants to avoid selling the
products to low bids. In this special case, the optimal pifiiven by

(B + %a + %(2B+a—20§2Q0(d—C)) —c B w)
3 .

I(R*) = Qo

Taking the first order derivative dii( R*) with respect ta), yields the critical abundant capacity value,

CDS 23+a—20—3w
0 2(d —¢)

The superscripD .S represents double-bid single-channel. Comparing thitpriah the profit of the single
bid scenario whe®y < Q5°°, we havell, .. pi — = Wl 2ABae) gy >

HSzngle Bid —
given thatQ, < Q1 < M Thus, we obtain the following result.

Proposition 44  In the single-channel scenario, @y < min{QS % Q5% Q;}, then the double-
bid scenario outperforms the single-bid scenario, i.ee, ktailer receives hlgher profit when offering two
bidding options.

Proposition 4.4 indicates that if the inventory capacityrisll satisfying the above condition, the double-
bid is a better policy than the single-bid. The intuitiorslia the consumer behavior difference in the single-
bid and double-bid scenarios. Because the consumers’gbemsin the double-bid scenario are higher than
the bids in the single-bid scenario, the retailer can desigigher reserve price in the double-bid scenario to
reject the first bids and accept the second bids instead.ig bigported by the comparison of the optimal
reserve prices in those two scenarios. The following is true

. . B—a—c—Qy(d—rc)
Rpoubie—Bid — Bsingie—pid = 6 >0

as long ag)y < £79=¢, which holds given thafy < Q1 = g(;l‘j;)c.
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It is worth noting that Proposition 4.4 is independent of phevious assumption that the first bids have
the priority. As we show in the proof of Proposition 4@y < min{Q5 %, Q55°, Q;} corresponds to
the case that all first bids are rejected and some second tgdsceepted; thus, Proposition 4.4 is robust

against the first-bid priority.

The computational complexity of cases tidaf > Q1 prevents us from obtaining meaningful analytic
results. Instead, we numerically compare the optimal prafitthe single-bid and double-bid scenarios
as illustrated in Figures 5 and 6. The market configuratiothéssame as in Example 1, except that the

. N (Q)
n(Q,) 15|
0L 125} Double-Bid
30 [ . 10+ . .
Double-Bid Single-Bid

- Single-Bid ney

5 L
10 | .5l

w=10 w=40
0.2 0.4 0.6 0.8 1 QO 0.2 0.4 0.6 0.8 1 QO

Figure 5. The optimal profit comparison between Figure 6: The optimal profit comparison between
single-bid and double-bid in terms &fy with w = single-bid and double-bid in terms &fy with w =
10. 40.

wholesale price is changed4o= 10 andw = 40 respectively in two separate cases. Figures 5 and 6 further
support Proposition 4.4, which states that the double-tghario outperforms the single-bid scenario when
Qo is small regardless of the value of the wholesale price. Wewéigure 5 illustrates that if the wholesale
price is low, i.e.,w = 10, the single-bid scenario outperforms the double-bid stenahen Q) is big,
e.g.,Qo > 0.65 approximately in this example. This occurs because whgis big, the retailer needs to
sell more opaque products, and the low wholesale price gesvenough cushion for the retailer to lower
the reserve price in the double-bid scenario to catch sorsebiids. But, by doing so, the retailer loses
some profits due to those first bids as compared to that in tiggesbid scenario. If the wholesale price is
higher, i.e.,w = 40, the double-bid scenario outperforms the single-bid steriar all values ofQy. A
high wholesale price does not give much flexibility for boithgée-bid and double-bid scenarios. As shown
in Propositions 3.2 and 4.3, the optimal reserve price besartose to the wholesale price especially when
Qo grows big. In this situation, the double-bid scenario haadwrantage over the single-bid scenario; since
more first bids fail due to the high wholesale price and cgwading high reserve price, the retailer benefits
from more second bids.
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4.2 Dual-Channel: NYOP and List-Price

In the dual-channel scenario, a portion of unsatisfied &ldwitch to buy from the retailer-own list-price
channel. Similarly to the single-channel situation, weehthe following result.

