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Abstract：Both carbon nanotube (CNT) and graphene exhibit excellent properties and 

have many potential applications in integrated circuits, composite materials, thermal 

management, sensors, energy storage, and flexible electronics. However, their superior 

properties are confined to one or two dimensions, thus limiting their utility in 

interconnects or thermal interface materials that require a three-dimensional structure 

for efficient electron and/or phonon transport. It is conceivable that a combined CNT-

graphene structure would provide new opportunities for realizable applications in these 

and other fields. In recent years, numerous results on synthesis, structural analyses, 

theoretical modeling, and potential applications of various CNT-graphene 

heterostructures have been reported. In this review, we summarize the possible 

structures that can be formed by connecting CNT and graphene. We then report existing 

experimental efforts to synthesize the heterostructures based on growth method, 

catalyst design, and the resulting properties. Also, theoretical studies on various 

heterostructures are reviewed, with the focus on electron and thermal transport within 

the heterostructure and across the CNT-graphene interface. Several potential 

applications are briefly discussed, and a combined theoretical and experimental 

approach is proposed with the objective of enhancing the understanding of the CNT-

graphene heterostructure and attaining a realistic assessment of its feasibility in 

practical applications. 

 



1. Introduction 

 Since the discovery of fullerenes[1], the family of nanocarbon allotropes has 

been studied extensively due to the carbon-carbon bond versatility [2, 3], with carbon 

nanotube (CNT) and graphene being the most well-known[4, 5]. The superior 

properties of these nanocarbon materials such as their large surface-to-volume 

ratios, electrical and thermal transport, tunability of band structure by applied 

voltage [6-8], magnetic field [9, 10], and mechanical strain[11-13], as well as synthesis 

methods have paved the way for practical applications in nanoelectronics, 

electrochemistry, sensors, and supercapacitors[14-17]. However, such properties have 

not been fully exploited in many potential applications. This is partly due to the 

non-uniformity of the synthesized nanocarbon [18, 19], resulting from the non-ideal 

interface between the nanocarbon and other constituent materials [20-26]. For 

example, CNT has long been considered as a promising material to replace copper 

in on-chip interconnects as the current density in copper lines exceeds its current-

carrying capacity [27-30]. In reality, although researchers have demonstrated CNT 

vias down to sub-100 nm dimensions [31-33], the resistance of the CNT vias is still 

much larger than that of mainstream copper interconnects. Such large interconnect 

resistance is mainly due to contact resistance between the CNTs and other 

conductors [21, 22, 24, 34]. Many efforts have been devoted to reducing the contact 

resistance for carbon-based electron devices [35]. Since both graphene and CNT 

have the same honeycomb structure, a seamless contact between them appears 

possible[36]. A three-dimensional all-carbon structure consisting of CNT-on-

graphene could realize excellent electrical and thermal conduction in both 

horizontal and vertical directions. Such a structure could then serve as a building 

block in on-chip interconnects.  

 In applications that aim to take advantage of the large surface-to-volume ratio 



in CNT and graphene, such as electrodes in supercapacitors, batteries, and reactive 

catalysts [37-39], it is challenging to prevent the aggregation of the nanocarbons [40, 

41]. In contrast, if a heterostructure consisting of vertical CNT arrays and horizontal 

graphene layers is formed, a more robust structure is expected to resist the 

aggregation tendency while still preserving the high surface-to-volume ratio [42, 43], 

electrical and thermal transport[44, 45], optical and optoelectronic properties[46], and 

tunability of band structure by applied voltage[6-8] and magnetic field[9, 10, 47].  

   With the objective to fully exploit the extraordinary properties of nanocarbons, 

researchers in various disciplines, including electronics [48, 49], material science [50], 

mechanical engineering [51], and chemistry[52], have explored the possibility of 

combining these two most well-known nanocarbon allotropes during the last decade. 

Therefore, it is meaningful to review what has been achieved, and what can be 

expected in future studies of the CNT-graphene heterostructure.  

 This paper is organized as follows. The next section describes the basic 

structures of and synthesis methods for CNT-graphene heterostructures, followed 

by a review of theoretical studies based on techniques including first-principle 

calculations and molecular dynamics simulations. We then present various potential 

applications of the heterostructures. Finally, we conclude with a discussion of what 

is needed to fully optimize the heterostructure for practical applications. 

2. Structures and Growth Methods 

2.1 Structures  

 To make full use of the structure and properties of the 1D CNT and 2D graphene , 

various methods have been proposed to prepare CNT arrays[53], while graphene, 

with its two-dimensional planar structure, is usually grown on metal foils or thin 

films[54]. Although both show promise in many applications, it is beneficial to 



combine them into a single CNT-graphene heterostructure, which not only 

preserves the excellent properties of the two materials, but also compensates for 

each other's shortcomings to some extent. Generally, CNT grows along the axial 

direction, thus forming CNT arrays vertical or parallel to the substrate. Several 

possible models of joining CNTs and graphene are illustrated in Figure 1. A parallel 

CNT-graphene heterostructure[55-58] (Figure 1a) can be obtained by drop-casting 

CNT on the transferred graphene, or graphene can be transferred to cover the CNT 

network to form a similar structure but with graphene on top[59]. While these two 

structures preserve the two-dimensional structure as in graphene, it is desirable to 

form a truly three-dimensional structure by joining vertical CNTs and planar 

graphene. Figure 1b shows a typical structure with the CNT axis normal to the 

graphene plane [42, 60-65], forming a vertical CNT-graphene heterostructure. In 

certain cases, the graphene can be lifted off during the CNT growth, thus forming a 

structure as shown in Figure 1c [66-69]. Recently, several experimental works 

claimed to obtain seamless CNT-graphene heterostructures[36, 70] (Figures 1d and 

1e). Multilayered vertical CNT-graphene heterostructure was also reported as an 

all-carbon pillared structure [71] (Figure 1f), in which graphene was used as the 

platform for CNT growth and the grown CNTs served as pillars to support graphene 

layers. In principle, the seamless junctions between CNT and graphene can yield a 

more robust mechanical structure with enhanced interplanar electrical and thermal 

conduction.  

