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Optimal Reserve Prices in Name-Your-Own-Price Auctions with

Bidding and Channel Options

Gangshu (George) Cai∗ Xiuli Chao † Jianbin Li‡

January 12, 2009

Abstract

Few papers have explored the optimal reserve prices in the name-your-own-price (NYOP) channel

with bidding options in a multiple channel environment. In this paper, we investigate a double-bid

business model in which the consumers can bid twice in the NYOP channel, and compare it with the

single-bid case. We also study the impact of adding a retailer-own list-price channel on the optimal

reserve prices. This paper focuses on achieving some basic understanding on the potential gain of adding

a second bid option to a single-bid system and on the potential benefits of adding a list-price channel

by the NYOP retailer. We show that a double-bid scenario can outperform a single-bid scenario in both

single-channel and dual-channel situations. The optimal reserve price in the double-bid scenario is no

less than that in the single-bid case. Furthermore, the addition of a retailer-own list-price channel could

push up the reserve prices in both single-bid and double-bidscenarios.

Key words: Reserve Price; Name-Your-Own-Price (NYOP); Single-Bid; Double-Bid; Dual-Channel

History: Received: November 2007; Revised: April 2008, September 2008, and November 2008; Ac-

cepted: November 2008

1 Introduction

The Name-Your-Own-Price (NYOP) auction has become popularsince the inception of Priceline in 1998,

because consumers can pay less in an NYOP channel than in list-price channels. In an NYOP auction, a

consumer submits a bid on Priceline, and Priceline informs the consumer whether he/she wins the bid after
∗Department of Management, Kansas State University, Manhattan, KS 66506, USA. Email: gcai@ksu.edu
†Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, USA and School of

Economics and Management, Tsinghua University, Beijing, China. Email: xchao@umich.edu
‡School of Management, Huazhong University of Science and Technology, Wuhan, Hubei Province, China. Email: jim-

lee@amss.ac.cn

1

Electronic copy available at: https://ssrn.com/abstract=2119318



Electronic copy available at: http://ssrn.com/abstract=2119318

a short period of time. Typical items for sale on Priceline include hotel rooms, rental cars, airline tickets,

and cruises.

Implied by its name and as first claimed by Priceline, NYOP sounds like a reverse auction in which sell-

ers compete for the bid. However, “Priceline isn’t an auction” (Segan, 2005). Like other list-price retailers,

Priceline has a given (minimum) price for every item. This price is calledreserve price, and a customer wins

the item only if his/her bid is higher than the reserve price (Terwiesch et al., 2005). Since consumers do not

have complete information of the products/prices, Priceline’s deals areopaque. For example, the consumers

cannot know the exact hotel when they bid for hotel rooms in a specified area, nor do they know whether

the bidding prices will be accepted. Opaque fares are generally lower than most list-prices on the Internet,

which results from the contracts between Priceline and its suppliers “give Priceline really low rates” (Segan,

2005). However, consumers might also incur other costs, such as time, emotion, etc, which is referred to as

frictional or haggling cost (Hann and Terwiesch, 2003; Terwiesch et al., 2005). Thus, the consumers have to

tradeoff their convenience with the low price. In theory, anNYOP channel could be better than a list-price

channel (Fay, 2004; Terwiesch et al., 2005). As argued by many researchers, the NYOP channel provides a

niche market where consumers are sensitive to price or psychologically prefer this kind of auction (Clark,

2000; Fay, 2004; Segan, 2005).

Priceline has made some significant changes over the years. For example, Priceline used to allow the

consumers to repeatedly bid on the same item within several days after the first bid; however, this policy

is no longer available from several years ago. Although consumers can continue to submit a different bid

by modifying at least one bidding option, this alteration inpolicy has changed the consumer behavior and

might affect Priceline’s profit. Additionally, Priceline has launched a list-price channel allowing customers

to buy items directly without bidding. These changes motivate the following questions: Is a single bid

scenario better than a double-bid scenario? What are the consumers’ behaviors in single-bid and double-bid

scenarios? What are the optimal reserve prices in the above scenarios? What is the impact of dual-channel

on optimal reserve prices?

Existing research on NYOP auctions is recent and relativelylimited. Hann and Terwiesch (2003) study

consumer behavior in NYOP auctions. The bidders are allowedto submit bids repeatedly; however, by doing

so, substantial frictional costs occur. Hann and Terwiesch(2003) show that consumers might have lower

frictional costs by learning from previous bidding experiences. Terwiesch et al. (2005) provide dynamic

programming models to identify the optimal bidding strategy for consumers who might submit multiple

bids, but incur more haggling costs if they continue to bid after losing their initial bids. Terwiesch et al.

(2005) obtain an optimal number of bids and the corresponding values for consumers and further suggest an

optimal reserve price. The optimal reserve price is constant, which is supported by collected data and is also

adopted in our model. Terwiesch et al. (2005) show that a haggling model may be better than a list-price

model if the consumers are rather heterogeneous.
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Fay (2004) studies a partial double-bid scenario in a slightly different NYOP. In the model, the seller

announces a higher reserve price and then a lower reserve price to the consumers in sequential selling;

however, the number of items for sale is determined by nature. The consumers can submit the second bid

if they lose the first sale. Fay (2004) suggests that a partialdouble-bid could be better than a single-bid for

the retailer although the result is conditional on some restriction. In his model, a list-price is better than an

NYOP for the retailer; however, as explained by the author, an NYOP has its advantages, e.g., the retailer

might collect more information about the consumer demand and it might appeal to a “segment that receives

a psychological benefit.”

In a model to find the haggling cost for consumers, Spann et al.(2004) allow repeat bidding in the NYOP

channel. With unlimited inventory capacity, they suggest that repeated bidding can be better than single bid-

ding for the seller. In an experimental work, Spann et al. (2005) assume that “consumers are often uncertain

about their exact valuations of a particular product.” Given that only one bid is allowed, consumers can

exchange the information of how much they wish to bid with other bidders in three different experimental

designs: name-your-price, select-your-price low range, and select-your-price high range. Consumers then

predict the optimal bid based on the price elicitation. Spann et al. (2005) suggest that the form of price

elicitation has a significant impact on the seller’s profit. Chernev (2003) also explores the price elicitation

in reserve pricing by showing that select-your-price mightbe better than name-your-price in several exper-

iments because, as he explains from a psychologic perspective, the name-your-price approach “is likely to

be associated with a greater degree of uncertainty and cognitive effort.” Based on the data of NYOP for

airline tickets, Spann and Tellis (2006) classify the consumers’ bidding into different patterns. In a model

that the consumers can revise their bids based on the winningprobability function provided by the retailer,

Wilson and Zhang (2008) show that there exists anǫ-optimal solution for the retailer to design the winning

probability function.

While the literature has been focused on a single NYOP channel, few have studied the coexistence of an

NYOP channel and list-price channels. Ding et al. (2005) study a Priceline-like reverse auction by assuming

that consumers might buy from list-price market, if they fail to win in the NYOP channel. Ding et al. (2005)

suggest that bidders are emotional because they will feel excited when winning and frustrated when losing.

Thus, a consumer incurs an emotional utility, in addition toa simplified monetary utility which is linear

to the difference between the bid and the list-price. Wang etal. (2005) assume that a bidder’s valuation

is discounted due to the opacity of the NYOP channel, which allows a single bid. It is the seller’s task

to optimize the opacity in the NYOP channel. Note that the opacity is identical for every customer once

the seller determines the optimal level. The service provider in their model is a monopolist, such that all

unsatisfied bidders buy from his/her own direct list-price market. However, due to their special focuses,

Ding et al. (2005) and Wang et al. (2005) do not explicitly consider the double-bid scenario. Other work

on multi-channel supply chains (Cai et al., 2009; Chen et al., 2007; Chiang et al., 2003; Etzion et al., 2006;

Caldentey and Vulcano, 2007; Tsay and Agrawal, 2004; van Ryzin and Vulcano, 2004; Zhao, 2008) and
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auctions (Cai and Wurman, 2005; Chen et al., 2008; Rothkopf and Whinston, 2007; Shen and Su, 2007)

does not consider NYOP auctions.

In this paper we study the optimal reserve prices in a varietyof situations, including different combina-

tions of single-channel, dual-channel, single-bid, double-bid, abundant inventory capacity, and constrained

inventory capacity in the NYOP channel. We show that a double-bid scenario can outperform a single-bid

scenario in both single-channel and dual-channel situations. The optimal reserve price in the double-bid

scenario is no less than that in the single-bid case. The addition of a retailer-own list-price channel could

push up the reserve prices in both single-bid and double-bidscenarios. We obtain the conditions where the

double-bid is a better choice for the retailer than the single-bid. We further suggest that the double-bid may

become more significant if it can attract more consumers in a dual-channel environment.

The remainder of this paper is organized as follows. In Section 2, we present the model. In Section 3,

we describe the single-bid scenario. We study the double-bid scenario and compare it with the single-bid

scenario in Section 4. Research conclusions are presented in Section 5, and all proofs are relegated to the

Appendix.

2 The Model

The following notation is used in the subsequent analysis:

Q0 capacity quote for the NYOP auctions by either the supplier or the retailer,

x a random consumer’s bid, including the premium charged by the retailer,

B list price from either the retailer or competitors,

θ consumer preference of shopping directly from the list-price channel,

[c, d] domain ofθ,

[a,B] domain of a consumer’s belief in winning an NYOP auction by biddingx,

C total cost of a customer when purchasing an item,

R reserve price that the retailer sets for a specific item in theNYOP channel,

w wholesale price to the retailer from a specific supplier,

Cf fixed cost of adding a list-price channel to the existing NYOPchannel,

λ ratio of customers who fail in NYOP buy from the NYOP-retailer-own list-price channel.