Proposition 4.5 In the double-bid dual-channel scenario with constrainegacity, ifQ, < @1, then

R* = max{2Z2 +“‘20g2Q°(d‘c) ,w}; otherwise,

if 10 < 9a—3B+c+2d—62(1—Q0)(d—0)’ R* = 2B+a—20g2Qo(d—C)’
if 9a—3B+c+2d—62(1—Q0)(d—c) << B+§a—c’ R* = B+§a—c’
if i > Bla=c R = i,

wherew = w + A\(B — w).

Conclusion from Proposition 4.5 is similar to PropositiaB,4xcept thatt = w + A\(B — w) > w as
long asA > 0. The retailer will more likely charge a higher reserve pridéne higher the percentage of
consumers that switch to the retailer-own list-price clentime higher the optimal reserve price.

Similar to the single-channel scenario whgn < @ andu is small enough such thaf=2¢-2co(d—c)
is the global optimal reserve price, the optimal profit isegivby

(B _|_ %a _|_ %(QB'FG,—QCEZQQ(d—C)) _
3

II(R*) = Qo

¢ —w> +A(1 = Qo)(B — w) — C.

Taking the first order derivative dii( R*) with respect ta), yields the critical abundant capacity value,

C—DD:2B+G’_2C_31'D
0 2(d —¢) ’

where the superscripgd D represents double-bid dual-channel. We summarize theatribundant capac-
ity values in Table 1. We hav@: "? < Q5% which suggests that the dual-channel retailer is more

motivated, than in the single-channel scenario, to driveesblYOP customers to buy from the retailer-own
2B+a—2c _
list-price channel. We defing”” = —3——". When\ > AP, we haveQ§ " < 0, where similarly to

that in the single-bid scenario, the retailer will chargeserve price ab+ A(B—w) with no intention to sell

products through the NYOP channel. Rather the retailerthgegdYOP as a mechanism to attract customers
to buy from the retailer-own list-price channel. In additiave can show that?? — \SP = B=g=c > q,
which indicates that the retailer may be more willing to setbugh the NYOP channel in the double-bid
scenario than in the single-bid scenario wheis a high value.

Similar to Proposition 4.4, we have the following result.

18



Table 1: Critical abundant capacity valug§.

Single-bid Double-bid
Single-channe| Z+a-c=2w 23%#
B+4a—c—2(w+A(B—w 2B+a—2c—3(w+A(B—w
Dual-channel CE_C ( ) 2(d(—c) ( )
Proposition 46 In the dual-channel scenario, §y < min{Q5 ", Q5P Q,}, then the double-bid

scenario outperforms the single-bid scenario.

Due to our special focus on finding the optimal reserve pritesdual-channel advantage will largely
depend on the cost structure by adding a list-price chatierle we use the following example to partially
illustrate the above discussion.

Example 2: We continue from Example 1. Suppose that 40 andC'y = 500. SinceR5 = 56.67 > 40 =

w, R* = 56.67 in the single-channel scenario. In the dual-channel stmatve first assume that the portion
of unsatisfied customers from the NYOP auctions to the estailvn list-price channel is given by= 0.2.
We havew = w+\(B—w) = 52 < 56.67 = Rs, and hence the optimal price continues tatfe= R; and
II(R)* = 15.40. However, ifA = 0.3, we havew = 58 > 56.67 = R5, and thus, the new optimal reserve
price becomes* = w = 58 andII(R)* = 18.17. In the single-channel scenarid(R)* = 16.50. So,
the single-channel scenario outperforms the dual-chaswexiario ifA = 0.2; however, the dual-channel
scenario outperforms the single-channel scenarko=f0.3. This implies that it is important for the retailer
to retain the unsatisfied customers from the NYOP auctionbesowill purchase from the retailer-own list-
price channel. On the other hand, given th& constant, it is a plausible approach to attract more ousts
to the retailer-own list-price channel via NYOP auctiondiug, the double-bid policy may become more
significant if it can attract more customers to the retain list-price channel.

5 Conclusion

This paper evaluates the optimal reserve prices in the nameewn-price (NYOP) channel with bidding
options in the presence of list-price channels. We invattig single-bid scenario and a double-bid scenario,
in which the consumers can bid twice in the NYOP channel, aodige insights into whether the double-
bid scenario can outperform the single-bid scenario. We siady the impact of adding a retailer-own
list-price channel on the optimal reserve prices. The amalyf this paper may facilitate the understanding
of determining the optimal reserve price in a variety of ailons and help retailers further revise their
operation mechanism.

