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Abstract 

 

According to the World Health Organization, antibiotic resistance is one of the biggest threats to 

global health, food security, and development today. A growing number of infections, like 

Methicillin-resistant Staphylococcus aureus, are becoming harder to treat as the antibiotics used 

to treat them become less effective. As a result, the primary concern for infections in the hospital 

setting is due to the S. aureus’s growing resistance to antibiotics. Therefore, in response to this 

global health threat, our project focuses on furthering the research in developing a drug that S. 

aureus will not develop resistance to. In this paper, we assess NPY-Y2 as a potential immuno-

anti-infective drug target to prevent the activation of Sortase A on S. aureus. We have shown that 

NPY-Y2 is a potential drug target; however, further invasion assay experiments need to be 

conducted for more reliable verification. In a larger scheme, our hope is that the approach of this 

research will allow for the development of other anti-infective drugs for other bacteria.  



 

3 

Acknowledgement 

 

We would like to thank our advisor, Dr. Zhang, for his valuable advice and support throughout 

the project. We would also like to thank Lisa Jin and Melina Huang Xia for the training and 

support with the invasion assay. We would also like to acknowledge Daryn Baker, Victoria 

Walton, and Wendy Raposa for their support in the lab, as well as Anna Fisher and Maria 

Esquivel for their help with mammalian cell culture. Finally, thank you to the Santa Clara 

University School of Engineering for the financial support. 

  



 

4 

Table of Contents 

SENIOR DESIGN PROJECT REPORT 1 

Abstract 2 

Acknowledgement 3 

Table of Contents 4 

List of Figures 6 

List of Tables 7 

List of Abbreviations 8 

Chapter 1: Introduction 9 

Background 9 

Literature Review 9 

Antibiotics 9 

Antibiotic Research and Development 10 

Antibiotic Resistance 10 

Methicillin-Resistant Staphylococcus aureus 11 

Facultative Intracellular Microorganism 12 

Virulence Factor Expression Mechanism 13 

Sortase A 13 

Regulation of Sortase A Activity 13 

Overcoming Critiques of Current Approaches 15 

Critiques of Antibiotic Discovery Approaches 15 

Machine Learning 17 

Project Statement 18 

Significance 19 

Team and Management 19 

Backup Plan 19 

Timeline 19 

Budget 20 

Chapter 2: Methods 21 

BioAI Design 21 

Culturing and Passaging CHO Cells 22 

Culturing Staphylococcus Aureus (RN4220) Cells 24 

Invasion Assay 24 

Hemocytometer Cell Counting 25 

Bacteria Labeling 26 

Invasion 26 



 

5 

Inhibition Assay 27 

Candidate NPY-Y2 Antibody 27 

CHO Cell Culturing with Antibody Candidate 29 

Flow Cytometry 29 

Chapter 3: Data Analysis and Results 30 

Flow Cytometry 30 

Invasion Assay 30 

Inhibition Assay 33 

Chapter 4: Discussion and Conclusion 36 

Invasion Assay 36 

Inhibition Assay 37 

Future Steps 38 

Inhibition Assay 38 

BioAI Optimization 38 

Chapter 5: Engineering Standards and Realistic Constraints 40 

Ethical 40 

Social 40 

Political 40 

Environmental 40 

Health and Safety 41 

Sustainability 41 

Bibliography 42 

Appendices 48 

 

  



 

6 

List of Figures 

 

 

Figure 1. S. aureus virulence factors (Biorender) CH 1 

Figure 2. S. aureus Sortase A homodimer-monomer equilibrium. CH 1 

Figure 3. Activating molecule mechanism and antibody development CH 1 

Figure 4. BioAI algorithm structure CH 2 

Figure 5. Invasion assay developed by Zhang Lab CH 2 

Figure 6. NPY-Y2 mammalian receptor inducing conformational change of S. 