 In general, compared to the parallel CNT-graphene heterostructure, the vertical 

CNT-graphene configuration is more desirable for applications that require low 

electrical resistance. Gao[72] compared the resistance of the parallel and vertical 

CNT-graphene heterostructures, Gao [72] compared the resistances of the parallel 

and vertical CNT-graphene heterostructures, and found that the parallel 

heterostructure exhibited a contact resistance of 51.9 kΩ, which is nearly four times 

the contact resistance of 14 kΩ in the vertical heterostructure. The difference is 



likely due to the unsaturated π-bonds of edge atoms in the vertical CNT 

configuration, giving rise to stronger bonding with atoms in the graphene layer. 

Based on the development of the different pillared heterostructures, theoretical and 

experimental analyses of the CNT-graphene-CNT heterostructure (Figure 1f) have 

been carried out in recent years[71, 73-77]. 

 
Figure 1. Schematic illustrations of the (a) parallel CNT-graphene heterostructure, 
(b, c) normal CNT-graphene heterostructure, (d, e) seamless CNT-graphene 
heterostructure, and (f) CNT-graphene-CNT heterostructure. 
 

2.2 Growth methods 

As there are many excellent reviews on the growth of CNT and graphene [53, 78-80], 

the focus of this paper is on the growth of the heterostructure itself. Specifically, we 

discuss the various parameters for growth of CNT-graphene heterostructures, 

including the overall methodology, catalyst requirement, growth temperature, and 

properties of the resulting structure. 

 
2.2.1 Parallel CNT-graphene heterostructures 

 Parallel CNT-graphene heterostructures are generally formed using chemical 

vapor deposition (CVD) [57, 81, 82]. In such a method, a graphene film is synthesized 

first, followed by catalyst deposition on the graphene and then CNT growth to form 

the parallel CNT-graphene heterostructure. For example, using FeCl3 solution 

deposited on graphene as catalyst, CNTs were formed on the dried sample after the 

introduction of argon/hydrogen/acetylene (30/30/5sccm) at 750℃[81]. It was 



determined that the density and the quality of the CNTs was related to the 

concentration of the FeCl3 solution. The density of CNTs can be well controlled 

simply by choosing the corresponding concentration for a targeted density 

requirement. On the other hand, the use of the FeCl3 is avoided in many cases 

because of the potentially hazardous waste it creates. With CNTs as the template, a 

CNT spider web was firstly deposited on a copper substrate[82], then a xylene 

solution consisting of ferrocene and sulfur was injected into CNT webs, followed 

by high-temperature annealing. The parallel CNT-graphene heterostructure was 

then formed with the introduction of a carbon source, and the CNTs served as 

nucleation centers during the graphene growth, as shown in Figure 2a. This cage-

growth method ensures good matching between CNT network-embroidered 

graphene film and graphene, which contributes to the development of all-carbon 

devices. 

 An alternative method used graphene as the growth template, on which the 

CNTs were directly deposited without carbon source gas [57]. It was found that CNTs 

in the parallel heterostructure lay mainly along the armchair axes of the graphene 

film (Figure 2b). To obtain better aligned CNT-graphene heterostructure, coating 

the CNTs on graphene was used, while ensuring that the CNTs and graphene were 

firmly connected. Figure 2c shows the graphene film coated with cross-folded CNT 

networks[83]. After etching the Cu substrate, a self-standing parallel CNT-graphene 

heterostructure was obtained. The CNT-graphene film obtained by the facile 

method has ~90% electron transparency, which is suitable for high-performance 

electrode applications. 

 Various methods have been proposed to increase the CNT density and thus the 

electrical performance of the resultant heterostructure. Wu[55] adopted a blown 

bubble method to prepare the aligned CNT arrays on top of graphene (Figure 2d). 

Multiwall CNTs (MWCNTs) were grown first, and a CNT solution with PMMA 

and acetone as the solvent was prepared to form the bubble solution. Aligned CNTs 

were obtained due to surface tension of the bubble. The CNT density was increased 



by simply repeating the bubble transferring process. The final high-temperature 

annealing process could enhance the bonding between CNT and graphene, which is 

beneficial for electrical and thermal applications. 

 

 
Figure 2. Scheme for CNT-graphene parallel heterostructure. (a) Graphene grown 

by Chemical Vapor deposition using CNTs as templates [82]. (b) CNTs grown by 

Chemical Vapor deposition using graphene film as template [57]. (c) Cross-staking 

CNT networks coated on the graphene film[83]. (d) By blown bubble method[55].  

 
2.2.2 Vertical CNT-graphene heterostructure 

 In general, CVD[50, 83-90] is the most common method for synthesizing vertical 

CNT-graphene heterostructures, using a two-step process as illustrated in Figure 3 

[91]. First, graphene is grown on a metal substrate and subsequently transferred onto 

a target substrate if needed. Second, the vertical CNT-graphene heterostructure is 

synthesized after catalyst deposition and introduction of a carbon source gas. There 

are many factors that affect the growth, and we will focus on the effects of catalysts, 

temperature, and gases on the characteristics of the resulting heterostructure.  