In both the single-bid and double-bid scenarios, the optmeserve price is higher when the inventory
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capacity is limited than when the inventory capacity is alam. The optimal reserve price is higher or
at least no lower in the double-bid scenario than that in thgles-bid scenario. After adding an NYOP-

retailer-own list-price channel, the optimal reserve @riemains the same if the inventory capacity is low,
but could increase if the inventory capacity becomes high.

In both single-channel and dual-channel scenarios, therltine consumer preference to the list-price
channel (or the higher the consumer preference to the NY@Rneh), the higher the optimal reserve price
in the NYOP channel. If the portion of customers who do not iwithe NYOP channel but purchase in the
retailer-own list-price channel is high enough, the retaiill charge a high reserve price with no intention
to sell the products through the NYOP channel, but ratheiitiesea marketing tool to attract customers to
buy from the retailer-own list-price channel.

The double-bid scenario can outperform the single-bid aderin both the single-channel and dual-
channel scenarios. If the NYOP inventory capacity is lowshew that the double-bid scenario outperforms
the single-bid scenario. However, if the wholesale pridewvg the single-bid scenario can outperform the
double-bid scenario when the inventory capacity grows.racfice, if a double-bid policy can attract more
consumers to the dual-channel retailer, the retailer migdnit to consider the double-bid scenario more
seriously in order to bring more customers to the list-pdannel.

This paper has its limitations. First, although the assionptf uniform distribution functions is com-
mon in the literature, it is desirable to relax this assumptio obtain more insights. For example, in the
double-bid scenario, the symmetric result, where the geerd the two bids in the double-bid scenario
equals the bid in the single-bid scenario, will likely besadid with an asymmetry distribution function. Sec-
ond, in the double-bid scenario, the assumption that thebiits have priority is made to achieve tractability
but might be too strong. As we argue that the first-bid pryamiight encourage the consumers to bid early,
it is reasonable to assume that the retailer will sell iteonkigher bids. Some simulation tools can be uti-
lized to examine the impact of different tie-breaking rul@hird, due to the special focus of this paper,
the list-channels owned by other sellers are not game thieorheoretically and practically, the retailer
may dynamically compete with other list-price channels. aAesult, the analysis of adding a list-price
channel will be more complicated than that of the simplifiettisg in this paper. Since the consumer be-
havior in this paper depends on the interaction between t®mMchannel and those list-price channels,
it becomes computationally intractable to consider thailrétvel multichannel competition in addition to
the consumer NYOP bidding behavior. However, it is worthlexpg whether we can analyze the strate-
gic perspective of multi-channel competition by simplifgithe consumer behavior in the NYOP channel.
Fourth, the consumer belief function is relatively statittie model. As shown in Priceline’s history, how to
influence the consumer bidding behavior has been an imtigguiiactical issue. Last, but not least, extension
to considering stochastic entrance of consumers will béh@nmew avenue for future work.

20



Acknowledgements

The authors are grateful to the Senior Editor and the two ynons reviewers for their comments and
suggestions, which have helped significantly improve traityuof this paper. The authors are also indebted
to Matthew Winger, Dacheng Yao, Guoren Zhang, and Hangim@Har their very valuable inputs.

Appendix

Proof of Proposition 3.1.

We analyze this scenario when> a. We start from the condition that < (B+a—d)/2. We consider
three cases separately.

Cael: If R < (B+a—d)/2, orequivalentlyd < B + a — 2R, every customer wins an item from the
retailer's NYOP auction. The retailer's expected profitieg by

B+a—1i(c+d
+a 22(C-|- )—w]—Cf.

I(R) =

The profit is independent of the reserve price.