We consider both single-channel and dual-channel market configurations, as illustrated in Figure 1.

In the first market configuration, the retailer only offers Name-Your-Own-Price (NYOP) auctions to the

consumers, who will buy from other competitors’ list-pricechannel(s) if they fail to win in the auctions.

In the second market configuration, the retailer provides anNYOP channel along with a list-price channel.

4
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Figure 1: Market configurations of the retailer’s single-channel and dual-channel scenarios.

Among these consumers who do not win from the NYOP channel, weassume that a percentage,λ, 0 ≤ λ ≤

1, of them buy directly from the NYOP-retailer-own list-price channel while the remaining1 − λ of them

buy from other competitors. Both market configurations havebeen observed in Priceline.com history. In

line with Fay (2004) and without loss of generality, the total number of consumers, regardless of whether

they win in NYOP auctions or not, is normalized to one.

Suppose the consumer has a winning probability ofF (x), called belief probability, if the consumer bids

x. The support ofF (x) is on the interval[a,B]. This winning probability is similar to the distribution

function for a threshold price in Fay (2004), Hann and Terwiesch (2003), Terwiesch et al. (2005), and has

been seen in practice by some NYOP retailers, such as Priceline.com (Allbusiness.com, 1999). Letf(x) be

the corresponding probability density function.

The retailer and the supplier have agreed on a fixed wholesaleprice, as reported by Segan (2005). Let

w denote the wholesale price, and to simplify the discussion,we assume thatw has absorbed other variable

costs to the retailer. We normalize the fixed cost of the NYOP channel to zero, but letCf denote the fixed

cost to the retailer for adding the list-price channel to theexisting NYOP channel.

Clearly, the consumer has no information about the reserve price R, which is set by the retailer in

advance (Hann and Terwiesch, 2003). In other words, the consumer’s belief of the winning probability is

independent of the actual reserve priceR. For the retailer, ifx < R, the bid is rejected; otherwise, the bid

is accepted. We assume thatR remains the same for a specific item during the auction. This assumption

is consistent with realistic data, see Hann and Terwiesch (2003), Spann et al. (2004), and Terwiesch et al.

(2005). To avoid triviality, we assume thatmax{a,w} ≤ R ≤ B.

The NYOP auctions have opaque prices. According to Segan (2005), the retailer treats its customers

as price-sensitive travelers who are willing to give up someconvenience for a lower price. For example,
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consumers do not know exactly what hotel or location for which they are bidding. Different consumers have

heterogeneous preferences toward these opaque fares. LetΘ be the preference of an arbitrary consumer

toward the list-price channel, which is a random variable. WhenΘ = θ, thenθ is the disutility incurred by

the consumer for losing the convenience when winning the item from the NYOP. Assume that the consumer

preferenceΘ is uniformly distributed on an interval[c, d]. Typically c ≥ 0, which means that consumers

prefer the list-price to the NYOP in general, if the price is the same in both channels. The list-price is denoted

by B and is assumed to be the same in both the NYOP-retailer-own list-price channel and the competitors’

list-price channels, which can be observed on Priceline andother list-price competitors, e.g., Hotels.com.

We investigate two scenarios. The first one is calledsingle-bidscenario, in which all consumers can bid

only once in the NYOP. The second is calleddouble-bidscenario, in which all consumers can bid twice in

the NYOP. Current practice on Priceline is widely considered as a single-bid scenario, while a scenario of

multiple (more than two) bids was abandoned by Priceline several years ago. However, it remains arguable

whether the retailer should allow one more bid in the NYOP auction since the consumers could still bid

a second time by using a different user name, changing the credit card number and so on. Similar to Fay

(2004), we compare these two scenarios but in a different context.

In addition to the study of the abundant capacity case, we consider the impact of an inventory capacity

quoteQ0 on the NYOP channel. This capacity quote may be enforced by either the supplier, due to the

low price caused by the opacity, or by the retailer to maximize the profit. Note thatQ0 is the normalized

capacity, not the real capacity, since the number of customers has been normalized to 1.

3 A Single-Bid Scenario

In line with other work (Caldentey and Vulcano, 2007; Etzionet al., 2006) on multi-channel marketing, we

assume that a particular consumer first bids in the NYOP auction and then buys directly from the list-price

channel if he/she fails in the NYOP auction. Since the consumer has only one chance to win in the NYOP

auction, to minimize the total expected cost (Wilson and Zhang, 2008), we have

minx C(θ) = F (x)(x + θ) + (1 − F (x))B (1)

s.t. a < x < B.

SubstitutingF by the uniform distribution and optimizing the above equation without considering the con-

straint yields

x∗ =
B − θ + a

2
. (2)

Clearly, the optimal bid increases inB anda but decreases inθ. The existence ofx∗ requiresa ≤ x∗ ≤

B which is equivalent toa − B ≤ θ ≤ B − a. The case ofa − B ≤ θ is trivial, sincea − B ≤ 0 ≤ c.

6
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Considerθ ≤ B−a. If a consumer’s preference to the list-price is larger thanB−a, the consumer does not

bid on NYOP. This assumption can be supported by the fact thatpeople still buy flight tickets directly from

major airlines, opposed to the NYOP auctions on Priceline, because they strongly prefer exact flight times

and specific airlines. Excluding such consumers, we can without loss of generality assumeB − a ≥ d. That

is to say, if a bidder is willing to bida at NYOP, his/her preference to the list-price channel should not be

larger thand. We utilize this condition throughout this paper. Thus, Eq.(1) holds with the constraint.

The consumer demand to the NYOP channel,DNY OP , can be described by comparing the consumers’

optimal bids with the reserve price as follows.

DNY OP = Pr(x∗ ≥ R) = P (Θ ≤ B + a − 2R)

=















1, if R ∈ [w ∨ a, B+a−d
2 );

B+a−2R−c
d−c

, if R ∈ [B+a−d
2 ∨ w, B+a−c

2 ];

0, if R ∈ (B+a−c
2 ∨ w,B],

where∨ is a maximization notation exemplified byw ∨ a = max{w, a}. The demand is constrained by

w, because it is subject toR ≥ w. We first explain the second case whereR ∈ [B+a−d
2 ∨ w, B+a−c

2 ]. A

consumer wins an item if his/her bid is higher than the reserve price, i.e.,x∗ = B−θ+a
2 ≥ R, which is

equivalent toθ ≤ B + a − 2R. Hence, the portion of all consumers who eventually win items is given

by B+a−2R−c
d−c

. The expected number of customers who qualified as the secondcase can be expressed as
B+a−2R−c

d−c
= B+a−c

d−c
− 2

d−c
R, which is a linear demand function with respect toR. In this sense, the

maximal market size of NYOP is given byB+a−c
d−c

, and 2
d−c

is the decreasing rate in terms of the reserve

price. For the first case whereR ∈ [w ∨ a, B+a−d
2 ) given thatw ∨ a < B+a−d

2 , all consumers win in

NYOP auctions. In fact, ifR∗ < B+a−d
2 , there will be multiple optimal reserve prices such that anyvalue

in [w ∨ a, B+a−d
2 ) is an optimal reserve price, becauseDNY OP = 1. Given thata < B+a−d

2 conditional

on B − a ≥ d, this case can occur ifw < B+a−d
2 . If w ∨ a ≥ B+a−d

2 , this case is suppressed. For the

third case whereR ∈ (B+a−c
2 , B], no consumer can win in NYOP auctions because the reserve price is

too high. Similarly, there are multiple optimal reserve prices such that any value in(B+a−c
2 ∨ w,B] is an

optimal reserve price ifR∗ > B+a−c
2 ∨ w. This case must occur ifw > B+a−c

2 . Thus, the situation of

multiple optimal reserve prices occurs whenR is too small or too big, because the retailer’s profit function

becomes independent of the reserve price. To be concise, in the sequel we ignore the multiplicity of the

optimal reserve prices in the first and third cases.

3.1 The Abundant Capacity Case

Abundant capacity is a special case in which the NYOP channelhas sufficient items. This situation might

occur such as in off seasons when the consumer demand is weak.

Single-Channel: NYOP only

7

Electronic copy available at: https://ssrn.com/abstract=2119318



The case where the retailer has a single channel and abundantinventory capacity can be considered

as a benchmark situation because of its simplicity. We first consider the case thatw < B+a−d
2 . If the

retailer setsR < B+a−d
2 , then every bid is higher than the reserve price, the expected profit from each bid is

B+a− 1
2
(c+d)

2 , and the retailer’s expected profit is given by

Π(R) =
B + a − 1

2(c + d)

2
− w.

The aboveΠ(R) is independent ofR. Otherwise ifR ≥ B+a−d
2 , the retailer’s expected profit is given by

Π(R) =
B + a − 2R − c

d − c

(

B+a−c
2 + R

2
− w

)

.

The aboveΠ(R) is concave inR, and the optimal solution is given byR∗ = w. Since this result is obtained

conditional onw < B+a−d
2 , so any value in[w, B+a−d

2 ) includingR∗ = w can be an optimal reserve price.

