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Stochastic Distributed Control for Arbitrarily Connected
Microgrid Clusters
Maryam Khanbaghi * and Aleksandar Zecevic

Department of Electrical and Computer Engineering, Santa Clara University, Santa Clara, CA 95053, USA;
azecevic@scu.edu
* Correspondence: mkhanbaghi@scu.edu

Abstract: Due to the success of single microgrids, the coming years are likely to see a transformation
of the current electric power system to a multiple microgrid network. Despite its obvious promise,
however, this paradigm still faces many challenges, particularly when it comes to the control and
coordination of energy exchanges between subsystems. In view of that, in this paper we propose an
optimal stochastic control strategy in which microgrids are modeled as stochastic hybrid dynamic
systems. The optimal control is based on the jump linear theory and is used as a means to maximize
energy storage and the utilization of renewable energy sources in islanded microgrid clusters. Once
the gain matrices are obtained, the concept of ε-suboptimality is applied to determine appropriate
levels of power exchange between microgrids for any given interconnection pattern. It is shown
that this approach can be efficiently applied to large-scale systems and guarantees their connective
stability. Simulation results for a three microgrid cluster are provided as proof of concept.

Keywords: microgrid clusters; stochastic control; distributed control; jump linear theory; large-scale
systems; energy management

1. Introduction

Microgrids are evolving to become fundamental building blocks in a smart grid,
and their proliferation has incentivized utilities to revisit the existing grid management
paradigm. Since microgrids (MGs) are controllable entities consisting of interconnected
loads and distributed energy resources (DERs), effective energy transfer and coordination
between them could help maintain the stability and reliability of regional large-scale power
grids. For this reason, in the past two decades a considerable amount of research has been
devoted to the design and management of MGs. The IEEE Power and Energy Society task
force on MG control has provided a comprehensive review of recent results in this field
(see [1] and the references therein).

Connecting multiple MGs can provide additional operational flexibility for large-scale
power grids, since it allows them to realize the benefits of variable DERs more effectively.
In order to accomplish that, MGs within a region must cooperate with each other in a
way that improves efficiency, reliability, and resilience. This means (among other things)
that interconnected microgrids should not limit their exchanges to energy generated by
renewable sources and should also share energy that is accumulated in their storage devices.
Such an approach can improve the local supply and demand balance for each individual
microgrid, resulting in a more reliable power supply for consumers. This objective has
become increasingly important in light of recent natural disasters in the USA, which have
underscored the need to prioritize resiliency over operation costs.

Basic control architectures for multiple microgrids can be categorized as centralized,
decentralized, distributed, and hierarchical [2]. This work will focus on distributed control
where both local measurements and information from neighboring units are utilized. The
main challenge in this case is how to achieve optimal coordination among the subsystems.
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This problem has attracted considerable attention in recent years, and a large body of
research has been devoted to the potential benefits that can arise from the coordinated op-
eration management of neighboring microgrids [3]. The solutions that have been proposed
so far take many different forms and depend on the types of MGs that are involved, their
sizes, and their proximity. A group of MGs that are geographically close and are physically
interconnected via dc (or ac) buses is referred to as a microgrid cluster [4]. Such clusters
typically allow for the maximal utilization of energy sources and can improve reliability.
There is a growing interest in such microgrids, due in a large part to the increasing number
of dc sources and loads.

Multilevel control schemes are widely accepted as a standard solution for the efficient
energy management of multiple MGs. The first of these levels (which is known as primary
control) is responsible for regulating local voltage and frequency. It normally follows the
set-points provided by higher level controllers and performs control actions over interface
power converters. Secondary control deals with system-level issues, such as power quality
regulation, the synchronization of MGs with the external network, the coordination of
distributed generation, and so on. Tertiary control is tasked with optimization, management,
and overall system regulation. It should be noted in this context that primary and secondary
control levels are associated with the operation of individual MGs, while tertiary control
pertains to the coordinated operation between MGs and the utility grid [1].

Most existing papers on distributed tertiary control focus on enhanced efficiency and
balanced power flow between the MG and the utility grid, taking into account optimality,
stability, and economic factors. The distributed power management between MGs within
a cluster has also been studied (see, for example, [5–11] and the references therein). It is
interesting to note, however, that only a handful of papers have examined MG clusters as a
possible way to cope with the intermittence and randomness of renewable energy [12–19].
Some of the most recent work on this subject considers a hierarchical control scheme and a
corresponding consensus-based multilayered event-triggered control algorithm for MG
clusters [20]. There have also been some new results related to distributed optimization at
the MG cluster level [21], and the problem of distribution load sharing [22].

Although these references offer a variety of different approaches, there is a general
agreement that stability and reliability can be greatly improved by connecting MGs directly
to the utility grid, or by forming clusters of interconnected MGs [23]. In view of that, in
this paper we propose a distributed control strategy for MG clusters that operate in the
islanded mode. What makes this strategy unique is the fact that it simultaneously addresses
two different types of uncertainties in the system: the inherent randomness of renewable
generation (such as solar energy), and unpredictable changes in the system topology that
can arise as a result of natural disasters and/or extreme operating conditions. The main
advantages of this approach can be summarized as follows:

(1) The dynamic model that is proposed is linear and hybrid. It incorporates the stochastic
nature of renewable sources and can accommodate arbitrary energy exchange patterns
between the MGs. Such a model is required in order to analytically determine the
control gains, and its simplicity ensures that the necessary computations can be
performed efficiently.