aureus Sortase A from monomer into active dimer conformation 

CH 2  

Figure 7. NPY antibody inhibiting NPY-Y2 receptor and preventing activation 

of Sortase A 

CH 2 

Figure 8. Invasion and inhibition assay analysis using flow cytometry CH 2 

Figure 9. Negative control (unlabeled bacteria) CH 3 

Figure 10. Positive control (CFSE-labeled bacteria) CH 3 

Figure 11. Final results of invasion assay CH 3 

Figure 12. Final results of inhibition assay CH 3 

 

  



 

7 

List of Tables 

 

Table 1.  Five proteins were identified as likely molecules that interact with 

Sortase A in Zhang Lab. 

CH 1 

Table 2.  Project timeline in terms of the academic year CH 1 

Table 3.  Budget breakdown CH 1 

Table 4.  Raw data collected from flow cytometry of invasion assay CH 3 

Table 5.  Processed data with UI and error bar calculations CH 3  

Table 6. Raw data collected from flow cytometry of inhibition assay CH 3 

Table 7. Processed data of inhibition assay CH 3 

 

 

  



 

8 

List of Abbreviations 

 

Artificial Intelligence  AI 

Bioengineering BIOE 

Carboxyfluorescein succinimidyl ester CFSE 

Chinese Hamster Ovary CHO 

Deionized DI 

Dimethyl Sulfoxide    DMSO 

Dulbecco’s Modified Eagle Medium DMEM 

Fluorescence-Activated Cell Sorter FACS 

Fetal Bovine Serum FBS 

Food and Drug Administration FDA 

Methicillin-Resistant Staphylococcus aureus MRSA 

Monoclonal Antibody mAb 

Multiplicity of Infection MOI 

Tryptic Soy Broth TSB 

 

  



 

9 

Chapter 1: Introduction 

Background 

Antibiotics prevent and treat bacterial infections; therefore, antibiotics are vitally important in 

healthcare for invasive procedures and in the food industry to treat livestock. However, the 

effectiveness of antibiotics is threatened by bacteria’s ability to develop resistance to the drug. 

Antibiotic resistance is a crisis that needs to be addressed by developing a new approach to 

prevent and treat bacterial infections. Our research project strives to advance the development of 

a non-antibiotic therapy to alleviate the consequences of antibiotic resistance.   

Literature Review 

Antibiotics  

Antibiotics were arguably the greatest achievement within the medical community of the 20th 

century. Since the discovery of antibiotics, the average human lifespan has increased 23 years 

(Hutchings, et. al., 2019). German scientist, Dr. Paul Ehrlich, played a prominent role behind the 

discovery of the first antibiotic drug in 1910, a synthetic derivative from dyes (Hutchings, et. al., 

2019). Dr. Ehrlich reasoned that because the immune system was chemically driven, it should be 

possible for us to develop a chemical that could specifically interact with only a disease-causing 

organism. He called this chemical therapy (or chemotherapy drug) a “magic bullet” - a bullet that 

kills only the targeted organism (Hutchings, et. al., 2019). Another approach to antibiotic 

development was proposed by Louis Pasteur in the 19th century based on his observations of 

antibiosis (Kong, et. al., 2009). Antibiosis is the death or inhibition of growth of microbes due to 

toxic molecules released by other microbes for protection or predation. Pasteur proposed that 

these molecules can be identified and isolated to be used as drugs to combat infectious diseases. 

In 1928, Alexander Fleming discovered penicillin, the first natural antibiotic (Kong, et. al., 

2009). The discovery of penicillin supported Pasteur’s proposed theory of a natural antibiotic 

drug and catalyzed the systematic study of microbes to discover other classes of natural 

antibiotics to combat microbial infections. 
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Many of the natural antibiotic drugs discovered during this era are still being used today and 

have made many medical procedures possible. Antibiotics are used as both a treatment for 

infection and for prevention. Antibiotics are necessary as prevention for those with a weakened 

immune system, those taking immunosuppressive drugs, cancer patients, and for invasive 

procedures (Hutchings, et. al., 2019).  