If w ≥ B+a−d
2 , since the case ofR < B+a−d

2 is suppressed, the retailer can setR∗ = w. Nevertheless,w

is an optimal reserve price for all situations. This result is intuitive because every qualified bid generates a

positive profit for the retailer due to abundant capacity.

Dual-Channel: NYOP and List-Price

After the retailer adds a list-price channel, the optimal reserve price will change since some consumers

who do not win in the NYOP channel will purchase directly fromthe list-price channel. We summarize the

observations in the following proposition.

Proposition 3.1 In the single-bid dual-channel scenario with abundant capacity, R∗ = ŵ, whereŵ =

w + λ(B − w).

Due to the existence of a retailer-own list-price channel, the retailer sets a higher reserve price. The

higher the portion of consumers who would purchase from the list-price channel, the higher the optimal

reserve price. The value ofλ(B − w) is the expected profit from a customer whose bid is rejected from

the NYOP auction. Since the retailer has abundant items, theretailer will not sell any item at a price below

ŵ = w + λ(B − w) in the NYOP channel. Indeed, we can regardŵ as the opportunity cost to the retailer

for selling an item in the NYOP channel in a single-bid dual-channel scenario.

3.2 The Constrained Capacity Case

Single-Channel: NYOP only

The number of total transactions in the constrained capacity case ismin
{

B+a−2R−c
d−c

, Q0

}

given that

(B + a − d)/2 ≤ R ≤ (B + a − c)/2. If B+a−2R−c
d−c

< Q0, the situation is equivalent to the abundant

8

Electronic copy available at: https://ssrn.com/abstract=2119318



capacity case. However, ifQ0 ≤ B+a−2R−c
d−c

, we haveΠ(R) = Q0

(

B+a−c
2

+R

2 − w

)

. Hence, the optimal

reserve price increases until it touches the upper boundary. Comparing the constrained capacity case with

the abundant capacity case, we obtain the following result.

Proposition 3.2 In the single-bid single-channel scenario with constrained capacity, ifw ≤ B+a−c−Q0(d−c)
2 ,

thenR∗ = B+a−c−Q0(d−c)
2 ; otherwise,R∗ = w.

To explain Proposition 3.2 more intuitively, we illustratethe relation betweenΠ andR in Figure 2. The

( )RΠ

w0

%&
0( )

2

B a c Q d c+ − − −

R'(
0

2( ) ( )
2

B a c
R

R Q w

+ − +
Π = −)*'( +,-. / 0-1 +,-. 23

2 2( ) ( )
2

B a c
RB a R c

R w
d c

+ − ++ − −Π = −
−

2

B a c+ −
2

2

B a c
w

+ −−

Figure 2: Relation betweenΠ and R in a single-bid scenario single-channel scenario with constrained

capacity.

concave quadratic curve is associated with the abundant capacity case given that(B + a − d)/2 ≤ R ≤

(B + a − c)/2. The case ofw > B+a−c−Q0(d−c)
2 is associated with Line 1 in Figure 2, and the case of

w ≤ B+a−c−Q0(d−c)
2 is associated with Line 2. Ifw = B+a−c−Q0(d−c)

2 , Lines 1 and 2 meet atR = w.

Fromw = B+a−c−Q0(d−c)
2 , we obtain

Π(R∗) = Q0





B + a − c −
Qc−SS

0 (d−c)
2

2
− w



 , (3)

where

Qc−SS
0 =

B + a − c − 2w

d − c
.

The superscriptSS represents single-bid single-channel. We refer toQc
0 as thecritical abundant capacity

valuethroughout this paper. If the retailer has more inventory than the critical point (e.g., Line 1 in Figure 2),

the retailer will setR∗ = w; otherwise (e.g., Line 2 in Figure 2), the retailer will setR∗ = B+a−c−Q0(d−c)
2 .

Dual-Channel: NYOP and List-Price
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Similar to the dual-channel scenario with abundant capacity, unsatisfied customers from the NYOP

auctions might switch to buy directly from the list-price channel. We have the following result.

Proposition 3.3 In the single-bid dual-channel scenario with constrained capacity, ifŵ ≤ 1
2 [B + a − c − Q0(d − c)],

R∗ = B+a−c−Q0(d−c)
2 ; otherwise,R∗ = ŵ, whereŵ = w + λ(B − w).

Compare Proposition 3.3 with Proposition 3.2. The optimal reserve price is higher in the dual-channel

scenario than in the single-channel scenario, ifmin{ŵ, w} > 1
2 [B + a − c − Q0(d − c)] or equivalently

Q0 is big. If Q0 is small such thatmax{ŵ, w} ≤ 1
2 [B + a − c − Q0(d − c)], the optimal reserve prices

are the same in both single-channel and dual-channel scenarios. Different from the abundant capacity case

in Proposition 3.1, the optimal reserve price is determinedby not only consumer preference to the list-price,

but also the inventory capacity and ratio of unsatisfied consumers from the NYOP channel to buy from the

retailer-own list-price channel.

Solvingw + λ(B − w) = 1
2 [B + a − c − Q0(d − c)] , we obtain the critical abundant capacity value

Qc−SD
0 =

B + a − c − 2(w + λ(B − w))

d − c
.

The superscriptSD represents single-bid dual-channel. We can infer that the higherλ, the lowerQc−SD
0 .

We defineλSD =
B+a−c

2
−w

B−w
. Whenλ ≥ λSD, we haveQc−SD

0 ≤ 0. At this point, the retailer sets

R∗ = w + λ(B − w) and has no intention to sell products through the NYOP channel, but rather use the

NYOP as a mechanism to attract customers to buy from the retailer-own list-price channel. Whether to keep

the NYOP channel or not will depend on whether it can attract customers to the retailer’s store.

Comparing the dual-channel scenario with the single-channel scenario, we find thatQc−SD
0 ≤ Qc−SS

0 ,

which suggests that the dual-channel retailer might want tolimit the sale in the NYOP channel so as to

obtain more profit from the list-price channel. In either scenario, the stronger consumer preference to the

list-price, the smallerQc
0. If Q0 > Qc−SS

0 , then the optimal reserve price, i.e.,R∗ = w + λ(B − w), is

higher in the dual-channel than that, i.e.,R∗ = w, in the single-channel scenario. With a higher reserve

price, the retailer can drive some consumers with low bids tobuy from the retailer-own list-price channel.

Otherwise ifQ0 < Qc−SD
0 , then the optimal reserve price is the same, i.e.,R∗ = B+a−c−Q0(d−c)

2 , for both

the single-channel and dual-channel scenarios. In both scenarios, the weaker the consumer preference to

list-price, the higher the optimal reserve price in the NYOPchannel.

4 A Double-Bid Scenario

In this section we investigate the benefits of allowing the second bid. When focusing on a double-bid

scenario similar to Fay (2004) and Spann et al. (2004), we introduce a different double-bid model. In our
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model, the consumer chooses an optimal bidx∗ for the first bid, and then adds a∆ dollar value to the second

bid if the first bid fails. This schema is consistent with the recommendation by Segan (2005), who suggests

that the consumer can add $5 to the previous bid, in addition to adding a new zone in rebidding a hotel on

Priceline. This might also be close to real situations, in which consumers might determine how much more

to rebid based on the initial bid, rather than re-compute theoptimal bid. In line with the literature, such

as Spann et al. (2004), we assume that the consumers are rebidding on the same item and their preferences

remain the same during the bidding. The consumer’s initial belief about the winning probability of bidding

x is the same as in the single-bid scenario; however, the consumer will update the belief if the consumer

fails to win with the initial bid. We denote the new belief CDFby F2 and the corresponding PDF byf2.

Thus,

F2(x + ∆) =
x + ∆ − x

B − x
=

∆

B − x
,

and

f2(x + ∆) =
∆

(B − x)2
.

The consumer aims to minimize the cost, given that the consumer will switch to buy from the list-price

channel if he/she fails both bids. The objective function is

min
x,∆

C(θ) = F (x)(x + θ) + (1 − F (x))[F2(x + ∆)(x + ∆ + θ) + (1 − F2(x + ∆))B], (4)

where the first term is the expected cost of winning the item atx, and the second term is the expected cost of

not winning the first bid but winning the second bid, or buyingfrom the list-price channel after failing both

bids. The optimal double-bid strategy is given as follows.

Proposition 4.1 In the double-bid scenario, the optimal initial bid for the consumer is

x∗ =
B + a − θ − ∆∗

2
,

and the optimal second bid isx∗ + ∆∗, where

∆∗ =
1

3
(B − a − θ).

As compared to the single-bid scenario, a consumer first bids∆∗/2 lower and then bids∆∗/2 higher

than the optimal bid in the single-bid scenario. Furthermore, substituting the optimal bids into the objective

function, we can show that a double-bid scenario is a better choice for the consumer as long as∆∗ <
2
3(B − a − θ), which is true in Proposition 4.1. Thus, everything else being equal, a double-bid scenario

could save costs for the consumers. As a result, a double-bidscenario can be more attractive than the

single-bid scenario to the consumers.
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4.1 Single-Channel: NYOP only

The retailer accepts bids higher than the reserve price, hence in the consumer’s optimal bidding strategy, the

first bid is accepted if and only ifθ ≤ B + 2a − 3R. As for the second bid,x∗ + ∆∗ = B+a−θ+∆∗

2 ≥ R is

equivalent toθ ≤ B + 1
2a − 3

2R. For a givenR, we must haveB + 2a − 3R ≤ B + 1
2a − 3

2R. Based on

the consumer preference boundary values, we may divide consumers into the following categories. To avoid

overlapping in the following cases, we assume thatB − a < 2d − c. This assumption is consistent with the

fact that consumer preference toward Priceline’s NYOP auction is quite diversified such thatd could be a

value close toB andc could be a value close to zero. This is further supported by the observation that some

customers never shop in the NYOP channel even if Priceline promises up to 50% off the regular price in the

NYOP channel.