(2) An optimal control strategy is developed to maximize the energy storage of each MG.
This is accomplished by regulating the power flow between MGs using a modified
version of the so-called ε-suboptimality theorem [24], which is suitable for large-scale
systems. This result allows for arbitrary interconnection patterns between MGs and
guarantees a desired level of suboptimality in all cases.

(3) The control law (which is based on the jump linear theory [25]) is designed to ensure
stability under structural perturbations, while minimizing the error between the load
demand (set point) and generation.

(4) The gain matrix can be calculated offline for all relevant generation patterns. We can
do so analytically using the proposed dynamic model, and the necessary computa-
tions can be performed in a multiprocessor environment (since each gain matrix is
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determined independently). Something similar can be said for computations related
to ε-suboptimality, which can be performed efficiently even when the system is large
(due to the special structure of the dynamic model).

The paper is organized as follows. In Section 2, we present a simplified model for
flexible MG clusters that takes into account power exchanges between MGs. We then
proceed to develop a stochastic optimal control strategy, which is described in Section 3. In
Section 4, we explain how the ε-suboptimality theorem can be used to achieve maximal
power transfer between MGs. Simulation results and their analysis are provided in Section 5.
Since the example that we consider serves primarily as a proof of concept, we focused on
clusters that contain less than five MGs and have a peak load of less than 10 MW. This
assumption is not necessary from a theoretical standpoint, but it has some practical benefits
when it comes to simulation. We conclude with a discussion of the potential advantages of
this approach and a brief overview of future directions for future research.

2. System Description and Mathematical Modeling

We begin this section by offering a general system description for multiple intercon-
nected MGs. We will then introduce a simple mathematical model that represents an
extension of the one proposed in [26]. This model will be utilized to develop a stochastic
multivariate optimal control strategy, whose objective is to address some recent challenges
in the energy management of multiple MGs. As noted in the Introduction, we will focus
on interconnected MGs that are disconnected from the utility grid and are geographically
close to each other.

2.1. System Description

Figure 1 provides a schematic representation of multiple MGs that can exchange
energy with each other in an arbitrary manner. Although the microgrids in this diagram
are disconnected from the utility grid, we should point out that the connection can be
reestablished whenever that becomes necessary. The MGs are concentrated in a relatively
small geographic area and are connected to a common bus through a static switch. In
configurations of this sort (which are known as clustered MGs), it is assumed that each
subsystem can share its energy needs via a communication network. This assumption is
realistic in a smart grid since smart meters are capable of broadcasting data over a network.
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Throughout this study, we will distinguish between two modes of operation—The
interconnected mode (in which multiple MGs can exchange energy) and the disconnected
mode, in which this is not possible. The latter configuration (and the one where MGs are
connected to the utility grid) was considered in our previous work [26] and will be used
here only for comparison purposes. Our objective in this paper will be to achieve optimal
energy management of interconnected multiple MGs by maximizing the battery storage
capacity usage, as well as the utilization of solar energy.

Since the focus of our work is distributed tertiary control in a hierarchical architecture,
a continuous dynamic model for structures of this type will be proposed in the next section.
We will concentrate primarily on commercial MGs (including university campuses), since
systems of this sort have two important features that allow us to develop an effective and
robust control strategy:

• Although each MG load can be comprised of multiple buildings (with varying energy
demands), its aggregated power has a predictable profile.

• The load demand reaches its peak during the day (when solar energy is typically
available) and becomes minimal at the end of the day as residential loads start peaking.

In modeling the dynamic behavior of MGs, we will assume that each MG can be
connected to or disconnected from the cluster in a random manner, depending on its load,
its generation needs, and its ability to share energy. In the proposed model, individual MGs
are controlled using locally available information, while energy exchanges are based on
global information. The control law must ensure that stability (and an acceptable level of
suboptimality) is retained for all possible interconnection patterns. Closed loop systems
that have this property are said to be connectively stable [24].

In the model that we will be working with, each MG consists of a specific load
(commercial or a university campus), battery storage, and an array of solar cells. When
it is in the disconnected mode, solar energy is provided internally, and is distributed to the
battery and the load in a way that reflects the load requirements. During the night, it is
assumed that the battery is the sole source of energy. This is a reasonable assumption, since
most large commercial consumers require less energy during the night than during the day.
In situations where the required battery storage is not available, a secondary dispatchable
generation source (such as a fuel cell, for example) may be considered. We should point out,
however, that such additions have little effect on our control strategy, so we will disregard
them in our analysis. When MGs operate in the interconnected mode, each of them can
deliver power to other MGs provided that their own load requirements are satisfied. The
shared energy can then be used to charge the batteries of microgrids whose storage levels
are not sufficiently high.