Cae2 If (B+a—d)/2<R<(B+a—c)/2, orequivalentlyd > B + a — 2R > ¢, some consumers
win from the NYOP auction, and the retailer's expected pisfgjiven by

B+a—2R—c (B¢ 1+ R B+a—2R—
mi(r) = Bra—2R C( 2 T —w>+)\<1— a2k C)(B—w)—cf.

d—c 2 d—c

II(R) is concave inR. The first order derivative is

OTI(R) 2w+ 2\(B —w) — 2R
OR d—c '

Thus, the optimal reserve price& = w = w + \(B — w). The optimal expected profit is

B+a—c
(R) — B—I—a—2(wd—|—_>\C(B—w))—c<+T+w2+/\(B—w)_w> (A-1)
+)\<1—B+a_2(wd+_)\(§B_w))_C>(B—w)—Cf. (A-2)

Case3: If R > (B+a—c)/2, orequivalentlyB +a—2R < ¢, no consumer wins from the NYOP auction.
Thus, the retailer’s expected profit is given by



The profit is independent of the reserve price as well.

Combining the above three cases, we have

1. f(B+a—d)/2 <w<(B+a-—-c)/2, thenR* = w, and the optimal profit is given by Eq. (A-2).

2. Ifw < (B+a—d)/2, then the optimal reserve price can be any valueir{ B + a — d)/2) including

w.

3. Ifw > (B + a— ¢)/2, then the optimal reserve price can be any valugih+ a — ¢)/2), B — a)
including w, whereR < B — a means that there is a non-negative possibility that som®miess
would buy in the NYOP channel.

Thus, in all above situationg; is the optimal reserve price.

Whenw grows such thatB+a—d)/2 < w < (B+a—c)/2, Case 1is suppresseduf> (B+a—c)/2,
Cases 1 and 2 are suppressed. Sinee(B + a — d)/2, the case ofv < a is limited to the first case of the
demand function wher®yyop = 1 and can be analyzed similarly. In all situations, the rethaitw is the
optimal reserve price holds.

Proof of Proposition 3.2.

B+a—c
If Qy > EZre=2fi=c then the retailer’s profit is given bii(R), = Zta-2fi=c ( 25 i w>,

which is a concave quadratic curve. @f, < Z+2=2E=c then the retailer's profit becomd$(R), =

B+a—c
QO(%JFR — w) (Line 1 or 2 as illustrated in Figure 2). The retailer’s prdtihction curve is first

represented byI(R), and thenII(R);. The interception point ofI(R), andII(R); is given by R =

Bra—e Qold—c) p Bra—e-Qold—c) > 4, thenIlI(R), andII(R), intercept after the poink = w and thus

e Qold—0)
R* = w. The corresponding expected profit is givenIlbyR*) = Qo (% — w).

Otherwise ifR = w < w, II(R)2 andII(R); intercept before the poinR = w and

thus the unique global maximum point is obtainedRdt = w, and we have the optimal expected profit

a—c—2w)?

Proof of Proposition 3.3.

The analysis of Proposition 3.3 will be a combination of Frsipons 3.1 and 3.2. We only consider the
situation thatv < (B+a—d)/2 < R < (B+a—c)/2, and the analysis of other situations will be similar.
The number of customers that win an item from NYOP is givemtiy{ £+¢=2E=< ()} Similarly, we

consider two cases as follows.

Case L: If Bta=2E=c (), or equivalentlyR > 2 |B +a —c— Qo(d — c)] , then some customers buy the

—C
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items from the list-price channel. Thus, the expected piofit

B+a—2R—c [Bf&=< 4+ R B+a—2R—
T(R) = +a—2R c( 57— + —w>—|—>\<1— +a—2R C>(B—'UJ)—Cf,
A

d—c 2
We havell(R) is concave inR. Solving the above equation yield& = @ = w + \(B — w).

The corresponding optimal profit is given by

TR — B+a—2(wd—|—_)\C(B—w))—c (%Hu;wz—w) _w>
+>\<1_B+a—2(wd—|;>;(3—w)—c> (B—w)—Cy.

Case 2: If Qo < Bta=2fi=c or equivalentlyR < 1 [B +a—c—Qo(d— c)] , then we obtain

B+a—c +

I(R) = Qo <Zf - w> +A(L = Qo)(B —w) - C,

which increases iR. So, we can infer that the optimal reserve price is obtaih@upper boundary value
of Qo < ZHer2fi=c, which is given byR = 5[ B +a — ¢ — Qo(d  c)]

So, ifw < § B—i—a—C—Qo(d—C)],R* = %[B—FCL—C—QO(d—C)};OtherWise,R* = .
Proof of Proposition 4.1.
In the double-bid scenario, the consumer’s cost function is

min C(6) = F(x)(z +6) + (1 = F(@))[Fo(x + A)(x + A+ 6) + (1 - Fyw + A))B].