Case 1. d ≤ B + 2a− 3R, equivalentlyR ≤ R3 = B+2a−d
3 . In this case consumers very weakly prefer

the list-price channel, and every customer wins an item fromthe NYOP channel with the first bid.

Case 2. c ≤ B + 2a − 3R ≤ d ≤ B + 1
2a − 3

2R, equivalentlyR3 < R ≤ R4 = 2B+a−2d
3 . In this

case the consumers weakly prefer the list-price channel, and every customer wins an item from the NYOP

channel with either the first or second bid.

Case 3. c ≤ B + 2a − 3R ≤ B + 1
2a − 3

2R ≤ d, equivalentlyR4 < R ≤ R5 = B+2a−c
3 . In this case

the consumers fairly prefer the list-price channel, and some customers win items from the NYOP channel

with either the first or second bid.

Case 4. B + 2a − 3R ≤ c ≤ B + 1
2a − 3

2R, equivalentlyR5 < R ≤ R6 = 2B+a−2c
3 . In this case the

consumers strongly prefer the list-price channel, and thusevery customer’s first bid is rejected while some

second bids are accepted.

Case 5. B + 1
2a − 3

2R < c, or R > R6. In this case the consumers very strongly prefer the list-price

channel, and no customer wins from the NYOP channel.

The above cases are illustrated in Scenario A of Figure 3. Note that Scenario A is for the abundant

capacity case, while Scenarios B, C, and D are for the constrained capacity case. Notation of̂Q1 andQ̂2 is

further described in Eqs. (6) and (7).

To obtain tractability, we assume that the first bid has priority over the second bid to be satisfied in this

double-bid scenario. Although it is reasonable for the retailer to sell items to higher bids, this assumption

can be considered as a tie-breaking rule. This rule has been adopted in some online auction web sites, e.g.,

uBid.com, to encourage consumers to bid early. LetD1 andD2 be the demand to the NYOP channel from
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Figure 3: Case categories in terms of reserve price and resource capacity when̂Q1 < Q̂2.

the first and second bids respectively.

D1 = P{x∗ ≥ R} = P{
B − θ + 2a

3
≥ R} = P{θ ≤ B + 2a − 3R},

D2 = P{x∗ + ∆∗ ≥ R} − P{x∗ ≥ R}.
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For the above Cases 1-5, we have

D1 =



































1, if R ∈ [w ∨ a, B+2a−d
3 );

B+2a−3R−c
d−c

, if R ∈ [B+2a−d
3 ∨ w, 2B+a−2d

3 );
B+2a−3R−c

d−c
, if R ∈ [2B+a−2d

3 ∨ w, B+2a−c
3 );

0, if R ∈ [B+2a−c
3 ∨ w, 2B+a−2c

3 );

0, if R ∈ [2B+a−2c
3 ∨ w,B].

D2 =







































0, if R ∈ [w ∨ a, B+2a−d
3 );

1 − B+2a−3R−c
d−c

, if R ∈ [B+2a−d
3 ∨ w, 2B+a−2d

3 ) ;
3
2
(R−a)

d−c
, R ∈ [2B+a−2d

3 ∨ w, B+2a−c
3 ) ;

B+ 1
2
a− 3

2
R−c

d−c
, if R ∈ [B+2a−c

3 ∨ w, 2B+a−2c
3 );

0, if R ∈ [2B+a−2c
3 ∨ w,B].

Similar to the single-bid scenario, there will be multiple optimal reserve prices ifw > 2B+a−2c
3 . For the

same reason, we skip the discussion on the multiplicity of the optimal reserve prices.

For the abundant capacity case, we have the following observation.

Proposition 4.2 In the double-bid single-channel scenario with abundant capacity, the optimal reserve

price is given by,























if w < 2d+9a+c−3B
6 , R∗ = 2B+a−2d

3 ,

if 2d+9a+c−3B
6 ≤ w ≤ B+2a−c

3 , R∗ = B+2a−c
3 ,

if w > B+2a−c
3 , R∗ = w.

(5)

Proposition 4.2 is conditional on2d+9a+c−3B
6 > 0. However, if 2d+9a+c−3B

6 < 0, Eq. (5) can be

rewritten asR∗ = max
{

B+2a−c
3 , w

}

. Overall, Proposition 4.2 shows that the optimal reserve price is

increasing step-wisely with respect to the wholesale price. As compared to Proposition 3.1, Proposition 4.2

shows that the optimal reserve price in the double-bid scenario is higher than that in the single-bid scenario

if B+2a−c
3 > w. This occurs because the retailer wants to avoid some extremely low bids because of a more

lenient policy.

We now consider the constrained capacity case. IfQ0 ≤ B+2a−3R−c
d−c

, i.e.,R ≤ R1 = B+2a−c−Q0(d−c)
3 ,

the limited capacity can only satisfy partial demand of the first bids. IfQ0 ≤
B+ 1

2
a− 3

2
R−c

d−c
, i.e.,R ≤ R2 =

2B+a−2c−2Q0(d−c)
3 , the limited capacity can only satisfy partial demand of thesecond bids.R1 andR2 are

illustrated in Scenarios B, C, and D of Figure 3. ComparingR1, R2 with R3, R4, R5, R6, we can infer that

R1 will be betweenR3 andR5, andR2 will be betweenR4 andR6. However, the relative positions between
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R1 andR4 and betweenR2 andR5 are determined by the capacity levelQ0. Let R2 = R5, we obtain

Q̂1 =
B − a − c

2(d − c)
. (6)

Similarly lettingR1 = R4 gives us

Q̂2 =
2d + a − B − c

d − c
. (7)

We categorizeQ0 into different scenarios as illustrated in Figure 3 whenQ̂1 < Q̂2. In Scenario B,Q0

satisfies all first bids in Case 3 and all second bids in Case 4. If Q0 increases,R1 andR2 move up to Case 3

in Scenario C and then to Case 2 and Case 3 respectively in Scenario D. We analyze the above situations in

more detail and obtain the following proposition.

Proposition 4.3 In the double-bid single-channel scenario with constrained capacity, ifQ0 < Q̂1, R∗ =

max{2B+a−2c−2Q0(d−c)
3 , w}; otherwise,























if w < 9a−3B+c+2d−2(1−Q0)(d−c)
6 , R∗ = 2B+a−2c−2Q0(d−c)

3 ,

if 9a−3B+c+2d−2(1−Q0)(d−c)
6 ≤ w ≤ B+2a−c

3 , R∗ = B+2a−c
3 ,

if w > B+2a−c
3 , R∗ = w.

Comparing Proposition 4.3 with Proposition 4.2 shows that the optimal reserve price is set to the whole-

sale price if the wholesale price is high. If the wholesale price is low such thatw < 9a−3B+c+2d−2(1−Q0)(d−c)
6 ,

the retailer will use a higher reserve price than that in the abundant capacity case as shown in Proposition 4.2.

We partially demonstrate Propositions 4.2 and 4.3 in the following example.

Example 1. Suppose that the constrained capacityQ0 = 0.6. The list-price isB = 100. The consumer

preference is on[c, d] = [0, 60]. The winning probability is on[a,B] = [35, 100]. The wholesale price

is w = 20. Hence, we obtainQ̂1 = 54.17 and Q̂2 = 91.67 and it is belonging to Scenario C, i.e.,

Q̂1 < Q0 < Q̂2. Two curves of Cases 1-4 and 1Q-3Q as shown in the proof of Proposition 4.2 and

Proposition 4.3 for a double-bid situation can be describedin Figure 4. The optimal reserve price is given

by R5 = 56.67. The corresponding profit isΠ∗
Double−Bid = 25.73. In contrast, for the single bid scenario,

the optimal reserve price is given byR∗ = 49.5 and the optimal profit isΠ∗
Single−Bid = 23.1. This

empirically shows that the double-bid can outperform the single-bid, i.e., the retailer’s profit is higher in the

double-bid case.

We now consider the special case thatQ0 < Q̂1 andw is small enough such that2B+a−2c−2Q0(d−c)
3

is the global optimal reserve price. We can prove that2B+a−2c−2Q0(d−c)
3 ≥ B+a−c−Q0(d−c)

2 given that

B − a ≥ d. Thus, the optimal reserve price is more likely to be higher in the double-bid scenario than in
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Figure 4: Relation betweenΠ andR in a double-bid single-channel scenario witĥQ1 < Q0 < Q̂2.

the single-bid scenario. This occurs especially whenQ0 is small and the retailer wants to avoid selling the

products to low bids. In this special case, the optimal profitis given by

Π(R∗) = Q0

(

B + 1
2a + 3

2(2B+a−2c−2Q0(d−c)
3 ) − c

3
− w

)

.

Taking the first order derivative onΠ(R∗) with respect toQ0 yields the critical abundant capacity value,

Qc−DS
0 =

2B + a − 2c − 3w

2(d − c)
.