2.1.1. The Load Model

In the simplified scenario that we just described, the primary goal is to manage the
energy demand in a system that consists of n microgrids. This is done by balancing the real
power generated by the PV array (P(m)

solar) and the battery (Pdis(m)
B ) in MG m with the power

required by the load (P(m)
L ), and the power that MG m exchanges with other MGs (which

will be denoted in the following by P(m)
ex ). Note that P(m)

ex will be positive if MG m delivers
energy to the network, and negative if this microgrid absorbs energy. Using this notation,
we can express the power balance as:

P(m)
L (t) = αmP(m)

solar(t) + Pdis(m)
B (t)− P(m)

ex (t) (1)

where parameter αm represents the fraction of solar power that is delivered to the load (the
value of this constant is chosen based on the solar panel size and battery storage capac-
ity). As we already mentioned, it is assumed that P(m)

L (t) follows a known deterministic

trajectory, and the power generated by the PV array, P(m)
solar(t) will be treated as a random

variable whose characteristics depend on cloud coverage and the time of day. Since the
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battery can inject power into the system (as well as absorb it when needed), we will treat
Pdis(m)

B (t) as a control input.
Power losses that are primarily due to transmission lines are neglected in this model,

since MGs that belong to the same cluster are considered to be close to each other (by
definition). The PV array should be sized in a way that is proportional to the daytime peak
load requirements (which is becoming increasingly feasible due to the decreasing cost of
solar panels). This ensures full load satisfaction when the weather is sunny. The battery
should also be properly sized so that it can meet the night load. Because the excess energy
produced by the array can be used to charge the battery, the battery can act as a buffer. This
allows the system to use the stored solar energy when the PV array is inactive.

In addition to the relationship described in (1), our model incorporates the following
four assumptions:

• Information about the system state (which includes instantaneous power flows, max-
imal and minimal generation levels, and maximal and minimal battery levels) is
readily available. This can be ensured by using a battery state of charge (SoC) tracker,
combined with voltage, current, or phasor monitoring devices.

• Only active power is considered, and it is assumed that the controllers/inverters on
the PV array and battery regulate voltages and phase angles.

• The data used to represent the commercial load for each MG corresponds to the typical
commercial load in the US. This data are provided by National Renewable Energy
Laboratory (NREL) and is available online [27].

• Changes in solar generation states are detected via solar radiation sensors.

2.1.2. The Solar Generation Model

Although solar power is a highly desirable form of generation, it has certain intrinsic
shortcomings that stem from its intermittent nature. To model the stochastic character of
solar generation, a continuous Markov chain will be used to represent different levels of
cloud coverage. The details of this model are discussed in [26], so we will only highlight its
most pertinent features.

In general, cloud coverage classification should be based on regional weather patterns.
This means that the number of relevant scenarios can vary significantly, depending on
where the MG cluster is located. The model that we propose allows for this type of flexibility,
but in our simulations we will concentrate on a somewhat simpler case, which reflects
the weather patterns in northern California. According to the data obtained from the San
Jose International Airport meteorological report [28], in northern California it suffices to
consider only three different levels of cloud cover: sunny, partly cloudy, and overcast.

At night there is obviously no generation, so the power produced by the PV array,
Psolar(t), can be represented as a piecewise constant function (where Psolar(t) = 0 at night
and Psolar(t) = Psolar(r(t)) during the day). The term r(t) denotes the state of the Markov
chain that corresponds to the cloud coverage during the day. This means that r(t) evolves
according to a continuous time Markov chain [22,28], taking values from set S = {1, 2, 3}
in the geographic region that we are concerned with.

Matrix P =
{

pij
}

, which characterizes this process, provides the probabilities of transi-
tioning from one state to another, and its elements are given by:

pij = Prob(r(t + ∆) = j|r(t) = i) = πij∆ + o(∆) if i 6= j
= 1 + πii∆ + o(∆) if i = j

(2)

where ∆ > 0 and lim
∆→0

0(∆)
∆ = 0. In this expression, coefficients πij represent the (non-

negative) transition rate from i to j (i 6= j), and πi is defined as

πi , −πii ,
3

∑
j=1, j 6=i

πij (3)
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Given this notation, the transition rate matrix Π will have the form Π =
{

πij
}
(i, j = 1,2,3) [25].

The transition probability matrix and the transition rates that were used in our sim-
ulations were calculated from the data set provided in [28] (which contains information
gathered between 2008 and 2017). An analysis of this data indicates that the transition
probabilities do not change significantly from year to year. As a result, we can assume that
the corresponding matrix is fixed for microgrids located in northern California.

2.1.3. The Battery Model

Each microgrid is assumed to have a battery storage system that supplements the
intermittent generation from the PV array. Relevant battery characteristics include its
energy capacity (more specifically SoC), its charge/discharge powers, its life cycle, as
well as its safe operating temperatures. In the following, we will assume that the energy
stored in the battery, EB(t), and the charge/discharge power PB(t) can be used to provide
adequate information about the SoC.

The battery is assumed to have energy limits, EBmin ≤ EB(t) ≤ EBmax, and variations
in the stored energy can be described as [29]

dEB(t)
dt

= Pch.
B (t)− Pdis.