 

Figure 3. A two-step process for CNT-graphene heterostructure preparation[91]. 

 

 Experiments on the choice of catalyst using different thicknesses of Fe or Ni 

have been carried out[91]. It was found that if the Fe film thickness could be 

controlled within a range of 0.2 nm to 1 nm, better quality of CNTs was obtained 

for thinner films, as confirmed by Raman analyses. When the Fe film thickness was 

as low as 0.5 nm, single-walled CNTs (SWCNTs) were obtained. Otherwise, 

MWCNTs resulted whether Fe or Ni was used as the catalyst[91]. The diameter of 

the CNTs is largely affected by the catalyst film thickness. In addition, the effects 

of Ni and Fe catalyst on formation of the CNT-heterostructure are quite different, 

as Ni etches graphene during the growth process, leading to more defects in the 

final structure. It is worth noting that the etching of the graphene is expected, 

because in the early stages of CNT growth, graphene is a carbon source in addition 

to the carbon source gas. And H2 also plays an important role in the etching of 

graphene because of the reaction [63] 

(Ni)nanoparticle + Cgraphene + 2H2 →Ni + CH4 

The growth temperature and gas feedstock can be tuned to minimize graphene 

etching. By using C2H4 as the carbon source, the Ni catalyst film can form higher 

density nanoparticles at 700℃ and the etching becomes less reactive compared to 

800℃, resulting in higher density CNTs and less etching of graphene[63].  

 Apart from graphene etching, catalytic nanoparticles become embedded in the 

CNT-graphene junctions in some cases, which limits the properties of the 



heterostructure. To prevent this effect and form a seamless CNT-graphene 

heterostructure, Zhu[36] deposited a layer of Al2O3 film on the Fe catalyst film as a 

floating buffer layer (Figure 4a). The floating buffer was designed to transform the 

bottom growth of the CNTs into tip growth, thus achieving the goal of a seamless 

CNT-graphene heterostructure with optimal interface properties. Similarly, the 

heterostructure was successfully[89] synthesized on a porous Ni foam by using the 

same method but with a better area utilization ratio of the metal substrate, as shown 

in Figure 4b. Inspired by this method, Jiang[77] realized that CNTs could grow from 

both sides of graphene, as shown in Figure 4c. This unique structure has the 

potential to be used in energy storage that requires a high surface-to-volume ratio. 

 Instead of using solid catalyst films, Rodrigo[70] spun a solution of Fe3O4/AlOx 

nanoparticles as the catalyst on the graphene/Cu substrate, which is also applicable 

to curved substrates. Being exposed to hydrogen at 750℃, the catalyst nanoparticles 

became a mixture of Fe and Al2O3. Then a seamless CNT-graphene heterostructure 

was formed via tip growth mechanism, with the covalent C-C bonds at the CNT-

graphene junction, as shown in Figure 4d. By using Fe catalyst, SWCNTs can be 

grown at 950℃ on a FeMgAl layered double oxide substrate[92], with the process 

shown in Figure 4e. Compared to MWCNT, SWCNT arrays have a higher surface-

to-volume ratio and smaller defect density, while forming covalent C-C bond at the 

CNT-graphene interface, leading to better electron transport[92]. The superior 

properties of the SWCNT-graphene heterostructure are suitable for applications as 

electrodes in high energy density batteries.  



 
Figure 4. Scheme for CNT-graphene vertical heterostructure. (a) synthesis of CNT 

carpets directly from graphene by adding a layer of Al2O3 film on Cu substrate[36]. 

(b) synthesis of seamless CNT-graphene heterostructure by adding a layer of Al2O3 

film on porous Ni substrate[89]. (c) CNTs grown from both sides of graphene using 

supporting layer: Al2O3 films[77]. (d) Using solution of Fe3O4/AlOx nanoparticles 

as catalyst[70]. (e) Growing seamless SWCNT-graphene heterostructure on FeMgAl 

layered double oxide substrate[92]. 

 

 In general, all catalyst film thicknesses in the two-step method are between 1 

and 10 nm or thinner to yield good-quality CNTs. With increase in catalyst film 

thickness, graphene can also be formed. Therefore, CNT and graphene can be 

grown simultaneously if the thickness of the catalyst can be controlled within a few 

nanometers. Instead of the two-step growth method, a one-step method is also 

feasible for forming vertical CNT-graphene heterostructures, thus simplifying the 

growth process. Kondo[67] deposited different thickness of Co film on 5 nm TiN to 

form a mixed catalyst. The thickness of the Co catalyst is within a few nanometers 

so that both graphene and CNTs can be synthesized using Co catalyst. With the gas 

ratio of acetylene to argon being 1:9, graphene films were formed first, then the Co 

catalyst film dewetted to form nanoparticles, followed by CNT growth at 510℃ 



using tip-growth mode and resulting in a vertical CNT-graphene heterostructure on 

a silica substrate (Figure 5a). It was found that increased Co thickness resulted in 

increased graphene thickness.  

 Ni/TiN was also reported as a catalyst to synthesize CNTs and graphene[68]. 