The superscriptDS represents double-bid single-channel. Comparing this profit with the profit of the single

bid scenario whenQ0 < Qc−SS
0 , we haveΠ∗

Double−Bid − Π∗
Single−Bid = Q0(d−c)

12 (2(B−a−c)
d−c

− Q0) ≥ 0

given thatQ0 ≤ Q̂1 < 2(B−a−c)
d−c

. Thus, we obtain the following result.

Proposition 4.4 In the single-channel scenario, ifQ0 < min{Qc−DS
0 , Qc−SS

0 , Q̂1}, then the double-

bid scenario outperforms the single-bid scenario, i.e., the retailer receives higher profit when offering two

bidding options.

Proposition 4.4 indicates that if the inventory capacity issmall satisfying the above condition, the double-

bid is a better policy than the single-bid. The intuition lies in the consumer behavior difference in the single-

bid and double-bid scenarios. Because the consumers’ second bids in the double-bid scenario are higher than

the bids in the single-bid scenario, the retailer can designa higher reserve price in the double-bid scenario to

reject the first bids and accept the second bids instead. Thisis supported by the comparison of the optimal

reserve prices in those two scenarios. The following is true

R∗
Double−Bid − R∗

Single−Bid =
B − a − c − Q0(d − c)

6
> 0

as long asQ0 < B−a−c
d−c

, which holds given thatQ0 < Q̂1 = B−a−c
2(d−c) .
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It is worth noting that Proposition 4.4 is independent of theprevious assumption that the first bids have

the priority. As we show in the proof of Proposition 4.3,Q0 < min{Qc−DS
0 , Qc−SS

0 , Q̂1} corresponds to

the case that all first bids are rejected and some second bids are accepted; thus, Proposition 4.4 is robust

against the first-bid priority.

The computational complexity of cases thatQ0 > Q̂1 prevents us from obtaining meaningful analytic

results. Instead, we numerically compare the optimal profits in the single-bid and double-bid scenarios

as illustrated in Figures 5 and 6. The market configuration isthe same as in Example 1, except that the
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Figure 5: The optimal profit comparison between

single-bid and double-bid in terms ofQ0 with w =

10.
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Figure 6: The optimal profit comparison between

single-bid and double-bid in terms ofQ0 with w =

40.

wholesale price is changed tow = 10 andw = 40 respectively in two separate cases. Figures 5 and 6 further

support Proposition 4.4, which states that the double-bid scenario outperforms the single-bid scenario when

Q0 is small regardless of the value of the wholesale price. However, Figure 5 illustrates that if the wholesale

price is low, i.e.,w = 10, the single-bid scenario outperforms the double-bid scenario whenQ0 is big,

e.g.,Q0 > 0.65 approximately in this example. This occurs because whenQ0 is big, the retailer needs to

sell more opaque products, and the low wholesale price provides enough cushion for the retailer to lower

the reserve price in the double-bid scenario to catch some first bids. But, by doing so, the retailer loses

some profits due to those first bids as compared to that in the single-bid scenario. If the wholesale price is

higher, i.e.,w = 40, the double-bid scenario outperforms the single-bid scenario for all values ofQ0. A

high wholesale price does not give much flexibility for both single-bid and double-bid scenarios. As shown

in Propositions 3.2 and 4.3, the optimal reserve price becomes close to the wholesale price especially when

Q0 grows big. In this situation, the double-bid scenario has anadvantage over the single-bid scenario; since

more first bids fail due to the high wholesale price and corresponding high reserve price, the retailer benefits

from more second bids.
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4.2 Dual-Channel: NYOP and List-Price

In the dual-channel scenario, a portion of unsatisfied bidders switch to buy from the retailer-own list-price

channel. Similarly to the single-channel situation, we have the following result.

Proposition 4.5 In the double-bid dual-channel scenario with constrained capacity, ifQ0 < Q̂1, then

R∗ = max{2B+a−2c−2Q0(d−c)
3 , ŵ}; otherwise,























if ŵ < 9a−3B+c+2d−2(1−Q0)(d−c)
6 , R∗ = 2B+a−2c−2Q0(d−c)

3 ,

if 9a−3B+c+2d−2(1−Q0)(d−c)
6 ≤ ŵ ≤ B+2a−c

3 , R∗ = B+2a−c
3 ,

if ŵ > B+2a−c
3 , R∗ = ŵ,

whereŵ = w + λ(B − w).

Conclusion from Proposition 4.5 is similar to Proposition 4.3, except that̂w = w + λ(B − w) > w as

long asλ > 0. The retailer will more likely charge a higher reserve price. The higher the percentage of

consumers that switch to the retailer-own list-price channel, the higher the optimal reserve price.

Similar to the single-channel scenario whenQ0 < Q̂1 andŵ is small enough such that2B+a−2c−2Q0(d−c)
3

is the global optimal reserve price, the optimal profit is given by

Π(R∗) = Q0

(

B + 1
2a + 3

2(2B+a−2c−2Q0(d−c)
3 ) − c

3
− w

)

+ λ(1 − Q0)(B − w) − Cf .

Taking the first order derivative onΠ(R∗) with respect toQ0 yields the critical abundant capacity value,

Qc−DD
0 =

2B + a − 2c − 3ŵ

2(d − c)
,

where the superscriptDD represents double-bid dual-channel. We summarize the critical abundant capac-

ity values in Table 1. We haveQc−DD
0 ≤ Qc−DS

0 , which suggests that the dual-channel retailer is more

motivated, than in the single-channel scenario, to drive some NYOP customers to buy from the retailer-own

list-price channel. We defineλDD =
2B+a−2c

3
−w

B−w
. Whenλ ≥ λDD, we haveQc−DD

0 ≤ 0, where similarly to

that in the single-bid scenario, the retailer will charge a reserve price atw+λ(B−w) with no intention to sell

products through the NYOP channel. Rather the retailer usesthe NYOP as a mechanism to attract customers

to buy from the retailer-own list-price channel. In addition, we can show thatλDD − λSD = B−a−c
6 > 0,

which indicates that the retailer may be more willing to sellthrough the NYOP channel in the double-bid

scenario than in the single-bid scenario whenλ is a high value.

Similar to Proposition 4.4, we have the following result.
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Table 1: Critical abundant capacity valuesQc
0.

Single-bid Double-bid

Single-channel B+a−c−2w
d−c

2B+a−2c−3w
2(d−c)

Dual-channel B+a−c−2(w+λ(B−w))
d−c

2B+a−2c−3(w+λ(B−w))
2(d−c)

Proposition 4.6 In the dual-channel scenario, ifQ0 < min{Qc−DD
0 , Qc−SD

0 , Q̂1}, then the double-bid

scenario outperforms the single-bid scenario.

Due to our special focus on finding the optimal reserve prices, the dual-channel advantage will largely

depend on the cost structure by adding a list-price channel.Here we use the following example to partially

illustrate the above discussion.

Example 2: We continue from Example 1. Suppose thatw = 40 andCf = 500. SinceR5 = 56.67 > 40 =

w, R∗ = 56.67 in the single-channel scenario. In the dual-channel situation, we first assume that the portion

of unsatisfied customers from the NYOP auctions to the retailer-own list-price channel is given byλ = 0.2.

We haveŵ = w+λ(B−w) = 52 < 56.67 = R5, and hence the optimal price continues to beR∗ = R5 and

Π(R)∗ = 15.40. However, ifλ = 0.3, we haveŵ = 58 > 56.67 = R5, and thus, the new optimal reserve

price becomesR∗ = ŵ = 58 andΠ(R)∗ = 18.17. In the single-channel scenario,Π(R)∗ = 16.50. So,

the single-channel scenario outperforms the dual-channelscenario ifλ = 0.2; however, the dual-channel

scenario outperforms the single-channel scenario ifλ = 0.3. This implies that it is important for the retailer

to retain the unsatisfied customers from the NYOP auctions sothey will purchase from the retailer-own list-

price channel. On the other hand, given thatλ is constant, it is a plausible approach to attract more customers

to the retailer-own list-price channel via NYOP auctions. Thus, the double-bid policy may become more

significant if it can attract more customers to the retailer-own list-price channel.

5 Conclusion

This paper evaluates the optimal reserve prices in the name-your-own-price (NYOP) channel with bidding

options in the presence of list-price channels. We investigate a single-bid scenario and a double-bid scenario,

in which the consumers can bid twice in the NYOP channel, and provide insights into whether the double-

bid scenario can outperform the single-bid scenario. We also study the impact of adding a retailer-own

list-price channel on the optimal reserve prices. The analysis of this paper may facilitate the understanding

of determining the optimal reserve price in a variety of situations and help retailers further revise their

operation mechanism.

In both the single-bid and double-bid scenarios, the optimal reserve price is higher when the inventory
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capacity is limited than when the inventory capacity is abundant. The optimal reserve price is higher or

at least no lower in the double-bid scenario than that in the single-bid scenario. After adding an NYOP-

retailer-own list-price channel, the optimal reserve price remains the same if the inventory capacity is low,

but could increase if the inventory capacity becomes high.

In both single-channel and dual-channel scenarios, the lower the consumer preference to the list-price

channel (or the higher the consumer preference to the NYOP channel), the higher the optimal reserve price

in the NYOP channel. If the portion of customers who do not winin the NYOP channel but purchase in the

retailer-own list-price channel is high enough, the retailer will charge a high reserve price with no intention

to sell the products through the NYOP channel, but rather useit as a marketing tool to attract customers to

buy from the retailer-own list-price channel.