B (t)− γEB(t) (4)

In this expression, Pch.
B = (1− αm)Psolar(t), γ denotes the rate of self-discharge, and

Pdis.
B is the battery discharge. We will assume that batteries have the same efficiency when

charging and discharging, and that they can easily switch from one mode to the other
(this feature becomes important in cases when MGs exchange energy directly). For normal
battery operation, it is common to set its upper and lower energy limits to 10% and 90% of
the maximum energy that can be stored. By doing so, we can increase the lifespan of
the battery.

2.2. Mathematical Modeling

Combining Equations (1) and (4), the energy management of MG m in a system made
up of n MGs can be described as:

dE(m)
B

dt (t) = (1− αm)P(m)
solar(t)− Pdis(m)

B (t)− γmE(m)
B (t)

P(m)
L (t) = αmP(m)

solar(t) + Pdis(m)
B (t)− P(m)

ex (t)
(5)

In this expression it is implicitly assumed that there are no energy exchanges with
the utility grid since we are interested only in the islanded mode of operation. If MG m

has unused energy that it can share, we can represent P(m)
ex (t) as P(m)

ex (t) = dE(m)
ex (t)
dt , where

E(m)
ex (t) is the amount of energy that MG m has delivered to other MGs during the interval

[t0, t] (t0 being the time when the exchange begins). Since we have the freedom to decide
how the energy exchanges are scheduled, we will assume that this is done in such a way

that dE(m)
ex

dt is proportional to the amount of energy consumed by the load m up to time t.

That allows us to express P(m)
ex (t) as

P(m)
ex (t) =

dE(m)
ex (t)
dt

= ∑
k 6=m

akmE(m)
L (t) (6)

where akm determines the fraction of E(m)
L (t) that is transferred from MG m to MG k (note

that these coefficients have the appropriate units). Since coefficients akm are adjusted based
on the varying energy needs of each microgrid, we will treat their values as uncertain
quantities. In the sections that follow, we will explain the constraints that these values must
satisfy in order to ensure a desired level of suboptimality.
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When microgrid m delivers power to other MGs, P(m)
ex will have the form shown in

Equation (6). Setting
am = ∑

k 6=m
akm (7)

and recalling that P(m)
L (t) = dE(m)

L (t)
dt , Equation (1) becomes

dE(m)
L (t)
dt

= αmP(m)
solar(t) + Pdis(m)

B (t)− amE(m)
L (t) (8)

In cases when MG m receives power from other MGs, P(m)
ex (t) is negative, and can be

expressed as

P(m)
ex (t) =

dE(m)
ex (t)
dt

= − ∑
k 6=m

amkE(k)
L (t) (9)

Under such circumstances, Equation (1) takes the form

dE(m)
L (t)
dt

= αmP(m)
solar(t) + Pdis(m)

B (t) + ∑
k 6=m

amkE(k)
L (t) (10)

Since a microgrid can either deliver or receive energy, Equations (8) and (10) represent
the only possible scenarios for a given MG. This includes situations where certain MGs are
disconnected (since we can treat them as a special case of (10) where amk = 0 for all k).

One of the principal advantages of the proposed model is that the system can be
stabilized using decentralized control regardless of how coefficients akm are chosen. In order
to demonstrate that, suppose that q MGs are absorbing power at some point in time, and
that n− q are delivering. We can always number the MGs in such a way that the ones that
absorb power come first. For any such MG, we have that m ≤ q, and the power balance
equation has the form

dE(m)
L (t)
dt

= αmP(m)
solar(t) + Pdis(m)

B (t) +
n

∑
k=q+1

amkE(k)
L (t) (11)

For MGs that deliver power, we have that m > q and

dE(m)
L (t)
dt

= P(m)
solar(t) + Pdis(m)

B (t)− amE(m)
L (t) (12)

Introducing matrices

Amm =

(
−γm 0

0 −am

)
; Amk =

(
0 0
0 amk

)
(13)

and defining vector P(m) ≡
[
(1− αm)P(m)

solar αmP(m)
solar

]T
, the n subsystems can be represented as

.
xm(t) = Ammxm(t) +

n

∑
k=q+1

Amkxk(t) + Bmum(t) + P(m) (14)

for m = 1, 2, · · · , q, and

.
xm(t) = Ammxm(t) + Bmum(t) + P(m) (15)
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for m = q + 1, · · · , n. The overall interconnected system can then be described as

.
x(t) = Ax(t) + Bu(t) + P(t) (16)

where matrix A has an upper block triangular structure

A =



A11 0 · · · 0 A1,q+1 · · · A1n
0 A22 · · · 0 A2,q+1 · · · A2n
...

...
. . .

...
...

...
...

0 0 · · · Aqq Aq,q+1 · · · Aqn
0 0 0 Aq+1,q+1 0
...

... · · ·
...

...
. . .

...
0 0 0 0 Ann


(17)

and

B = diag { Bm}, Bm = [−1 1]T m = 1, . . . , n

P(t) =
[

P(1)(t) · · · P(n)(t)
]T

, x =
[
x1 x2 · · · xn]T =[E(1)

B E(1)
L · · · E(n)

B E(n)
L ]T

u =
[
u1 u2 · · · un]T =[Pdis(1)

B Pdis(2)
B · · · Pdis(n)

B ]T

In this system of equations, x denotes the state vector, u represents the control action
(which is implemented by charging and discharging batteries), and vector P(t) is the power
delivered by the solar panels (a part of which goes to batteries).