Without conventional argon pretreatment, Jousseaume[68] used C3H6 as the carbon 

source gas rather than traditional C2H2 or CH4, and prepared a vertical CNT-

graphene heterostructure at 400℃ using bottom-growth mode. The lower 

temperature ensures compatibility with chip manufacturing processes for the 

vertical CNT-graphene heterostructure to serve as part of an on-chip interconnect 

network. Furthermore, using FeMoMgAl layered double hydroxides as catalyst, a 

nitrogen-doped CNT-graphene heterostructure has also been achieved by the one-

step method[93]. The schematic of the growth process is shown in Figure 5b. The 

specific surface area of the structure reached 812.9 m2 g−1 and the electrical 

conductivity was as high as 53.8 S cm−1. In addition, the structure had excellent 

bifunctional oxygen electrode activity for both oxygen reduction reaction and 

oxygen evolution reaction, which offers possibility to be a bifunctional 

electrocatalyst in metal-free devices.  

 Seamless heterostructures can also be obtained by the one-step method[94]. A 

typical example is shown in Figure 5c. First, an aluminum wire was exposed to 

0.3M oxalic acid solution at 40 V and 3℃ so that the external surface could be 

turned into anodized aluminum oxide. Then without catalyst, CNTs were 

seamlessly surrounded by a cylindrical graphene layer using CVD. In general, the 

key in the one-step growth is the proper choice of catalyst (material and thickness) 

and temperature to form the two constituent nanocarbon materials sequentially or 

simultaneously. 



   

Figure 5. (a) Scheme of one-step method process[68]. (b) Process of the nitrogen-

doped graphene/carbon nanotube hybrids growth[93]. (c) Schematic of radially 

aligned CNTs growth process[94].   

 
 It is expected that the seamless heterostructure shown in Figure 2(d)-(e) can 

provide superior electronic and thermal transport properties through the CNT-

graphene junction as well as improved mechanical stability. However, there is still 

little evidence that the fabricated vertical structure possesses a seamless connection. 

Several proposed connection topologies between CNT and graphene are presented 

in the next section along with first-principle calculations. However, high-resolution 

transmission electron microscopy is needed to show experimentally how the carbon 

atoms are connected at the CNT-graphene junction. We hope that with more 

advanced characterization techniques, the atomic arrangement at the junction can 

be identified, and provide an experimentally confirmed structure for theoretical 

calculations.  

 

     



3. Theoretical Studies of CNT-Graphene Heterostructures 

 Both CNT and graphene have extraordinary electronic transport properties, 

mechanical strength, and thermal conductivity. Until now, various theoretical 

methods have been employed to study the properties of CNT-graphene 

heterostructure, specifically to simulate seamless CNT-graphene heterostructures. 

In principle, there can be numerous geometrical configurations for both parallel and 

vertical CNT-graphene heterostructures, considering the various CNT chiralities, 

the number of walls in a CNT, the bonding type between CNT and graphene that 

could be van der Waals or covalent. Thus, it would not be practical to list all the 

possibilities of CNT-graphene heterostructures. Those that have been studied are 

constrained partly by the computational resources and the difficulty in establishing 

a stable junction between a CNT and graphene. Nevertheless, there are interesting 

properties revealed by various theoretical studies, though most remain unverified 

by experiment. 

   

3.1 Parallel CNT-graphene heterostructure 

 As the parallel CNT-graphene heterostructure is mainly used for electrodes or 

all-carbon transistors, most theoretical studies have focused on its electronic 

properties[95-97]. Ho[95] studied the electronic structures of a non-chiral (armchair or 

zigzag type) CNT positioned flat on the underlying graphene, as shown in Figure 

6a. The exact position of CNT is optimized using the Lennard-Jones interatomic 

potential, and the interlayer distance between CNT and graphene is around 

3.1Å~3.2Å, implying that the bonding is van der Waals type. Compared to pristine 

CNT and graphene, the band structure of the heterostructure exhibits typical 

coupling effects between CNT and graphene, resulting in extra band-edge states at 

the intersecting linear bands, as shown in Figure 6b. The coupling effect can be 

further modulated by rotating the CNT relative to the in-registry position, but it 

generally weakens as the CNT diameter and the interfacial distance increases. One 

interesting phenomenon is the induced non-zero bandgap for pristine metallic (3m, 



0) CNT due to coupling to the graphene, suggesting that even metallic CNT can be 

used for transistors if the CNT diameter is small and graphene is used as an 

underlying substrate. Similarly, Cook[96] calculated the charge redistribution 

between graphene and semiconducting (8,0) and (10,0) CNTs, and reported a very 

low Schottky barrier height between CNT and graphene. This is qualitatively 

verified by experimental results of Chai[98, 99], who applied graphitic interfacial 

contact layer to improve the CNT transistor properties, and of Ganggavarapu[98, 99], 

who achieved ohmic contact between CNT and few-layer graphene. 

 A seamless parallel CNT-graphene heterostructure with a (12,0) CNT covalently 

bonded to one or more graphene nanoribbons with the same width as the CNT 

length has been proposed[100-102]. A common feature of these structures is the sp3-

like bonding at the interface between CNT and graphene. Artyukh[102] studied the 

structure where the atoms at the edge of the two graphene nanoribbons are directly 

connected to the CNT wall, as shown in Figure 6c. Compared to pristine CNT or 

graphene, the density of states (DOS) of the heterostructure exhibits some similar 

Van Hove peaks, and resemble those in hydrogenated CNT, as shown in Figure 6d. 

In terms of mechanical strength, the heterostructure exhibits much higher Young’s 

modulus due to the sp3 bonds present at the interface[102]. 

 

3.2 Vertical CNT-graphene heterostructure 

 Vertical CNT-graphene heterostructures have potential applications in many 

fields such as electrodes, interconnects, transistors, catalyst, and thermal interface 

materials. Thus, the electronic and thermal transport properties are of much interest 

for these applications. In this sub-section, we focus mainly on the properties of 

modeled seamless vertical CNT-graphene heterostructures to examine its electronic 

and thermal transport properties. 