SubstitutingF (z) = 272, f(z) = 5, Fa(z + A) = 2=, and fa(z + A) = ﬁg into the above

equation, we obtain

. r—a A B—xz—-A

The second order derivatives 6f6) with respect tar andA are given by

0?C(0) 2
0x2  B-a >0,
0?C(0) 2
OA2  B-—a >0,
0?C(0) 1
= 0
BEGIN B—a
Furthermore, Hessian matrix is
92C(0)  92C(6) 2 1 3
H = 02 0zdA | _ |B—a B-a| _ >0
92C(0) 0%2C(H) 1 2 (B —a)?
OxOA O0A2 B—a B-a
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Thus,C(0) is strictly convex int andA, and thus, the optimal solution efand A is unique.

Taking the first derivative of'(6) with respect tor and A respectively yields
oC(0) 2c+60+A—-a—B

Ozx - B—a =0,
o0C() _ 2M+u+0-B
oA B—a -

Solving the above two equations results in the proposition.
Proof of Proposition 4.2.

We first start from abundant capacity cases. Due to the sitgjlave only consider the situation that

a<w<§%F4

B+2a—c
Case 1: Sinced < B + 2a — 3R and every customer wins with the first bid(R) = (%JFR - w).

Case2 ¢c< B+20—-3R<d< B+1ia—3R,ie Ry=Bt=d < p < 2Bta=2d _ R, every customer
wins with either the first bid or the second bid. The expecteditis

(R) =

B+4+2a—-3R—c &%1+R
—w
d—c 2

3

B+21—3R—c (B2 4+ R d—(B+2a—3R) (3R+B—a—d
—w |+ —w |,
d—c 2 d—c 3

+[1—P{9§B+2a—33}] <3R+B_Q_d—w>

where3f+B-0=d is the expected payoff of* +A* = 2B+1a—20 onB+2a—3R < § < d < B+ia—3R.

Case3: Ry = 2B+g=2d < R < B#2a—c — R; in which some customers’ first bids are rejected but their
second bids are accepted. In this scenario, some customserbdth bids. The expected profit is

- - B+2a—c R
n(ry — B2 3R c<—3 + _w>

d—c 2

+[P{H§B+%a—;R}—P{9§B+2a—3R}] <3R2_“—w>

B+2a—3R—c<%+R ) g(R—a)<3R—a >
= —w |+ —w |,

d—c 2 d—c 2
where2£-¢ is the expected payoff of + A* = 2B+1a—20onB+2a—3R< 0 < B+ia—3R < d.

Cased: If B+2a—3R < ¢ < B+ Ja— 3R, thenR; = 8H20=c < R < 2BHa=2c _ R this implies that
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all customers’ first bids are rejected while some of theipsedids are accepted. We have

1 3 B+ia+3R-c
— <0< —a— = 2 2 —
TI(R) P{c_ 6<B+a 23} ( . w>
_ B—i—%a—%R—c B+%a+%R—c_w
d—c 3 ’
La+2R—c .
wherem is the expected payoff of* + A* = 2B+ 1a — 20onc <6 < B+ 1a— 3R.

Case5: If B+ 1a— 3R < ¢, thenR > 2BHa=2c — R, n this case no customer wins any item from the

auction after bidding twice.
Integrating Cases 1 — 5 gives us a continuous curve.

In Case 1II(R) is increasing with respect t& and the global optimal reserve price is given by the

upper boundanyRs. Thus, the maximal profit iB[(R) = 42B+4g—c—d —w.

In Case 2]I(R) is convex with the global minimum poift = W, which is basically smaller
than the lower boundaryt; given thatB — a > d andc = 0 typically. Thus,II(R) increases wheiR
increases durindes < R < Ry. A special case is that R; = R4 then Case 2 disappears.

In Case 3]I(R) is convex with the global minimum poil* = 2a — w.