The fact that matrix A is upper block triangular is of crucial importance here, because
it ensures that the stability of the individual subsystems implies the stability of the overall
system. Note that this will be the case regardless of how the microgrids are actually
numbered—for stability purposes, it suffices to recognize that a permutation that produces
the structure in (17) exists for every possible energy exchange pattern. A more general
scenario where existence is not guaranteed is described in [30]. In this case, it is necessary to
use an efficient decomposition algorithm that can determine an appropriate decentralized
control law.

In the worst-case scenario (from a stability perspective), block Amm will have the form

Amm =

(
−γm 0

0 0

)
(18)

(blocks of this sort correspond to MGs that are receiving energy). We can easily stabilize
any such subsystem ahead of time using decentralized control. As a result, we can ensure
that the overall system will be stable for any set of coefficients amk that we choose.

2.3. Microgrid Exchange Protocol

In addition to ensuring stability for arbitrary energy exchange patterns, it is also
necessary to develop a systematic procedure that all such exchanges must follow. With that
in mind, we propose the following simple scheme:

(a) Each MG that delivers energy sends an amount equal to E+
m = amE(m)

L to the common
bus (see Figure 1).

(b) Each MG that absorbs energy takes

E−m = ∑
k 6=m

amkE(k)
L (19)

from the common bus.
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If we adopt this approach, the energy that an individual MG sends through the
common bus can be aggregated (which is convenient from a practical perspective). Note,
however, that its contribution is uniquely defined by the value of coefficient am. The
same can be said for the energy absorbed by an MG that requested additional resources,
which is determined by coefficients amk. As a result, the proposed strategy can be easily
implemented.

3. Stochastic Control Strategy for Interconnected MGs

Since the system matrix A is always permutable into an upper block triangular form,
we have the flexibility to consider a range of possible decentralized control strategies. Given
the random nature of solar generation, it would be logical to incorporate stochastic elements
into the process for determining the gain matrices. We propose to do so by representing
solar generation as a continuous Markov chain and applying jump linear quadratic control
to each microgrid (following the ideas introduced in [26,31,32]).

Our principal design objective will be to produce a different gain matrix for each level
of cloud coverage and ensure that the load demand is satisfied in all cases. Because each
of these scenarios is independent (and can be handled offline), the computation of the
gain matrices can be distributed across multiple processors. This obviously contributes to
the computational efficiency of the procedure and makes the design safer with respect to
potential cyber-attacks (since each subsystem can compute its own gain matrices locally).

In order to describe the proposed control design, we will first provide a brief overview
of jump linear systems and optimization techniques that are suitable for them. We will then
apply this methodology to interconnected microgrids, where the cost function is defined in
terms of deviations from the load demand.

3.1. An Overview of Jump Linear Systems Tracking Problem

The state–space representation of a jump linear system (JLS) for a tracking problem
has the general form

.
x(t) = A(r(t))x(t) + B(r(t))u(t); x(to) = xo (20)

with x(t) = x(t) − x0(r(t)), where A(r(t)) and B(r(t)) are n × n and n × m matrices,
respectively, and r(t) denotes the current system mode (which is determined by a finite
state Markov jump process). To simplify the notation, in the following we will refer to
matrices [A(r(t)), B(r(t))]|r(t)=i as

[
Ai, Bi] and x0(r(t)) |r(t)=i as xi

0 when the system
operates in the ith mode [25]. Since r(t) reflects the cloud coverage during the day, this
variable evolves according to a continuous time Markov chain. When designing an optimal
controller for such a system, one aims to minimize the quadratic cost function:

J(u, t0, r(t0), x0) = E


t f∫

t0

(
xT(t)Q(r(t))x(t) + uT(t)R(r(t))u(t)

)
dt | t0, r(t0), x0

 (21)

where t0 and tf denote the initial and final time, respectively, and E{.} represents the expected
value of a random function [25]. The symmetric weighting matrices, Q(r(t)) and R(r(t)),
are mode dependent and are used to tune the system response to fit desired characteristics.
In the following, they will be denoted as

[
Qi, Ri] with Qi ≥ 0 (positive semi-definite) and

Ri > 0 (positive definite) when the system is operating in its ith mode.
In this paper, we will be primarily interested in the ergodic infinite horizon problem

and the steady state values of the control gain. The cost function

J = lim
t f→∞

1
t f

E


t f∫

t0

xT(t)Qix(t) + uT(t)Riu(t))dt

 (22)



Energies 2022, 15, 5163 10 of 17

is minimized using the stochastic maximum principle, which produces a time-varying
feedback control law affine in state of the form:

u∗(t) = −(Ri)
−1

BTK∞
i
(

x(t) + ηi(t)
)

for r(t) = i (23)

where matrices Ki
∞ (i = 1, 2, 3) satisfy the set of coupled algebraic Riccati equations

(Ai)
T

K∞
i + K∞

i Ai + Qi − K∞
iSiK∞

i +
N

∑
j=1

πijK∞
j = 0 (24)

with Si = Bi(Ri)
−1

(Bi)
T .