 



 
 
Figure 6. (a) Parallel CNT-graphene heterostructure with Van der Waals bond 

between CNT and graphene[95]. (b) Band structures of the CNT, graphene, and 

coupled CNT-graphene heterostructure[95]. (c) Parallel CNT-graphene 

heterostructure with covalent bond between the CNT and graphene nanoribbons at 

the two sides[102]. (d) Theoretical density of states (DOS) of the covalent bonded 

CNT-graphene heterostructure, the DOS of a hydrogenated CNT is plotted in the 

lower panel as a reference[102].  

 

 To form a seamless CNT-graphene heterostructure, a least-square method is 

utilized to achieve C-C bond-lengths or bond-angles as close as possible to those of 

the ideal case [103, 104]. Moreover, Euler’s theorem is utilized to select the polygons 

for the contact stitching process [103-108]. Figure 7a shows the possible connections 

that the eight open bonds of a (4,4) CNT or (8, 0) CNT can form with the underlying 

graphene sheet[103]. Many theoretical calculations have adopted the same rules to 

form seamless CNT-graphene heterostructures [71,109]. After identifying the bond 

contact spots on the graphene surface and the CNT, molecular dynamic simulations 

are performed to minimize the total binding energy of the heterostructure. For 

structure relaxation, a full quantum mechanical optimization including force-field 

relaxation of the nuclei as well as the electrons is necessary. However, such 

optimization requires prohibitive amount of time and computational resources[110]. 



Therefore, another approach is employed to achieve force-field convergence using 

classical molecular dynamics approach, which neglects electron interactions[91, 111, 

112]. The advantage of such an approach is drastically reduced computational time, 

albeit with less accuracy of the final optimized structure.  
              

3.2.1 Electronic Transport Properties 

 With the optimized heterostructure, one can perform first-principle calculations 

to obtain electronic properties such as band structure, transmission coefficient, DOS, 

and conductance. Matsumoto[85] used a tight-binding method to study various (6,6) 

CNT-graphene heterostructures, including CNT with open tip or capped, and CNT 

sandwiched between two graphene layers similar to that in Figure 1f. The total 

energy minimization method is adopted to optimize the geometries using the tight-

binding method. Although the (6,6) CNT is metallic, sizable direct bandgaps of 0.27 

eV and 0.51 eV were predicted for the open and capped CNT-graphene 

heterostructures, respectively. An even larger bandgap was predicted for the 

sandwiched heterostructure. Another interesting structure proposed by Mao[113] also 

showed a similar effect that the metallic (5,5) CNT was transformed into a 

semiconductor with a bandgap of 0.2 eV. Strictly speaking, this structure is not a 

seamless CNT-graphene heterostructure, because the CNT is inserted into the 

graphene and the two ends of the CNT are connected to the graphene sheets through 

a hole on each. Nevertheless, a covalent bond is formed between each atom at the 

graphene hole edge and an atom on the CNT sidewall. This strong coupling results 

in a bandgap in the metallic (5,5) CNT. In contrast, the original bandgap of 0.65 eV 

vanishes for a semiconducting (8,0) CNT, because of the induced impurity states by 

the sp3-like hybridization between the CNT and the holed graphene. Thus, one may 

conclude from the above theoretical study that the pristine CNT bandgap can be 

changed due to the strong covalent bond formed at the CNT-graphene interface. 

 Since the tight-binding method could not capture the junction-induced band 

offset between CNT and graphene[85], a first-principle calculation was performed 



by Frederico[49] to study the electronic transport properties of the (4,4) and (8,0) 

CNT-graphene heterostructures. For the metallic (4,4) CNT-graphene 

heterostructures, two kinds of symmetrical connections containing six heptagonal 

rings at the interface (No. 3 and No. 9 in Figure 7a) were adopted. The unit cell of 

the periodic 3D seamless heterostructure shown in Figure 7b was constructed for 

electronic transport calculations using the non-equilibrium Green’s function (NEGF) 

method, and the current flow is through the CNT-graphene junction and the CNT 

itself. The calculated transmission coefficient was between 0.01 and 1 and shows a 

weak dependence on the CNT length in the range of 2.2-4.2 nm, indicating a clear 

ballistic transport characteristic of the (4,4) metallic CNT-graphene heterostructure. 

The conductance deduced from the transmission curves also shows a similar weak 

dependence on CNT length for metallic CNTs as shown in Figure 7c. On the other 

hand, the conductance shows strong dependence on the contact structure, with the 

No. 9 contact structure exhibiting a higher transmission and conductance than the 

No. 3 case. In contrast, the conductance of the semiconducting (8,0) CNT-graphene 

heterostructure shows a strong dependence on the CNT length and weak 

dependence on the contact structure. Another interesting point for the (8,0) CNT-

graphene heterostructure is that a relatively large conductance is predicted for the 

heterostructure with a small CNT length of 2 nm (Figure 7c), showing the effect of 

tunneling. Although the study reveals some interesting electronic transport 

properties of the CNT-graphene heterostructure, their calculation cannot ascertain 

the exact contribution of the CNT-graphene junction to the total conductance. 

 

 



 
 

Figure 7. (a) Possible ways to seamlessly connecting (4,4) or (8,0) CNT with 

graphene [103]. (b) Graphene-CNT-graphene heterostructure used to calculate the 

transmission coefficient, with the arrows showing the electron transport 

directions[49]. (c) Deduced conductance of the heterostructure with different CNT 

type and tube length[49].  