 

Current antibiotics work by targeting unique bacterial molecules that aren’t found in mammalian 

cells but are crucial for bacteria survival. These target molecules are involved in cell wall 

synthesis, protein synthesis, DNA replication, DNA transcription, and metabolic processes 

(Hutchings, et. al., 2019). 

Antibiotic Research and Development 

There are two general types of antibiotics - natural product and synthetic (Hutchings, 2019). 

Natural antibiotics are found by screening for molecules that exist naturally in our body, and they 

are either part of the immune system or have the function of antibiotics. Synthetic antibiotics are 

made in the laboratory solely with known functional structure and design. Sometimes, synthetic 

antibiotics are discovered by modifying the structure of natural molecules. In the mid-twenty 

century, during the golden age of antibiotic discovery, researchers established the current 

categories of antibiotics (Hutchings, 2019). Some contemporary approaches include: “open 

innovation; targeting specific pathogens and/or specific organs in the patient; examining the 

effects of antimicrobial compounds on bacterial virulence as well as on antibiotic-resistant 

variants and searching for antibiotic producers among microorganisms not previously well 

explored” (Leisner, 2020). The drug discovery approaches researchers use today fall into one of 

the listed categories. There have been no major innovations on antibiotic mechanisms. 

Antibiotic Resistance 

The consequences of antibiotic resistance are multifaceted and will disproportionately impact 

countries and individuals differently. More than 2.8 million antibiotic-resistant infections and 

35,000 deaths occur in the US each year (CDC, 2019). If this silent pandemic continues without 

intervention, it could result in 10 million deaths per year by 2050 (United Nation Foundation, 

2021). The projected global economic burden caused by antibiotic resistance would increase 



 

11 

from $5 billion to $100 trillion (United Nation Foundation, 2021). The consequences of 

antibiotic resistance would be particularly damaging to low- and middle-income countries. The 

economies of these countries rely on agricultural productivity, which is also challenged by 

antibiotic resistance. Thus, antibiotic resistance risks widening the global health and economic 

inequality gap (United Nation Foundation, 2021). 

 

Antibiotic resistance arises from the bacteria’s tendency to mutate and from the process of 

natural selection. Under stress, like in the presence of antibiotics, colonies of bacteria can 

increase their rates of mutation (Peterson, et. al., 2018). This increases the likelihood of altering 

or removing the molecule that antibiotics are targeting. And prolonged colony exposure to 

antibiotics creates a pressure that naturally selects for bacteria with the mutation so that all the 

bacteria remaining in this colony are now resistant to antibiotics. In addition to altering or 

removing antibiotic target molecules, bacteria have also developed other antibiotic resistant 

genes that provide defense strategies against antibiotics. These defense strategies include 

restricting access of antibiotics by altering their membrane, removing antibiotics using pumps, 

and destroying the antibiotic using enzymes (CDC, 2021). Moreover, bacteria are able to share 

these antibiotic resistant genes to neighboring bacteria through horizontal gene transfer 

mechanisms: transformation, transduction, and conjugation (von Wintersdorff, 2016). 

 

Knowing the defense mechanisms of bacteria against antibiotics, there are  two major issues with 

current antibiotic mechanisms. One problem with current antibiotics is that it relies on targeting 

specific molecules of the bacteria. This is an issue because bacteria can mutate to change or 

remove these molecules. The second problem is that antibiotics either kills the bacteria or 

prevents the growth of the bacteria. This is a problem because then antibiotics act as the pressure 

for natural selection of antibiotic resistant bacteria. So, because of how antibiotics work, 

antibiotic resistance is inevitable.  