Under stochastic controllability and observability conditions [32], the Riccati gains for
the infinite horizon problem will converge to the unique positive definite solutions of the
coupled algebraic Riccati equations. Equations of this sort can be solved using the numerical
algorithm proposed in [33]. The bias vector ηi(t) in (23) satisfies ηi

(
t f

)
= 0 (i = 1, 2, 3),

and evolves according to equation

.
η

i
(t) =

(
Ai + (Ki)

−1
Qi
)

ηi(t) +
3

∑
j=1

πij(Ki)
−1

K j
(

ηi(t)− η j(t)− sij

)
(25)

The term sij should be interpreted as the change in the operating points due to the
fact that system transitions from mode i to mode j [31,34]. In this particular case, it is equal
to xi

0 − xj
0 +

(
Aj)−1Pj −

(
Ai)−1Pi. In the steady state, ηi(t) can be easily computed by

solving three equations in three unknowns once (24) is solved.

3.2. JLQC Strategy for Interconnected Microgrids

Before we apply this approach to interconnected microgrids, we should first recall
that energy exchanges between them are dictated by the needs of each individual MG.
Since these needs can vary unpredictably for a given state of cloud coverage, coefficients
ai

mk cannot be known in advance. With that in mind, we will perform the optimization on
individual microgrids when they are disconnected from each other (in which case ai

mk = 0
for all m and k).

If we treat the solar energy production of microgrid m as a continuous Markov chain,
the power delivered will be a piecewise constant, with the changes coinciding with jumps
(it is assumed that these changes can be easily detected via solar radiation sensors). Under
such circumstances, microgrid m can be viewed as a continuous linear time invariant
system with Markovian jumps and a hybrid (continuous–discrete) state space [xm i]T . The
corresponding state space model will have the general form

.
xm(t) = Ai

mmxm(t) + Bmum(t) + Pi
m (26)

where matrix Ai
mm differs from one state of solar energy to another. Note that matrices

Ai
mk do not appear in this equation, because the optimal control is designed under the

assumption that all coefficients ai
mk are zero. We should also point out that matrix Bm does

not depend on solar generation states, and therefore has no superscript associated with it.
Since this paper focuses on power system resiliency, our main objective in the following

will be to optimize battery storage while satisfying the load demand when the MG clusters
are in an islanded mode. Such an optimization requires a cost function that reflects the
mismatch between the demand and the power delivered. This function will also have
to take into account random variations in solar generation, which are due to changes in
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cloud coverage. In order to meet these criteria, it will be necessary to introduce a change of
variables [23], in which case the subsystem model becomes

.
x̃m(t) = Ai

m x̃m(t) + Bmum(t), i = 1, 2, 3 (27)

where
x̃m(t) = xm(t) +

(
Ai

m

)−1
Pi

m (28)

and
xm(t) = xm(t)− xi

0m (29)

In expression (29), xi
0m represents the desired energy setpoints for the battery and the

load (which are mode dependent in general). Set point changes are designed to address
two types of variations in the system: the discrepancy between the load demand during the
day and at night, and fluctuations in power generation due to different cloud coverages.
The vector Pi

m that appears in (28) is related to Pi as

Pi
m = Pi

m + Ai
mxi

0m (30)

For the infinite horizon problem with performance measure

J = lim
t f→∞

1
t f

E


t f∫

t0

(
(

x̃m(t)− x̃i
0m

)T
Qi

m

(
x̃m

(
t)− x̃i

0m

)
+ um

T(t)Ri
mum(t)

)
dt

 (31)

(where x̃i
0m =

(
Ai

m
)−1Pi

m), the optimal discharge and charging patterns of the batteries
is obtained by minimizing function J. This ensures that the error between the generation
and the demand is as small as possible. The resulting optimal regulator is given as a
time-varying feedback law

u∗m(t) = −(Ri
m)
−1

BT
mKm∞

i
(

xm(t) + ηi
m(t)

)
for r(t) = i (32)

It is important to emphasize once again that this gain matrix is independent of co-
efficients ai

mk, since it is designed to optimize decoupled microgrids. As a result, the cor-
responding decentralized control laws can be computed offline for any given level of
cloud coverage.

4. Suboptimality and Energy Exchanges

Since the optimal control law described in the previous section is designed to minimize
cost function J(t0, x0) when all subsystems are decoupled, we now need to consider what
happens when the microgrids are allowed to exchange energy. In that case, coefficients
ai

mk will assume nonzero values, and the system will become suboptimal. If we denote the
minimal value of the cost function in the disconnected mode by Jo(t0, x0), this means that
Jc(t0, x0) (which corresponds to the case when subsystems are connected) will necessarily
be larger. The following definition provided in [24] allows us to compare these two scenarios
and evaluate the degree of suboptimality in the system.