 To better understand the CNT-graphene contact properties, we have performed 

calculations on a two-point structure with the NEGF method. To extract the CNT-

graphene contact resistance, graphene resistance, and CNT resistance, we calculate 

the current-voltage (I-V) characteristics of the graphene-CNT-graphene 

heterostructure shown in Figure 8a. Toward this end, we first compute the resistance 

of a graphene sheet for different lengths, which turns out to be 6.45 kΩ and 

independent of length, confirming ballistic transport. This result also serves as a 

validation of the calculation method. A typical I-V curve for the complete two-point 

structure is shown in Figure 8b. The total resistance is found to be 91.5 kΩ for the 

heterostructure with a 2.44 nm long (8,0) CNT. The linear I-V behavior indicates 

ohmic conduction across the CNT-graphene junction and possibly along the CNT 

as well. Furthermore, we have also verified the previous study that semiconducting 

CNTs when contacted with graphene leads to metallic behavior. The DOS and the 

transmission coefficients of the (8,0) CNT-graphene heterostructure are shown in 

Figure 8c and 8d, respectively. A finite DOS exists at the Fermi-level (located at 0 

eV), representative of the metallic nature of the CNT. The transmission coefficient 



shown in Figure 8d also suggests that transmission indeed occurs at the Fermi-level 

because of the available states. 

 
Figure 8. (a) Graphene-CNT-graphene heterostructure used for I-V calculations. (b) 
I-V curve of the graphene-CNT-graphene heterostructure. (c) DOS and (d) 
Transmission coefficients of the (8,0) CNT graphene system, showing finite DOS 
and transmission at Fermi-level (0 eV). 

3.2.2 Thermal Transport Properties 

 Both CNT and graphene possess outstanding intrinsic thermal conductivity, but 

the high thermal conductivity is only achievable along the CNT length and in-plane 

directions in graphene. Vertical CNT arrays have been considered as a good thermal 

interface material (TIM) for its high thermal conductivity along its length[114]. 

However, the interface between the CNT and the substrate constitutes much of the 

thermal resistance, which limits the overall performance of the thermal interfacial 

layer. Recently, many theoretical works have studied the seamless 3D CNT-

graphene heterostructure for its superior thermal transport properties [75, 76, 115]. The 



heat flow in the 3D seamless CNT-graphene heterostructure was determined to be 

analogous to current flow [76]. 

  Varshney[76] compared the thermal conductivity k of the heterostructure with an 

8-layer graphite and a pure (6, 6) CNT. The in-plane thermal conductivity k// of the 

heterostructure is inferior to that of an 8-layer graphite, and it increases linearly with 

the distance between adjacent CNTs in the heterostructure. This can be due to the 

presence of less scattering sites for a larger CNT-CNT distance. The out-of-plane 

thermal conductivity k⊥ follows a similar trend that a larger CNT length results in 

a larger k⊥. While CNT-CNT distance affects the overall cross-sectional area of the 

heterostructure, the CNT length determines the phonon scattering length between 

the two CNT-graphene junctions separated by one vertical CNT. In general, the k// 

is much higher than the k⊥. For example, the k// and k⊥ are 9.6 W/m.K and 2.25 

W/m.K, respectively, for a heterostructure with a CNT-CNT distance of 9 Å. Thus, 

the two factors must be optimized to obtain an overall high k in both directions for 

practical applications. 

 Chen[75] compared k⊥of a seamless (6,6) CNT-graphene heterostructure with 

the pristine graphene, and found that the former is at least one order of magnitude 

larger than the latter. k⊥increases with increasing CNT densities, and it reaches 

about 100 W/m.K when the density of CNT is about 10%. For efficient cooling of 

a hot surface, the heterostructure could be immersed into a liquid to speed up heat 

dissipation[116]. To identify the contribution of the CNT-graphene junction to the 

total thermal resistance, Shi[117] analyzed the temperature profile throughout the 

heterostructure, and found that the temperature jump at the junction contributed to 

most of the total thermal resistance. The calculated covalent CNT-graphene junction 

resistance of 4.1ⅹ10-11 m2K/W ~7.2ⅹ10-11 m2K/W is much lower than those of 

other thermal interface materials. On the other hand, if CNT is weakly connected to 

the graphene by van der Waals bond, the calculated junction resistance surged up to 

4ⅹ10-8 m2K/W, clearly suggesting seamless covalent bonding between CNT and 



graphene facilitates phonon transport from in-plane direction to out-of-plane 

direction. A practical application was considered by Bao[118], who studied the CNT-

graphene heterostructure for heat dissipation from a silicon substrate. Compared to 

the CNT-silicon interface, the insertion of a graphene layer between CNT and 

silicon improved the thermal conductance by more than 40%[118]. Although most of 

the theoretical study constructed similar seamless CNT-graphene structures as 

described above, Zhang[115] proposed a novel structure with a transition cone area 

between the vertical CNT and the parallel graphene so that the contact area could 

be much larger than the CNT area itself. Compared to the normal CNT-graphene 

heterostructure, the proposed structure exhibited an improved thermal conductance, 

which even outperformed the pristine 20 Å-diameter CNT if the cone radius reaches 

40Å. These results suggest alternative ways to construct the CNT-graphene 

heterostructure, which can be experimentally realized[115]. 