Methicillin-Resistant Staphylococcus aureus 

Staphylococcus aureus is a bacterium that’s naturally found on skin and in the nose of healthy 

individuals (CDC, 2020). It’s classified as a gram-positive bacterium, so it has a thick protective 

coating of peptidoglycans making up its cell wall. S. aureus only becomes an issue when it enters 
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the body. Risks for staph infection include prolonged stays at the hospital, invasive procedures, 

unsanitary food preparations, contact sports, and underlying health problems that weaken the 

immune system (CDC, 2020). These risks are not completely avoidable, especially in places with 

poor sanitary conditions and high population densities. And with COVID-19, these risks are of 

great concern for hospitalized patients or intubated patients on the ventilators.  

 

Methicillin-resistant staphylococcus aureus (MRSA) is a common and continual threat 

particularly in hospitals. Within the hospital setting, MRSA is the primary cause of infection and 

can lead to bloodstream infections, pneumonia, or surgical site infections. If left untreated, the 

infection can develop into sepsis, which has a mortality rate between 20% - 50% (CDC, 2019). 

Unfortunately, MRSA is incredibly difficult to treat because it has developed resistance to many 

first-line classes of antibiotics including methicillin, penicillin, and amoxicillin. In 2017, there 

were roughly 323,700 cases of MRSA and 10,600 deaths (CDC, 2019).  

Facultative Intracellular Microorganism 

Staph infection occurs following the adhesion and invasion of S. aureus into host cells. 

Therefore, S. aureus is classified as a facultative intracellular microorganism, a type of pathogen 

that can proliferate inside host cells. Depending on the tissue of the host cell, staph infection can 

lead to pneumonia in the lungs, septicemia in the blood, and meningitis in the brain, etc.  

 

S. aureus is able to survive in the host environment and invade mammalian cells using a variety 

of virulence factors. These virulence factors include antibody presentation to camouflage the 

bacteria from immune cells, secreted toxins to suppress the immune response, cell surface 

adhesins that allow it to form biofilms and bind to tissues, and invasins to enter in and out of 

mammalian cells (Jenul, 2019). As a result, S. aureus can survive and proliferate inside both 

phagocytic immune cells (e.g. neutrophils) and non-phagocytic cells (e.g. endothelial cells, 

epithelial cells, osteoblasts) (Bongers, 2019). Anti-virulence strategies may be developed to 

prevent expression of disease-causing virulence factors. However, S. aureus utilizes a 

combination of a variety of virulence factors to attach and invade mammalian cells. Therefore, 

developing antibiotics to target one virulence factor is not a realistic strategy to treat staph 
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infection. So, to develop an anti-virulence therapy, the target needs to be an upstream regulator 

of virulence factor expression.  

 

Figure 1. S. aureus virulence factors 

Virulence Factor Expression Mechanism 

Sortase A 

Sortase is a transpeptidase enzyme found on the gram-positive cell wall of bacteria, including S. 

aureus. The most common sortase enzyme is Sortase A. The activation of Sortase A results in 

expression and covalent anchoring of invasion virulence factors onto the cell wall (Zhu, et. al., 

2018). Proteins to be displayed on the cell wall are labeled with the LPXTG motif signal 

(Mazmanian, 1999). Sortase A cleaves the bond between threonine and glycine of the signaling 

motif (Mazmanian, 1999). Then it covalently links the threonine end of the protein to 

pentaglycine of the cell wall, displaying the protein onto the bacteria’s cell surface. Sortase A is 

only found in bacteria; therefore, it can be a viable target for antibiotic targeting without risking 

damage to mammalian cell activity.  

Regulation of Sortase A Activity 

Research suggests that when Sortase A exists in a monomer confirmation, it expresses more 

virulence factors than its homodimer conformation (Zhu, 2015). Therefore, Sortase A activity is 

likely dependent on its conformation state in order to regulate energy expenditure on virulence 

factor display. So, when Sortase A is in a dimer conformation, it is inactive. Therefore, the 
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bacteria are unable to express virulence factors and can’t invade the mammalian cell. Further 

research suggests that a binding mechanism induces Sortase A to undergo a conformational 

change from a dimer to a monomer conformation (Zhu, 2015). In this active monomer 

conformation, the bacteria can now express virulence factors and invade mammalian cells.  