Definition 1. Let Jo(t0, x0) denote the optimal value of the cost function in the disconnected
mode, and let Jc

k(t0, x0) be the value that corresponds to the interconnection pattern k. The
system is said to be suboptimal with index ε if

Jc
k(t0, x0) ≤ (1 + ε)Jo(t0, x0) ∀x0 ∈ Rn (33)

Since suboptimality is a result of the interactions between the subsystems, index ε will
obviously depend on their magnitude. Conditions that ensure the existence of such an
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index are provided in Theorem 1, which represents a straightforward application to the
result provided in [24].

Theorem 1. The system described by Equations (14) and (15) with um = Kmxm is suboptimal
with index ε if:

n

∑
m=1

n

∑
k=1

amk ≤
1
2

(
ε

1 + ε

)min
m

λmin[Wm]

max
m

λmax[Km]
ε > 0 (34)

whereλmin, λmaxare the minimal and maximal eigenvalues of the respective matrices, and

Wm = KmBmR−1
m BT

mKm + Qm (35)

In (35), Km denotes the optimal gain matrix for subsystem m, while Qm and Rm
represent weighting matrices. Since Km is calculated based on the choice of Qm and Rm,
these two matrices can be viewed as tuning parameters that allow the system to meet
certain additional constraints. In the case of microgrids, the relevant constraints are defined
by the upper and lower limits on battery storage levels, and the requirement that the load
demand must be met in each subsystem.

In order to apply this result to jump linear systems, we need to modify Theorem 1 in
the following way.

Theorem 2. The system described by Equations (14) and (15) with um = Ki
mxm is suboptimal

with index εi if
n

∑
m=1

n

∑
k=1

ai
mk ≤

1
2

(
εi

1 + εi

) min
m

λmin
[
Wi

m
]

max
m

λMax
[
Ki

m
] εi > 0 (36)

where λmin, λmax are the minimal and maximal eigenvalues of the respective matrices for each state
i of the Markov chain, and Wi

m is given as

Wi
m = Ki

mBi
m(Ri

m)
−1

(Bi
m)

T
Ki

m + Qi
m (37)

As in the case of Theorem 1, the proof follows directly from the results provided in [24].
What makes this result particularly useful is the fact that it provides a simple upper bound
for coefficients ai

mk. These coefficients need to be adjusted every time one of the microgrids
requests additional energy, so it is important to determine an appropriate exchange pattern
quickly. We can do so because matrices Ki

m and Wi
m are computed ahead of time for each

level of cloud coverage. This allows us to treat the right-hand side of inequality (38) as a
known function of ε at the point when we need to choose new values for coefficients ai

mk.

Remark 1. It is important to recognize that the results described in this section remain valid
regardless of how the cost function is chosen. It is therefore possible to adapt the proposed procedure
to other types of constraints (such as those related to energy production or economic impact, for
example). We intend to address this possibility in our future work.

5. Simulation Results

In this section, we provide simulation results that were obtained using cloud coverage
data from San Jose International airport [28], load data from NREL [27], and the Santa Clara
University feeder. To keep the analysis as simple as possible, we considered a cluster of
three microgrids, which can operate in the connected or disconnected mode, and can have
different types of solar panels and battery storages. We assumed that one of the microgrids
represents a university, and that the other two correspond to commercial MGs. Theorem 2
and the exchange protocol described in Section 2.3 were used to calculate the maximal
amount of energy that can be transferred given a desired level of suboptimality.
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For simulation purposes, we assumed that the battery storage and PV array of MG 3 are
large enough to satisfy its own needs, and that the excess energy is shared with MGs 1 and 2.
To better illustrate the potential benefits of the proposed approach, we additionally assumed
that the battery storage and PV arrays for these two MGs do not produce enough energy
to meet the demand at all times. Data from [28] were used to generate random cloud
coverage patterns by Monte Carlo simulations, which determined the overall amount of
solar generation at any given point in time.

Following the discussion in Section 1, we divided cloud coverage levels into three
categories (which is representative of the weather pattern in northern California). Figure 2
provides the step-by-step procedure used to design the optimal regulator and calculate
coefficients ai

mk.
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mk.

The results that we obtained are shown in Figures 3 and 4 (they cover a period of
5 business days). Since commercial load behavior is relatively predictable, we were able
to use the load profile as a collection of setpoints instead of treating it as an input or a
disturbance. In that respect, our approach differs from most other methods described in
the literature. We should also note that due to the low or zero inertia related to batteries
and solar energy, small imbalances between the supply and demand can be handled by
batteries and PV arrays (or additional DC sources).

Figure 3 shows the simulation results for the three microgrids when they are in the
disconnected mode. It is readily observed that all three batteries discharge to their lower
limit at night, and that batteries in MGs 1 and 2 are unable to fully charge even when the
weather is sunny (since their PV arrays are not sufficiently large). We should also point out
that the load demands in MGs 1 and 2 (which are marked in blue in the bottom figure) are
not met during peak hours.

The graphs in Figure 4 correspond to the situation where the three MGs are intercon-
nected and can specify their needs through a communication network. When the demand
in MG 3 is met and its battery is sufficiently full, energy is transferred to MGs 1 and 2.
During these intervals, batteries 1 and 2 are able to charge.