 As alluded in section 2, MWCNTs are quite common in grown CNT-graphene 

heterostructures, yet few theoretical studies on their transport properties exist, partly 

due to the computation resources requirement to construct and calculate these 

complex systems. In terms of the MWCNT-MWCNT contact where van der Waals 

bonds are formed between the carbon atoms at the outer walls, Varshney[119] 

stressed the importance of effective contact area which is affected by diameter, the 

number of walls, and the curvature effect in determining the thermal transfer rate 

across the contact area. However, there is no reported study of the seamless 

MWCNT-graphene heterostructure to date. With proper structure construction 

schemes and powerful computation resources, the more complex MWCNT-

graphene heterostructure could conceivably reveal new information for comparison 

with experiment.  

 Even though the synthesized heterostructures are still quite different from the 

theoretical model structures, the introduction of the heterostructure is motivated 

largely by applications requiring better electronic and/or thermal transport 



properties and larger surface to volume ratio, which cannot be obtained with only 

one form of nanocarbon material. As discussed in the next section, there are 

potential applications that show superior properties of the heterostructure. More 

studies are needed to relate the measured properties of micro or macroscale 

heterostructures to theoretical predictions based on a single nanoscale CNT-

graphene junction. 

 

4. Potential Applications  

 Due to the excellent properties of graphene and CNTs, CNT-graphene 

heterostructures have been proposed as electrodes, catalysts, as well as materials 

for hydrogen storage and interconnects. In this section, examples are given stressing 

the advantages of using CNT-graphene heterostructures for such applications. 

 

4.1 Electrodes 

 For electrodes, a large and efficient conducting area is the key parameter. The 

large conducting surface of graphene makes it an attractive candidate. However, 

because of the aggregation of graphene, electrodes composed of graphene alone 

would not be the optimal choice. Considering the electrical conductivity of CNTs, 

the combination of vertically aligned CNTs on graphene holds great promise as a 

superior electrode The CNT-graphene electrode, also called all-carbon electrode, 

has more effective conducting surface than graphene while retaining its high 

mechanical flexibility, resulting in larger electron transfer capacity[65]. In addition, 

the resistance of the CNT-graphene heterostructure is smaller than that of the 

graphene[72], which can also enhance electronic transmission. Thus, CNT-graphene 

electrode can be a great candidate for supercapacitors [42, 52, 120]. Using parallel 

CNT-graphene heterostructure as electrodes[120], a supercapacitor yielded a specific 

capacitance of 290.4 F·g-1. Figure 9a shows the comparison of specific capacitances 

of CNT, graphene, graphene/CNT composite supercapacitors at different charging 



current densities, which indicates the superior performance of the composite 

supercapacitor. Using vertical CNT-graphene heterostructure, a high-performance 

supercapacitor has been fabricated with a capacitance of 385 F·g-1 at a scan rate of 

10 mV·s-1 in 6M KOH solution, with high electrochemical stability [52]. Another 

supercapacitor was reported to exhibit a capacitance of 653.7 μF·cm−2 at 10 mV·s−1, 

and the capacitance of the heterostructure is higher than that of graphene, as shown 

in Figure 9b [42]. Besides supercapacitors, the CNT-graphene electrode can also be 

applied to solar cell. Because of the larger conducting surface, the dye-sensitized 

solar cell showed a fill factor of 0.7 by using a CNT-graphene heterostructure as the 

electrode, as shown in Figure 9c [60]. Thus, the enhanced effective surface area and 

low resistance can create immense potential for CNT-graphene electrode in 

supercapacitors or solar cells, which are renewable and pollution-free energy 

storage devices. 

      
Figure 9. (a) Comparison of specific capacitance of CNT, graphene and parallel 
CNT-graphene heterostructure supercapacitors at different charging current 

densities [120]. (b) Capacitance of vertical CNT-graphene heterostructure and 

graphene at scan rates of 10–300 mV·s−1 [42]. (c) Current density vs voltage behavior 

of dye-sensitized solar cell with a CNT-graphene electrode [60]. 



4.2 Catalysts 

In recent years, CNT-graphene heterostructure has also been studied as potential 

metal-free catalyst [121-123]. By using the one-step method, SWCNTs and graphene 

can grow simultaneously on a graphene oxide (GO) substrate. By in situ doping in 

the growth process, a new N-doped graphene/SWCNT hybrid (NGSH) material can 

be obtained[121]. Figure 10a shows that N-doped vertical CNT-graphene 

heterostructure electrode has higher current density than vertical Pt/C electrode [121]. 

Because SWCNTs have higher surface-to-volume ratio, this NGSH structure 

possessed a large specific surface area of 812.9 m2·g−1 and high electrical 

conductivity of 53.8 S·cm−1. It turned out that the hybrid structure was a high-

performance and low-cost catalyst for both oxygen reduction reaction and oxygen 

evolution reaction. Its high oxygen reduction reaction activity was even better than 

the commercial 20 wt% Pt/C catalysts because of its better durability and low 

resistance [121]. Apart from N-doped CNT-graphene heterostructure[121,122], Se-

doped CNT-graphene heterostructure also showed excellent electrocatalytic 

activity[123]. Figure 10b and 10c show that the Se-CNTs-graphene heterostructure 

has the lowest resistance. Thus, using novel doping and growth methods can lead 

to functionalizing metal-free catalysts using CNT-graphene heterostructures in the 

future. 

 

 

 
Figure 10. (a) Oxide evolution reduction current density of Pt/C, CNT-graphene and 



N-doped CNT-graphene electrodes in 0.1 mol/L KOH solution at 5mV/s[121]. (b)  

Cyclic voltammetry curves of CNT-graphene heterostructure before and after 

doping with Se[123]. (c) Linear sweep voltammetry curves for CNT, graphene and 

CNT-graphene heterostructure before and after doping with Se[123]. 