1) If 2a — w < Ry, we can infer thall(R) increases with respect t8 during Ry < Rs; and R* =
B+2a—c
FEEI=E,

2) However, it is possible thaky < 2a —w < Rj which is equivalent tg=2+¢ < o < 24550=25

Consider/ 2H20=¢ — (2q — w)] — [(2a — w) — 2BHa=24] — 3B=9atbu=2d—c gGince[](R) is symmetric

relative toR* = 2a — w, if 44=5+¢ < o < 248904e=38 gy ch thafll(R) decreases in the domain of

2B+a-2d B+2a— ; e A _ 2B4a-2d
===t < 20 — w < ZH5F, the optimal reserve price is given By = ===,

3) Otherwise if2H9ate=38 <, < 24850=28 ' p+ — BtZa—c gince overalll(R) increases in the same

domain.
4) If R5 < 2a —w, i.e.,w < 22=B4e pr — 2B+a=2d gincel](R) strictly decreases in the domain.
In Case 4]I(R) is concave with the global maximum poifit' = w. If w < £+2=¢ TI(R) decreases

betweenR; < R < Rg and thuskR* = %. If w > Rs, the optimal reserve price is given B/ = w.
It is worth noting that ifw > Rg, II(R) = 0 since no bid can win the item from the NYOP auction.

Case 5 is trivial since no transaction occurs. Since theecigreontinuously increasing in Cases 1 and
2, the optimal reserve price is basically determined in €8sand 4. In summary:
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l) If w é 40,—3B+C’ R* — QB-F?()l—Qd.

2) If 4a—3B+c <w< 2d+9aé|—c—3B’ R* = 2B+g—2d'
3) If 2d+9a(—)ﬁ-c—3B <w< 2d+5§1—2B, R* = B-i%a—c.

2d+5a—2B B+2a—c * __ B4+2a—c
4) If 2045028 ) < Bt2ac pr _ Bilac

5) If BE2a=c < g < 2842022 pr — g,

6) If w > BE20=c R* =y,
The above conditions can be simplified into Eq. (5). Howeifet2etc=38 (0, Eq. (5) can be rewritten
asR* = max{%,w}.
Proof of Proposition 4.3.

Taking into account of the constrained capacity leyglin the above discussion leads to the following
cases. Due to the lengthy computation, we only show the sisalyhen(; < @ given thatB — a <
d + (d — ¢)/3. The analysis o), > Q) is similar and yields the same resullt.

Scenario BQy < Q1

Case 1Q: In this scenario, Case 1Q overlaps with Cases 1 and 2, ahdfp@ase 3. Sinc€)y < Q; cannot

B+a—c
even satisfy the demand of the first bids, we hEy&) = Qo(y —w).

Case 2Q: Case 2Q overlaps with parts of Cases 3 and 4. We considerveases here.

1) 2Q-1: R; < R < Rj5 such that all first bids are satisfied and partial second biElaecepted as well
(overlapping with Case 3). We have

B+21 —3R—c (B2 R B+2a—3R—c. (3R—a
HR) = d—c ( 5 —w | +(Qo - d—c )< 2 _w>'

2) 2Q-2: R; < R < R, such that all first bids are rejected and partial second bielaecepted (over-
lapping with Case 4). We have

B+l 3p_
H(R):QO< T2t C—w).

Case 3Q: R > R such that all first bids are rejected and all second bids aepded as it is in Case 4.

TI(R)

_B—I—%a—%R—c B—l—%a—l—%R—c_w
B d—c 3 '
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A continuous curve of Scenario B is formed by Cases 1Q-3Q.dseCLQJII(R) is strictly increasing

in R. Case 2Q-1 has a convék(R) with respect toR. The global minimum point is given b* =

Bida—e Qold=c) - compareR* = Btiame@oldc) yq Bi2e—c-CQold=c) the |ower bound. Sinc)y <

Q) = £o4=¢, we find thatR* — Bida—c Qoldq) j5 smaller thank, = Z+20-¢-Qd=9) a5 shown as

follows

B+2a—c—Qod—c) B+3a—c—Qy(d—c)
3 4
B—a—c—Qo(d—rc)
12

> 0.

Thus, Case 2Q-1 is increasing R SincellI(R) is increasing in Case 2Q-2](R) increases in Case

2Q. Case 3Q is part of Case 4 in the abundant capacity cases, Heuabundant capacity curve and this

2B+a—2c¢—2Qo(d—c)
3

constrained capacity curve interceptiat= Ry = . From our discussion in the proof of

Proposition 4.2, we can infer that the optimal reserve pgaagven byRs if Ry > w; otherwise, it is given
by w. Overall, R* = max{ R, w}.
Scenario CQ; < Qo < Q2
B+a7c+R

Case 1Q: This is the same as in ScenarioB(R) = Qo(—25— — w).