To highlight the potential advantages of this approach, we considered a scenario where
MGs 1 and 2 were able to fully satisfy their internal demand using the energy provided
by MG 3. If this were not the case, MGs 1 and 2 could always connect to the utility grid
and request the additional power that they need [26] (or possibly use a secondary source of
generation). It is important to recognize, however, that the proposed scheme is helpful in
such cases as well, because it reduces the amount of additional energy that is required. To
evaluate the impact of energy exchanges in the latter scenario, we computed the integral of
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the mismatch between the demand and supply over a five-day period. We found that the
total error was reduced by about 8 MW, which is significant.
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Figure 3. Simulation results when the microgrids are disconnected: battery energy variation (top
figure), cloud coverage (middle figure), commercial load (blue) and load power usage (red) (bottom
figure). The upper and lower dashed lines represent the minimum and maximum battery energy
storage, respectively.
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Figure 4. Simulation results when MGs 1–3 are interconnected: battery energy variation (top figure),
cloud coverage (middle figure), commercial load (blue) and load power usage (red) (bottom figure).

6. Conclusions

In this paper, an optimal distributed stochastic control strategy was proposed for the
energy management of MG clusters. A power balance model was developed that takes
into account not only the randomness of solar generation, but also the exchange of power
between MGs. The ε suboptimality index was used to compute the maximal amount of
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energy that any MG can deliver or absorb for a given choice of ε. Simulation results using
real data were provided for a cluster with three MGs.

The proposed approach was found to have the following advantages:

(1) Although it incorporates random variations in solar generation into the controller
gains, it does not require an iterative algorithm to calculate the gain matrix. Because
of that (and because all of the computations can be carried out offline), this method is
suitable for real-time implementation.

(2) It allows the user to determine upper limits for the power exchange, based on the
controller design. These limits were shown to be independent of the way in which the
MGs are connected.

(3) The resulting decentralized control scheme guarantees stability for all possible inter-
connection patterns (as shown in Section 2.2).

(4) All the main features of this method can be easily adapted to networked MGs, since
there is no restriction on how large n can be.

In our future work, we will consider possibilities for further improvement (such as
incorporating the demand response into the model and considering different types of cost
functions). We will also relax the assumption that the microgrids are physically close to
each other, and that their loads have a known profile.
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Nomenclature

Indices:
i, j Indices for Markov chain states
m, k Indices for microgrids
n Maximum number of microgrids
q Number of microgrids absorbing power

Parameters:
πij Non-negative transition rate from i to j (i 6= j)
pij Probability of transitioning from state i to state j
EBmin Battery minimum energy limit (kWh)
EBmax Battery maximum energy limit (kWh)
αm Fraction of solar power delivered to the load m
γm Rate of self-charge for battery m (1/hour)
sij Change in the operating points due to jumps from mode i to mode j
akm Fraction of power transferred from MG m to MG k

sam.nrel.gov
www.noaa.gov
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Matrices and Vectors:
x(t) System state
xi

0 Desired set point in mode i
u(t) Control action,
y(t) System output,
Π Transition rate matrix
P Probability matrix
ηi(t) Bias vector for mode i
Ai State matrix for mode i
B Input matrix
C Output matrix
Pi Power delivered by the solar panels for mode i
Qi State weighting symmetric matrix for mode i
Ri Input weighting symmetric matrix for mode i
K∞

i Riccati gain matrix for mode i at steady state

Variables:

E(m)
B (t) Energy stored in battery m (kWh)

E(m)
ex (t) Energy that MG m exchange with other MGs

P(m)
L (t) Power required by the load in MG m (kW)

Pdis(m)
B (t) Power generated by the battery in MG m (kW)

P(m)
Solar(t) Power generated by the PV array in MG m (kW)

P(m)
ex (t) Power that MG m exchange with other MGs (kW)

P(t) Power delivered by the solar panels (kW)
r(t) Cloud coverage mode

References
1. Olivares, D.E.; Mehrizi-Sani, A.; Etemadi, A.H.; Cañizares, C.A.; Iravani, R.; Kazerani, M.; Hajimiragha, A.H.; Gomis-Bellmunt,

O.; Saeedifard, M.; Palma-Behnke, R.; et al. Trends in microgrid control. IEEE Trans. Smart Grid 2014, 5, 1905–1919. [CrossRef]
2. Meng, L.; Shafiee, Q.; Trecate, G.F.; Karimi, H.; Fulwani, D.; Lu, X.; Guerrero, J.M. Review on control of DC microgrids and

multiple microgrid clusters. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 928–948. [CrossRef]
3. Zou, H.; Mao, S.; Wang, Y.; Zhang, F.; Chen, X.; Cheng, L. A survey of energy management in interconnected multi-microgrids.

IEEE Access 2019, 7, 72158–72169. [CrossRef]
4. Che, L.; Shahidehpour, M.; Alabdulwahab, A.; Al-Turki, Y. Hierarchical coordination of a community microgrid with AC and DC

microgrids. IEEE Trans. Smart Grid 2015, 6, 3042–3051. [CrossRef]
5. Moayedi, S.; Davoudi, A. Distributed tertiary control of DC microgrid clusters. IEEE Trans. Power Electron. 2016, 31, 1717–1733.

[CrossRef]
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