 

Figure 2. S. aureus Sortase A homodimer-monomer equilibrium. © Vivian Zhang 

 

There is no published research on the signaling molecules that interact with Sortase A to regulate 

the dimer-monomer equilibrium. It’s known that bacteria are able to sense various environment 

cues and respond with alterations of virulence factor gene expression (Jenul, 2019). However, 

besides bacteria to bacteria communication, bacteria are also able to communicate with host 

mammalian cells through inter-kingdom signaling. Eukaryotes release small molecules, like 

hormones, that bind to receptors found on bacteria cells. Binding of mammalian molecules to 

bacterial receptors initiates a signaling cascade. 

 

Previous research in Dr. Zhang’s lab has identified five likely mammalian signaling molecules 

that interact with Sortase A. The selected signaling molecules could either activate Sortase A to 

undergo a conformational change, or it can inhibit its conformational change. Our project has 

been dedicated to testing the efficacy of the signaling molecule as a target for a novel immuno-

anti-infective drug. 
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Protein ID Protein Name Function Location 

G3H5I4 NPY-Y2 receptor Neuropeptide Y 

receptor 

Plasma membrane 

G3HTG1 Double C2-like domain-

containing protein beta 

Calcium dependent 

phospholipid binding 

Plasma membrane 

G3IL75 Collagen alpha-1(V) chain Extracellular matrix 

structural constituent 

Extracellular region 

G3HIP9 A disintegrin and 

metalloproteinase with 

thrombospondin motifs 12 

Metalloendopeptidase 

activity 

Extracellular region 

G3IHL7 Cathepsin M Cysteine-type 

peptidase activity 

Extracellular 

Region or secreted 

Table 1. Five proteins were identified as likely molecules that interact with Sortase A in Zhang 

Lab. 

 

Overcoming Critiques of Current Approaches  

Critiques of Antibiotic Discovery Approaches 

The current way of discovering new antibiotic drugs is not efficient. According to WHO, 

worldwide there are “43 antibiotics in development [:] 15 were in Phase 1 clinical trials, 13 in 

Phase 2, 13 in Phase 3, and two have had new drug applications submitted” (Hyun, 2021) 

About one in five drugs can be approved by FDA and enter the clinical trial phase and only 60% 

of the drugs in Phase 3 clinical trials get approved (Hyun, 2021). The selection process is 

stringent. Moreover, the average research takes years of work; some even take more than 10 

years. The time-consuming part of research is usually due to the screening and testing process of 
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finding the potential candidates amongst thousands of molecules. This process is time-

consuming and expensive due to funding for personnel, lab equipment, maintenance, and cost for 

consumers in need. 

 

Among other economic factors, these technical and scientific limitations are one of the reasons 

why it’s becoming harder to create new antibiotics that work. This is implicated by a reduced 

number of FDA approved antibiotics. There were 16 FDA approved antibiotics in 1983-1987 and 

only 5 FDA approved antibiotics in 2013-2016 (OECD, 2016). These limitations are also why 

investment into antibiotic research is considered risky and likely unprofitable. There were 18 big 

pharma companies with an active R&D pipeline in 1990, and this has since reduced to 6 by 2016 

(OECD, 2016). 

 

The current Antibiotic discovery approach actively trying to kill the bacteria, by targeting 

bacteria’s cell wall, inhibiting protein synthesis, inhibiting nucleic acid synthesis, and etc.. The 

targeting molecules of our current antibiotics are molecules that are unique to the bacteria and 

are not present in human. The antibiotics are biologically safe for human, which allow 

researchers to target those unique molecules aggressively with the purpose to disrupt the bacteria 

survival. However, because of bacteria’s natural tendency of mutation, this aggressive approach 

creates survival pressure that encourages bacteria to mutate. With broach application of 

Antibiotics starting from 1940s, some bacteria survive and gain antibiotic resistance and survive. 