The double-bid scenario can outperform the single-bid scenario in both the single-channel and dual-

channel scenarios. If the NYOP inventory capacity is low, weshow that the double-bid scenario outperforms

the single-bid scenario. However, if the wholesale price islow, the single-bid scenario can outperform the

double-bid scenario when the inventory capacity grows. In practice, if a double-bid policy can attract more

consumers to the dual-channel retailer, the retailer mightwant to consider the double-bid scenario more

seriously in order to bring more customers to the list-pricechannel.

This paper has its limitations. First, although the assumption of uniform distribution functions is com-

mon in the literature, it is desirable to relax this assumption to obtain more insights. For example, in the

double-bid scenario, the symmetric result, where the average of the two bids in the double-bid scenario

equals the bid in the single-bid scenario, will likely be altered with an asymmetry distribution function. Sec-

ond, in the double-bid scenario, the assumption that the first bids have priority is made to achieve tractability

but might be too strong. As we argue that the first-bid priority might encourage the consumers to bid early,

it is reasonable to assume that the retailer will sell items to higher bids. Some simulation tools can be uti-

lized to examine the impact of different tie-breaking rules. Third, due to the special focus of this paper,

the list-channels owned by other sellers are not game theoretic. Theoretically and practically, the retailer

may dynamically compete with other list-price channels. Asa result, the analysis of adding a list-price

channel will be more complicated than that of the simplified setting in this paper. Since the consumer be-

havior in this paper depends on the interaction between the NYOP channel and those list-price channels,

it becomes computationally intractable to consider the retail level multichannel competition in addition to

the consumer NYOP bidding behavior. However, it is worth exploring whether we can analyze the strate-

gic perspective of multi-channel competition by simplifying the consumer behavior in the NYOP channel.

Fourth, the consumer belief function is relatively static in the model. As shown in Priceline’s history, how to

influence the consumer bidding behavior has been an intriguing practical issue. Last, but not least, extension

to considering stochastic entrance of consumers will be another new avenue for future work.
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Appendix

Proof of Proposition 3.1.

We analyze this scenario whenw > a. We start from the condition thatw < (B+a−d)/2. We consider

three cases separately.

Case 1: If R < (B + a − d)/2, or equivalentlyd < B + a − 2R, every customer wins an item from the

retailer’s NYOP auction. The retailer’s expected profit is given by

Π(R) =

[

B + a − 1
2(c + d)

2
− w

]

− Cf .

The profit is independent of the reserve price.

Case 2: If (B + a − d)/2 ≤ R ≤ (B + a − c)/2, or equivalentlyd ≥ B + a − 2R ≥ c, some consumers

win from the NYOP auction, and the retailer’s expected profitis given by

Π(R) =
B + a − 2R − c

d − c

(

B+a−c
2 + R

2
− w

)

+ λ

(

1 −
B + a − 2R − c

d − c

)

(B − w) − Cf .

Π(R) is concave inR. The first order derivative is

∂Π(R)

∂R
=

2w + 2λ(B − w) − 2R

d − c
.

Thus, the optimal reserve price isR∗ = ŵ = w + λ(B − w). The optimal expected profit is

Π(R) =
B + a − 2(w + λ(B − w)) − c

d − c

( B+a−c
2 + w + λ(B − w)

2
− w

)

(A-1)

+λ

(

1 −
B + a − 2(w + λ(B − w)) − c

d − c

)

(B − w) − Cf . (A-2)

Case 3: If R > (B+a−c)/2, or equivalentlyB+a−2R < c, no consumer wins from the NYOP auction.

Thus, the retailer’s expected profit is given by

Π(R) = λ(B − w) − Cf .
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The profit is independent of the reserve price as well.

Combining the above three cases, we have

1. If (B + a − d)/2 ≤ ŵ ≤ (B + a − c)/2, thenR∗ = ŵ, and the optimal profit is given by Eq. (A-2).

2. If ŵ < (B+a−d)/2, then the optimal reserve price can be any value in[w, (B +a−d)/2) including

ŵ.

3. If ŵ > (B + a − c)/2, then the optimal reserve price can be any value in[(B + a − c)/2), B − a)

including ŵ, whereR ≤ B − a means that there is a non-negative possibility that some customers

would buy in the NYOP channel.

Thus, in all above situations,̂w is the optimal reserve price.

Whenw grows such that(B+a−d)/2 < w < (B+a−c)/2, Case 1 is suppressed. Ifw > (B+a−c)/2,

Cases 1 and 2 are suppressed. Sincea < (B + a− d)/2, the case ofw ≤ a is limited to the first case of the

demand function whereDNY OP = 1 and can be analyzed similarly. In all situations, the resultthatŵ is the

optimal reserve price holds.

Proof of Proposition 3.2.

If Q0 > B+a−2R−c
d−c

, then the retailer’s profit is given byΠ(R)1 = B+a−2R−c
d−c

(

B+a−c
2

+R

2 − w

)

,

which is a concave quadratic curve. IfQ0 ≤ B+a−2R−c
d−c

, then the retailer’s profit becomesΠ(R)2 =

Q0

( B+a−c
2

+R

2 − w
)

(Line 1 or 2 as illustrated in Figure 2). The retailer’s profitfunction curve is first

represented byΠ(R)2 and thenΠ(R)1. The interception point ofΠ(R)2 and Π(R)1 is given byR =
B+a−c−Q0(d−c)

2 . If B+a−c−Q0(d−c)
2 ≥ w, thenΠ(R)2 andΠ(R)1 intercept after the pointR = w and thus

R∗ = B+a−c−Q0(d−c)
2 . The corresponding expected profit is given byΠ(R∗) = Q0

(

B+a−c−
Q0(d−c)

2
2 −w

)

.

Otherwise if R = B+a−c−Q0(d−c)
2 < w, Π(R)2 and Π(R)1 intercept before the pointR = w and

thus the unique global maximum point is obtained atR∗ = w, and we have the optimal expected profit

Π(R∗) = (B+a−c−2w)2

4(d−c) .

Proof of Proposition 3.3.

The analysis of Proposition 3.3 will be a combination of Propositions 3.1 and 3.2. We only consider the

situation thatw < (B +a− d)/2 < R < (B +a− c)/2, and the analysis of other situations will be similar.

The number of customers that win an item from NYOP is given bymin{B+a−2R−c
d−c

, Q0}. Similarly, we

consider two cases as follows.

Case 1: If B+a−2R−c
d−c

< Q0 or equivalentlyR > 1
2

[

B + a− c−Q0(d − c)
]

, then some customers buy the
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items from the list-price channel. Thus, the expected profitis

Π(R) =
B + a − 2R − c

d − c

(

B+a−c
2 + R

2
− w

)

+ λ

(

1 −
B + a − 2R − c

d − c

)

(B − w) − Cf ,

We haveΠ(R) is concave inR. Solving the above equation yieldsR∗ = ŵ = w + λ(B − w).

The corresponding optimal profit is given by

Π∗(R) =
B + a − 2(w + λ(B − w)) − c

d − c

(

B+a−c
2 + w + λ(B − w)

2
− w

)

+λ

(

1 −
B + a − 2(w + λ(B − w) − c

d − c

)

(B − w) − Cf .

Case 2: If Q0 ≤ B+a−2R−c
d−c

or equivalentlyR ≤ 1
2

[

B + a − c − Q0(d − c)
]

, then we obtain

Π(R) = Q0

(

B+a−c
2 + R

2
− w

)

+ λ(1 − Q0)(B − w) − Cf ,

which increases inR. So, we can infer that the optimal reserve price is obtain at the upper boundary value

of Q0 ≤ B+a−2R−c
d−c

, which is given byR = 1
2

[

B + a − c − Q0(d − c)
]

.

So, if ŵ < 1
2

[

B + a − c − Q0(d − c)
]

, R∗ = 1
2

[

B + a − c − Q0(d − c)
]

; otherwise,R∗ = ŵ.

Proof of Proposition 4.1.

In the double-bid scenario, the consumer’s cost function is

min
x,∆

C(θ) = F (x)(x + θ) + (1 − F (x))[F2(x + ∆)(x + ∆ + θ) + (1 − F2(x + ∆))B].

SubstitutingF (x) = x−a
B−a

, f(x) = 1
B−a

, F2(x + ∆) = ∆
B−x

, andf2(x + ∆) = ∆
(B−x)2 into the above

equation, we obtain

min
x,∆

C(θ) =
x − a

B − a
(x + θ) +

∆

B − a
(x + ∆ + θ) +

B − x − ∆

B − a
.

The second order derivatives ofC(θ) with respect tox and∆ are given by

∂2C(θ)

∂x2
=

2

B − a
> 0,

∂2C(θ)

∂∆2
=

2

B − a
> 0,

∂2C(θ)

∂x∂∆
=

1

B − a
> 0.

Furthermore, Hessian matrix is

H =

∣

∣

∣

∣

∣

∂2C(θ)
∂x2

∂2C(θ)
∂x∂∆

∂2C(θ)
∂x∂∆

∂2C(θ)
∂∆2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

2
B−a

1
B−a

1
B−a

2
B−a

∣

∣

∣

∣

∣

=
3

(B − a)2
> 0.
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Thus,C(θ) is strictly convex inx and∆, and thus, the optimal solution ofx and∆ is unique.

Taking the first derivative ofC(θ) with respect tox and∆ respectively yields

∂C(θ)

∂x
=

2x + θ + ∆ − a − B

B − a
= 0,

∂C(θ)

∂∆
=

2∆ + x + θ − B

B − a
= 0.