Case 2Q: Case 2Q overlaps with part of Case 3 only. ThiRs, < R < R, such that all first bids are
satisfied and partial second bids are accepted as well. Vée hav

II(R)

B+2a—3R—c¢c, (3R—a
) —w|.

d—c 2

 B+2-3R—c (B4R
N d—c 2

—w) + (Qo —

Case 3Q: There are two subcases.

1) 3Q-1: Ry < R < Rj5 such that all first bids and second bids are accepted as itiase 3. We have

B+2a—3R—c<%+R ) g(R—a)<3R—a >
= —w |+ —w|.

TI(R) d—c 2 d—c

2) 3Q-2: R > Rs such that all first bids are rejected and all second bids aepted as Case 4. We have

II(R)

_B+%a—%R—c B—i—%a—F%R—c_w
N d—c 3 '

Similarly, a curve of Cases 1Q-3Q crosses the curve of Cade$31it, the interception point is located
in Case 3. IfR* = Ry, it must havg(2a — w) — Ra] — [R5 — (2a — w)] > 0 which is equivalent to

<9a—33+c—|—2d—2(1—Q0)(d—c) - 9a — 3B +c+2d

w
6 6
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otherwiseR* = R5. Overall, the optimal reserve price can be written as fadlow

If w < 9a—3B+c+2d—62(1—Q0)(d—c)’ R* — 2B+a—20§2Qo(d—c)’
if 9a—3B+c+2d—62(1—Q0)(d—0) <w< B—l—%a—c’ R* = B—i—?)’a—c7
if w > Bt2a—c R* =w.

3 9

Scenario D:Qg > Q-

Case 1Q: Case 1Q overlaps with Case 1 and part of Case 2. The profitidanis the samdI(R) =

B+a—c
QO(%JFR —w) as long ask > R;.

Case 2Q: Case 2Q overlaps with Case 2 and part of Case 3.

1) 2Q-1: Ry < R < Ry such that all first bids are satisfied and partial second bieleecepted (over-
lapping with Case 2). We have

B+2a—3R—c [ Bf22=< L R B+2a—3R— B—a-—
T(R) = +2a - 3R c( 37— + +2a — 3R c)<3R—|— a d—w).

d—c 2 _w>+(QO_ d—c 3

2) 2Q-2: Ry < R < Ry such that all first bids are satisfied and partial second belaecepted (over-
lapping with Case 3). We have

B42a—c
H(R):B+2a—3R—c<+T+R B—|—2a—3R—c)<3R—a_w>.

d—c 2 _w>+(QO_ d—c 2

Case 3Q: There are two subcases.

1) 3Q-1: Rs < R < Rj5 such that all first bids and some second bids are acceptedsas3Cd/e have

B+2 —3R—c [BHe=< 1R S(R—a) (3R—a
II(R) = p— ( 5 —w | + p < >

2) 3Q-2: R > Rs such that all first bids are rejected and all second bids arepéed as it is in Case 4.
We have

B+ia—-3R-c(B+ia+3R-c

In Scenario D, we directly consider subcase 2Q-1. The optiesarve price in this sub-domain is given
by R = w which is smaller tharR; due toB — a > d. Therefore Il increases in 2Q-1 with
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respect toR. Other parts of the curves share similar features with St@@aand the interception point is
located at Case 3 as well. Overall, the optimal reserve paoebe written as follows:

—-3B 2d—2(1— d— 2B+a—2c—2 d—
If w < 9a—3B+c+ = (1—Qo)( c)’ R* = +a 63 Qo ( 0)7
if 9a—3B+c+2dE2(1—Qo)(d—C) <w< B—l—%a—c’ R* = B—|-23a—c7
if w > Br2a—c R* = w.

3

The difference between Scenarios C and D lies at¥hat?tet20=20-C0)(d=c) ig 3 higher value in Scenario

D, which means that it is more likely th&t; could be the optimal reserve price.