4.3 Hydrogen storage  

 It is known that hydrogen can be an energy source, but its storage capacity is 

low due to the van der Waals force between hydrogen molecules and the size of the 

metal container. A vertical CNT-graphene heterostructure can offer an alternative to 

store hydrogen, as its pore size and surface area can be adjusted by varying the 

growth process parameters. Theoretical study was conducted and showed that this 

structure can be effective in increasing storage capacity[71]. When doped with 

lithium cations, this structure yielded 41 g of H2/L[71], close to the volumetric 

requirement of United States Department of Energy for mobile applications, which 

is 45 g of H2/L. A simulation of the stacking of the vertical CNT-graphene 

heterostructure for hydrogen storage is depicted in Figure 11a. Thus, successful 

fabrication of the stacked CNT-graphene heterostructure can lead to a new hydrogen 

storage device in the future.  

4.4 Interconnects 

 Continuous downward scaling in chip manufacturing has become a major 

challenge for on-chip interconnects. Due to electromigration challenges, on-chip 

Cu interconnect linewidth can no longer be reduced further in current technology 

nodes. Because of their high current capacity and superior transport properties, 

graphene[124, 125] and CNTs[33] have become potential candidates to replace Cu 

interconnects. However, the contact resistance between CNTs and conventional 

metal is a major challenge in functionalizing CNT vias[33]. Therefore, an all-carbon 

interconnect network consisting of vertical CNTs on horizontal graphene could 

mitigate the contact resistance challenge. Although the contact between CNTs and 



graphene can be refined to yield low resistance and variability, the contact resistivity 

can only be low as ~10-5 Ω·cm2 [66], which is still high. Further, to facilitate the 

proper chip operation, CNTs must be grown on graphene at temperatures 

compatible to chip manufacturing, such as 550℃[48], 510℃[67]and 400℃[68]. A 

schematic diagram for using CNTs and graphene as interconnects is shown in 

Figure 11b. The results in Figures 11c and 11d suggest that conduction path does 

exist in a 3D CNT-graphene heterostructure. However, contact resistance still 

remains the critical challenge in its implementation [91]. 

5. Summary and Conclusions 

 Structures, growth, properties, and potential applications of various CNT-

graphene heterostructures have been reviewed, with emphasis on targeting a 

specific performance enhancement for a given application. For a parallel CNT-

graphene heterostructure, where the CNT axis is parallel to the graphene plane, the 

main advantages are enhanced mechanical strength and increase in electrical 

conduction paths, providing a suitable candidate material for flexible electronics 

and all-carbon transistors. For a vertical CNT-graphene heterostructure, a 

covalently bonded seamless CNT-graphene junction has been proposed to reduce 

the electrical and/or thermal contact resistance due to its superior electron and 

phonon transport properties. Although the structures studied theoretically are still 

limited to small-diameter single-walled CNT-graphene heterojunctions, significant 

new findings have been obtained. One example is the opening of a bandgap for a 

metallic CNT, while a semiconducting CNT can be transformed into metallic under 

certain heterostructure configurations.  

 



 

Figure 11. (a) Simulated Li-doped vertical CNT-graphene heterostructure [71]. Green 

for hydrogen molecules and purple for lithium atoms.  (b) Schematic of vertical 

CNT-graphene heterostructures as interconnects in CMOS circuit[48]. (c) A 

schematic of the electrical measurement and resistance versus graphene length 

behavior after CNT growth[91]. (d) Schematic of the electrical measurement and I–

V characteristics of the vertical CNT-graphene heterostructure[91]. 

  

 It is well known that controlled synthesis of semiconducting CNTs for transistor 

applications is still a challenge, while in the case of CNT-graphene heterostructures 

for interconnect applications, semiconducting CNT is not needed. We suggest that 

future theoretical study focuses on the transformation of semiconducting CNT into 

metallic to support experimental efforts in controlled synthesis. To bridge the gap 

between theory and experiment, more theoretical studies on MWCNT-graphene 

heterostructures should be initiated. 

 Most of the CNT-graphene heterostructures have been synthesized by CVD 



methods, which are usually adapted from the CNT growth recipes with careful 

control of catalyst deposition and catalyst-substrate interactions. Several works 

have reported TEM analyses of the CNT-graphene interface in attempting to reveal 

the C-C bonding across the interface [48, 60, 67, 70, 88, 126]. Thus far, the experimental 

findings, in conjunction with atomistic models used in theoretical calculations, are 

still a long way from being conclusive on the interfacial atomic arrangements. 

Therefore, novel techniques are needed to reveal detailed interfacial information. 

For example, the ratio of sp2/sp3 bonding can be extracted from the measured 

density of states, if an atomically clean CNT-graphene junction can be prepared for 

advanced TEM and STM analyses. The latter poses a great challenge in 

experimental study of this heterostructure, while overcoming such challenge would 

yield enormous gain in understanding the heterostructure.  

 Currently, the applications of CNT-graphene heterostructures in electronics, 

thermal interface materials, and electrochemistry have mainly focused on 

macroscale properties, such as electrical and thermal resistances. In the near future, 

with more detailed theoretical investigations and controlled syntheses of high-

quality CNT-graphene heterostructures, we hope that their superior electron and 

phonon transport properties can be harnessed to build devices in the nanoscale, and 

applications such as nano-transistors, advanced-node on-chip interconnects, and 

thermal interface materials can be realized. 
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