Solving the above two equations results in the proposition.

Proof of Proposition 4.2.

We first start from abundant capacity cases. Due to the similarity, we only consider the situation that

a < w < B+2a−d
3

Case 1: Sinced ≤ B + 2a − 3R and every customer wins with the first bid,Π(R) =
( B+2a−c

3
+R

2 − w
)

.

Case 2: c ≤ B +2a−3R ≤ d ≤ B + 1
2a− 3

2R, i.e.,R3 = B+2a−d
3 ≤ R ≤ 2B+a−2d

3 = R4, every customer

wins with either the first bid or the second bid. The expected profit is

Π(R) =
B + 2a − 3R − c

d − c

(

B+2a−c
3 + R

2
− w

)

+
[

1 − P
{

θ ≤ B + 2a − 3R
}]

(

3R + B − a − d

3
− w

)

=
B + 2a − 3R − c

d − c

(

B+2a−c
3 + R

2
− w

)

+
d − (B + 2a − 3R)

d − c

(

3R + B − a − d

3
− w

)

,

where3R+B−a−d
3 is the expected payoff ofx∗+∆∗ = 2

3B+1
3a−2

3θ onB+2a−3R ≤ θ ≤ d ≤ B+1
2a−3

2R.

Case 3: R4 = 2B+a−2d
3 ≤ R ≤ B+2a−c

3 = R5, in which some customers’ first bids are rejected but their

second bids are accepted. In this scenario, some customers lose both bids. The expected profit is

Π(R) =
B + 2a − 3R − c

d − c

(

B+2a−c
3 + R

2
− w

)

+

[

P
{

θ ≤ B +
1

2
a −

3

2
R
}

− P{θ ≤ B + 2a − 3R}

](

3R − a

2
− w

)

=
B + 2a − 3R − c

d − c

(

B+2a−c
3 + R

2
− w

)

+
3
2(R − a)

d − c

(

3R − a

2
− w

)

,

where3R−a
2 is the expected payoff ofx∗ +∆∗ = 2

3B + 1
3a− 2

3θ onB +2a−3R ≤ θ ≤ B + 1
2a− 3

2R ≤ d.

Case 4: If B + 2a− 3R ≤ c ≤ B + 1
2a− 3

2R, thenR5 = B+2a−c
3 ≤ R ≤ 2B+a−2c

3 = R6, this implies that
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all customers’ first bids are rejected while some of their second bids are accepted. We have

Π(R) = P
{

c ≤ θ ≤ B +
1

2
a −

3

2
R
}

(

B + 1
2a + 3

2R − c

3
− w

)

=
B + 1

2a − 3
2R − c

d − c

(

B + 1
2a + 3

2R − c

3
− w

)

,

where
B+ 1

2
a+ 3

2
R−c

3 is the expected payoff ofx∗ + ∆∗ = 2
3B + 1

3a − 2
3θ on c ≤ θ ≤ B + 1

2a − 3
2R.

Case 5: If B + 1
2a − 3

2R < c, thenR ≥ 2B+a−2c
3 = R6. In this case no customer wins any item from the

auction after bidding twice.

Integrating Cases 1 – 5 gives us a continuous curve.

In Case 1,Π(R) is increasing with respect toR and the global optimal reserve price is given by the

upper boundaryR3. Thus, the maximal profit isΠ(R) = 2B+4a−c−d
6 − w.

In Case 2,Π(R) is convex with the global minimum pointR = B+3a−c−d
4 , which is basically smaller

than the lower boundaryR3 given thatB − a > d andc = 0 typically. Thus,Π(R) increases whenR

increases duringR3 ≤ R ≤ R4. A special case is that ifR3 = R4 then Case 2 disappears.

In Case 3,Π(R) is convex with the global minimum pointR∗ = 2a − w.

1) If 2a − w ≤ R4, we can infer thatΠ(R) increases with respect toR during R4 ≤ R5 andR∗ =
B+2a−c

3 .

2) However, it is possible thatR4 ≤ 2a − w ≤ R5 which is equivalent to4a−B+c
3 ≤ w ≤ 2d+5a−2B

3 .

Consider[B+2a−c
3 − (2a−w)]− [(2a−w)− 2B+a−2d

3 ] = 3B−9a+6w−2d−c
3 . SinceΠ(R) is symmetric

relative toR∗ = 2a − w, if 4a−B+c
3 ≤ w ≤ 2d+9a+c−3B

6 such thatΠ(R) decreases in the domain of
2B+a−2d

3 ≤ 2a − w ≤ B+2a−c
3 , the optimal reserve price is given byR∗ = 2B+a−2d

3 .

3) Otherwise if2d+9a+c−3B
6 ≤ w ≤ 2d+5a−2B

3 , R∗ = B+2a−c
3 since overallΠ(R) increases in the same

domain.

4) If R5 ≤ 2a − w, i.e.,w ≤ 4a−B+c
3 , R∗ = 2B+a−2d

3 sinceΠ(R) strictly decreases in the domain.

In Case 4,Π(R) is concave with the global maximum pointR∗ = w. If w ≤ B+2a−c
3 , Π(R) decreases

betweenR5 ≤ R ≤ R6 and thusR∗ = B+2a−c
3 . If w ≥ R5, the optimal reserve price is given byR∗ = w.

It is worth noting that ifw ≥ R6, Π(R) = 0 since no bid can win the item from the NYOP auction.

Case 5 is trivial since no transaction occurs. Since the curve is continuously increasing in Cases 1 and

2, the optimal reserve price is basically determined in Cases 3 and 4. In summary:
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1) If w ≤ 4a−B+c
3 , R∗ = 2B+a−2d

3 .

2) If 4a−B+c
3 ≤ w ≤ 2d+9a+c−3B

6 , R∗ = 2B+a−2d
3 .

3) If 2d+9a+c−3B
6 ≤ w ≤ 2d+5a−2B

3 , R∗ = B+2a−c
3 .

4) If 2d+5a−2B
3 ≤ w ≤ B+2a−c

3 , R∗ = B+2a−c
3 .

5) If B+2a−c
3 ≤ w ≤ 2B+2a−2c

3 , R∗ = w.

6) If w ≥ B+2a−c
3 , R∗ = w.

The above conditions can be simplified into Eq. (5). However,if 2d+9a+c−3B
6 < 0, Eq. (5) can be rewritten

asR∗ = max{B+2a−c
3 , w}.

Proof of Proposition 4.3.

Taking into account of the constrained capacity levelQ0 in the above discussion leads to the following

cases. Due to the lengthy computation, we only show the analysis whenQ̂1 < Q̂2 given thatB − a <

d + (d − c)/3. The analysis onQ̂1 ≥ Q̂2 is similar and yields the same result.

Scenario B:Q0 < Q̂1

Case 1Q: In this scenario, Case 1Q overlaps with Cases 1 and 2, and part of Case 3. SinceQ0 < Q̂1 cannot

even satisfy the demand of the first bids, we haveΠ(R) = Q0(
B+a−c

2
+R

2 − w).

Case 2Q: Case 2Q overlaps with parts of Cases 3 and 4. We consider two subcases here.

1) 2Q-1:R1 ≤ R ≤ R5 such that all first bids are satisfied and partial second bids are accepted as well

(overlapping with Case 3). We have

Π(R) =
B + 2a − 3R − c

d − c

(

B+2a−c
3 + R

2
− w

)

+ (Q0 −
B + 2a − 3R − c

d − c
)

(

3R − a

2
− w

)

.

2) 2Q-2: R5 ≤ R ≤ R2 such that all first bids are rejected and partial second bids are accepted (over-

lapping with Case 4). We have

Π(R) = Q0

(

B + 1
2a + 3

2R − c

3
− w

)

.

Case 3Q: R > R2 such that all first bids are rejected and all second bids are accepted as it is in Case 4.

Π(R) =
B + 1

2a − 3
2R − c

d − c

(

B + 1
2a + 3

2R − c

3
− w

)

.

26

Electronic copy available at: https://ssrn.com/abstract=2119318



A continuous curve of Scenario B is formed by Cases 1Q-3Q. In Case 1Q,Π(R) is strictly increasing

in R. Case 2Q-1 has a convexΠ(R) with respect toR. The global minimum point is given byR∗ =
B+3a−c−Q0(d−c)

4 . CompareR∗ = B+3a−c−Q0(d−c)
4 to B+2a−c−Q0(d−c)

3 , the lower bound. SinceQ0 <

Q̂1 = B−a−c
2(d−c) , we find thatR∗ = B+3a−c−Q0(d−c)

4 is smaller thanR1 = B+2a−c−Q0(d−c)
3 as shown as

follows

B + 2a − c − Q0(d − c)

3
−

B + 3a − c − Q0(d − c)

4

=
B − a − c − Q0(d − c)

12
≥ 0.

Thus, Case 2Q-1 is increasing inR. SinceΠ(R) is increasing in Case 2Q-2,Π(R) increases in Case

2Q. Case 3Q is part of Case 4 in the abundant capacity case. Thus, the abundant capacity curve and this

constrained capacity curve intercept atR = R2 = 2B+a−2c−2Q0(d−c)
3 . From our discussion in the proof of

Proposition 4.2, we can infer that the optimal reserve priceis given byR2 if R2 > w; otherwise, it is given

by w. Overall,R∗ = max{R2, w}.

Scenario C:Q̂1 ≤ Q0 ≤ Q̂2

Case 1Q: This is the same as in Scenario B:Π(R) = Q0(
B+a−c

2
+R

2 − w).