In summary, we can integrate the above scenarios into thwviol:

1) If Qo < Q1, . .
2 —2c—2 —
R* = max{ ra C3 Qold=¢) ,w}
2) Otherwise ifQy > @1, then
. 9a—3B+c+2d—2(1-Qo)(d—c) % _ 2B+a—2¢—2Qo(d—c)
if w< = = R R = —
if 9a—3B+c+2dE2(1—Qo)(d—c) <w< B—l—%a—c’ R* = B—i—%a—c7
if w > %, R* = w.

Proof of Proposition 4.5. Due to our special focus, the analysis of dual-channel seeisasimilar to that
of the single-channel scenario. Again, because of thetgrgimputation, we only show the analysis when
Q1 < Q. The analysis oif); > Q, is similar and yields the same resuilt.

Case 1. R < Rj3. Since no customer switches to the list-price channel, #peaed profit islI(R) =

B+2(L7c+R
() e,

Case 2. R3 < R < R4. Since all bidders win with either the first bid or the secoid] the expected profit

B+2 —3R—c [BH2=< 1R d—(B+21—3R) (3R+B—a—d
—w |+ —w | —Cy.
d—c 2 d—c 3

Case 3. R4 < R < Rs, unsatisfied customers start to purchase from the reierlist-price channel. The
expected profit is

— — Bi2a—c 4 p 3(R— —
I(R) — B+2a— 3R c< 2a—c _w>+2( a)<3R a_w>

d—c 2 d—c 2

_ _ 3 _
A 1_B—i—2a 3R 0_2(R a)
d—c d—c

)(B—w)—C'f.
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Case4: R5; < R < Rg. The expected profit is

B+ia—3R—c(B+ia+3R-c B+ia—3R-c
= T 3 —w | +A[1- T (B —w) —Cj.

II(R)

Caseb: If R > Rg, no customer wins any item from the NYOP auction after bigdimice. However, some
customers buy from the list-price channBI(R) = A\(B — w) — CY.

Integrating Cases 1 — 5 gives us a continuous curve. Cased 2 behave similarly as in the single-
channel situation as described in the proof of Propositi@ Bor Case 3[I(R) is convex with the global
minimum pointR* = 2a — w — A\(B — w). Compared withR* = 2a — w in the single-channel case,
R* = 2a — (w+ A\(B —w)) is a smaller value. In Case H(R) is concave with the global maximum point
R* = w + A(B — w). Thus, we define a new variable = w + A\(B — w). Similar to Proposition 4.2, the
optimal reserve price is given by:

~ 2d+9a+c—3B __ 2B+4a—2d
If @ < 20+9ate-3B R* = 2Bta2d,
if 2d+9aé|—c—3B < W < B-i—%a—c7 R* = B—l—%a—c’ (A_3)
if 1 > B2o=c R* = .

In Cases 1Q-3Q, due to the similarity, we just demonstratenZ&genario B.

Case 2Q: Case 2Q overlaps with parts of Cases 3 and 4. We considerveases here.

1) 2Q-1: Ry < R < Rj such that all first bids are satisfied and partial second bieleecepted (over-
lapping with Case 3). We have

B+21—3R—c [ B*22=—< R
M(R) = d—c ( 32 v
B+2a—3R—c¢ 3R—a
+ (- BEEEIE) (BRE0 ) - Qo - w) - €.

2) 2Q-2: R; < R < R, such that all first bids are rejected and partial second bielaecepted (over-
lapping with Case 4). We have
B+la+3R-c
3

II(R) =Qo< —w) + A1 = Qo)(B —w) — Cy.
The analysis on the optimal reserve price in Cases 1Q-3Qeddull-channel scenario is similar to that in
the single-channel scenario. Thus, we can integrate theeadm@narios as follows.

1) If Qo < 1,
) If Qo < @1 2B+ a —2¢c—2Qy(d —¢)

R* = max{ 3

i}
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2) Otherwise ifQy > @1, then

PN —-3B 2d—2(1— d— 2B+a—2c—2 d—

if 1 < 9a—3B+c+ 6( Qo)( c)7 R* = +a 03 Qo( C)7
|f 9a—3B+C+2dE2(1—Q0)(d—C) S n S B+%a—c’ R* — B+%a—c’

if 1 > BH2a=c R* = 1.
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