Case 2Q: Case 2Q overlaps with part of Case 3 only. Thus,R1 ≤ R ≤ R2 such that all first bids are

satisfied and partial second bids are accepted as well. We have

Π(R) =
B + 2a − 3R − c

d − c

(

B+2a−c
3 + R

2
− w

)

+ (Q0 −
B + 2a − 3R − c

d − c
)

(

3R − a

2
− w

)

.

Case 3Q: There are two subcases.

1) 3Q-1:R2 ≤ R ≤ R5 such that all first bids and second bids are accepted as it is inCase 3. We have

Π(R) =
B + 2a − 3R − c

d − c

(

B+2a−c
3 + R

2
− w

)

+
3
2(R − a)

d − c

(

3R − a

2
− w

)

.

2) 3Q-2:R ≥ R5 such that all first bids are rejected and all second bids are accepted as Case 4. We have

Π(R) =
B + 1

2a − 3
2R − c

d − c

(

B + 1
2a + 3

2R − c

3
− w

)

.

Similarly, a curve of Cases 1Q-3Q crosses the curve of Cases 1-4. But, the interception point is located

in Case 3. IfR∗ = R2, it must have[(2a − w) − R2] − [R5 − (2a − w)] > 0 which is equivalent to

w <
9a − 3B + c + 2d − 2(1 − Q0)(d − c)

6
<

9a − 3B + c + 2d

6
;
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otherwiseR∗ = R5. Overall, the optimal reserve price can be written as follows:























If w < 9a−3B+c+2d−2(1−Q0)(d−c)
6 , R∗ = 2B+a−2c−2Q0(d−c)

3 ,

if 9a−3B+c+2d−2(1−Q0)(d−c)
6 ≤ w ≤ B+2a−c

3 , R∗ = B+2a−c
3 ,

if w > B+2a−c
3 , R∗ = w.

Scenario D:Q0 > Q̂2

Case 1Q: Case 1Q overlaps with Case 1 and part of Case 2. The profit function is the sameΠ(R) =

Q0(
B+a−c

2
+R

2 − w) as long asR ≥ R1.

Case 2Q: Case 2Q overlaps with Case 2 and part of Case 3.

1) 2Q-1: R1 ≤ R ≤ R4 such that all first bids are satisfied and partial second bids are accepted (over-

lapping with Case 2). We have

Π(R) =
B + 2a − 3R − c

d − c

(

B+2a−c
3 + R

2
− w

)

+ (Q0 −
B + 2a − 3R − c

d − c
)

(

3R + B − a − d

3
− w

)

.

2) 2Q-2: R4 ≤ R ≤ R2 such that all first bids are satisfied and partial second bids are accepted (over-

lapping with Case 3). We have

Π(R) =
B + 2a − 3R − c

d − c

(

B+2a−c
3 + R

2
− w

)

+ (Q0 −
B + 2a − 3R − c

d − c
)

(

3R − a

2
− w

)

.

Case 3Q: There are two subcases.

1) 3Q-1:R2 ≤ R ≤ R5 such that all first bids and some second bids are accepted as Case 3. We have

Π(R) =
B + 2a − 3R − c

d − c

(

B+2a−c
3 + R

2
− w

)

+
3
2(R − a)

d − c

(

3R − a

2
− w

)

.

2) 3Q-2:R ≥ R5 such that all first bids are rejected and all second bids are accepted as it is in Case 4.

We have

Π(R) =
B + 1

2a − 3
2R − c

d − c

(

B + 1
2a + 3

2R − c

3
− w

)

.

In Scenario D, we directly consider subcase 2Q-1. The optimal reserve price in this sub-domain is given

by R = 3a+d−c−Q0(d−c)
3 which is smaller thanR1 due toB − a > d. Therefore,Π increases in 2Q-1 with
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respect toR. Other parts of the curves share similar features with Scenario C and the interception point is

located at Case 3 as well. Overall, the optimal reserve pricecan be written as follows:






















If w < 9a−3B+c+2d−2(1−Q0)(d−c)
6 , R∗ = 2B+a−2c−2Q0(d−c)

3 ,

if 9a−3B+c+2d−2(1−Q0)(d−c)
6 ≤ w ≤ B+2a−c

3 , R∗ = B+2a−c
3 ,

if w > B+2a−c
3 , R∗ = w.

The difference between Scenarios C and D lies at that9a−3B+c+2d−2(1−Q0)(d−c)
6 is a higher value in Scenario

D, which means that it is more likely thatR2 could be the optimal reserve price.

In summary, we can integrate the above scenarios into the following:

1) If Q0 < Q̂1,

R∗ = max{
2B + a − 2c − 2Q0(d − c)

3
, w}

2) Otherwise ifQ0 ≥ Q̂1, then






















if w < 9a−3B+c+2d−2(1−Q0)(d−c)
6 , R∗ = 2B+a−2c−2Q0(d−c)

3 ,

if 9a−3B+c+2d−2(1−Q0)(d−c)
6 ≤ w ≤ B+2a−c

3 , R∗ = B+2a−c
3 ,

if w > B+2a−c
3 , R∗ = w.

Proof of Proposition 4.5. Due to our special focus, the analysis of dual-channel scenario is similar to that

of the single-channel scenario. Again, because of the lengthy computation, we only show the analysis when

Q̂1 < Q̂2. The analysis onQ̂1 ≥ Q̂2 is similar and yields the same result.

Case 1: R ≤ R3. Since no customer switches to the list-price channel, the expected profit isΠ(R) =
( B+2a−c

3
+R

2 − w
)

− Cf .

Case 2: R3 ≤ R ≤ R4. Since all bidders win with either the first bid or the second bid, the expected profit

is

Π(R) =
B + 2a − 3R − c

d − c

(

B+2a−c
3 + R

2
− w

)

+
d − (B + 2a − 3R)

d − c

(

3R + B − a − d

3
− w

)

− Cf .

Case 3: R4 ≤ R ≤ R5, unsatisfied customers start to purchase from the retailer-own list-price channel. The

expected profit is

Π(R) =
B + 2a − 3R − c

d − c

(

B+2a−c
3 + R

2
− w

)

+
3
2(R − a)

d − c

(

3R − a

2
− w

)

+λ

(

1 −
B + 2a − 3R − c

d − c
−

3
2(R − a)

d − c

)

(B − w) − Cf .
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Case 4: R5 ≤ R ≤ R6. The expected profit is

Π(R) =
B + 1

2a − 3
2R − c

d − c

(

B + 1
2a + 3

2R − c

3
− w

)

+ λ

(

1 −
B + 1

2a − 3
2R − c

d − c

)

(B − w) − Cf .

Case 5: If R ≥ R6, no customer wins any item from the NYOP auction after bidding twice. However, some

customers buy from the list-price channel.Π(R) = λ(B − w) − Cf .

Integrating Cases 1 – 5 gives us a continuous curve. Cases 1 and 2 behave similarly as in the single-

channel situation as described in the proof of Proposition 4.2. For Case 3,Π(R) is convex with the global

minimum pointR∗ = 2a − w − λ(B − w). Compared withR∗ = 2a − w in the single-channel case,

R∗ = 2a− (w + λ(B −w)) is a smaller value. In Case 4,Π(R) is concave with the global maximum point

R∗ = w + λ(B − w). Thus, we define a new variablêw = w + λ(B − w). Similar to Proposition 4.2, the

optimal reserve price is given by:






















If ŵ < 2d+9a+c−3B
6 , R∗ = 2B+a−2d

3 ,

if 2d+9a+c−3B
6 ≤ ŵ ≤ B+2a−c

3 , R∗ = B+2a−c
3 ,

if ŵ > B+2a−c
3 , R∗ = ŵ.

(A-3)

In Cases 1Q-3Q, due to the similarity, we just demonstrate 2Qin Scenario B.

Case 2Q: Case 2Q overlaps with parts of Cases 3 and 4. We consider two subcases here.

1) 2Q-1: R1 ≤ R ≤ R5 such that all first bids are satisfied and partial second bids are accepted (over-

lapping with Case 3). We have

Π(R) =
B + 2a − 3R − c

d − c

(

B+2a−c
3 + R

2
− w

)

+

(

Q0 −
B + 2a − 3R − c

d − c

)(

3R − a

2
− w

)

+ λ(1 − Q0)(B − w) − Cf .

2) 2Q-2: R5 ≤ R ≤ R2 such that all first bids are rejected and partial second bids are accepted (over-

lapping with Case 4). We have

Π(R) = Q0

(

B + 1
2a + 3

2R − c

3
− w

)

+ λ(1 − Q0)(B − w) − Cf .

The analysis on the optimal reserve price in Cases 1Q-3Q of the dual-channel scenario is similar to that in

the single-channel scenario. Thus, we can integrate the above scenarios as follows.

1) If Q0 < Q̂1,

R∗ = max{
2B + a − 2c − 2Q0(d − c)

3
, ŵ}.
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2) Otherwise ifQ0 ≥ Q̂1, then






















if ŵ < 9a−3B+c+2d−2(1−Q0)(d−c)
6 , R∗ = 2B+a−2c−2Q0(d−c)

3 ,

if 9a−3B+c+2d−2(1−Q0)(d−c)
6 ≤ ŵ ≤ B+2a−c

3 , R∗ = B+2a−c
3 ,

if ŵ > B+2a−c
3 , R∗ = ŵ.
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