The first sign of antibiotic resistance happened shortly after the discovery of penicillin: in 1940, 

an E. coli strain was discovered to produce penicillinase against presence of penicillin 

(Lobanovska, M., & Pilla, G., 2017). Two years later, the spread of penicillin resistance is 

documented in four Staphylococcus aureus (Staph. aureus) strains in hospitalized patients, and in 

1960s, more than 80% of the of the Staph. aureus are penicillin resistant (Lobanovska, M., & 

Pilla, G., 2017). Similar phenomenon of antibiotic resistance was observed when penicillin was 

introduced into different countries. The repetition of antibiotic resistance occurring and the short 

timeframe for bacteria to obtain resistance demonstrate the disadvantage of the current antibiotic 

discovery approach, the evitability of antibiotic resistance. 
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In the past, scientists can keep up with the speed of bacteria mutation and discover new 

antibiotics when bacteria become resistance to the current antibiotics. However, more than 150 

antibiotics has been discovered and now antibiotic resistance emerges for the majority of the 150 

antibiotics. Furthermore, antibiotics abuse aggravates the problem of antibiotic resistance. Some 

current approaches towards slowing down the antibiotic resistance include reducing antibiotic 

use in medical practices, improving animal antibiotic use and support the innovations. 

Antibiotics works against bacteria, but only temporarily. Th approach of competing with 

bacteria’s mutation will not give us a permanent solution to bacterial infection, so we need to 

look for a new approach that provides longer-term solution to bacterial infection and avoid the 

problem of antibiotic resistance. 

Machine Learning 

Our research proposes an efficient approach in antibiotic research by using machine learning to 

screen for candidates from natural products. Some researchers have shown prominent results 

using this revolutionary approach: Torres’ research focuses on finding naturally existing 

molecules in the human genome for potential candidates of antibiotics using artificial 

intelligence. They screened the entire human proteome in search of protein sequences that have 

antibacterial properties hidden or encrypted within the human genome. “[They] reported the 

identification of 2,603 encrypted peptide antibiotics that are encoded in proteins with biological 

function unrelated to the immune system” and elected 55 top candidates (Torres, 2022). The 

results are not ideal - the candidates showed low effectiveness against bacterial infection. 

However, they found that a combination of peptides from the same region of infection worked 

better than a single peptide. This observation is a new pattern that should be taken into 

consideration when designing or discovering antibiotics. Their approach of using artificial 

intelligence allows for fast mining of proteomic data, making the search for drug candidates 

faster and cost-effective compared to the traditional method. 

         

We use machine learning to efficiently find the top candidates for antibiotics of specific bacteria 

targets. We have the datasets on physicochemical, biological, and functional information on the 

molecules that can bind to our target, Sortase A. Then, we use these data to train and test the 

machine learning algorithms. The results should be the best candidate out of thousands of 
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molecules. We will confirm machine learning results in the wet lab. Besides the basic skeleton 

structure of the machine learning, we are also experimenting with different standardization 

methods and models to see if the results are different. In addition, we provide human intelligence 

to machine learning by adding parameters in addition to the laboratory-obtained information. 

Based on the machine learning results, some features might be strongly correlated with the 

“druggability” of the molecules and some features might have little or no correlation (Dezső, 

2020). We can manually adjust our algorithm to make it better fit the data based on different 

research. 

Project Statement 

Herein, the main goal of our research project is to develop a potential anti-infective drug that S. 

aureus won’t develop resistance to by inhibiting an activating molecule of Sortase A. Inhibiting 

the activating molecule of Sortase A will prevent the expression of virulence proteins necessary 

for invasion of mammalian cells while also avoiding direct interaction with the bacteria. To 

overcome the lengthy and costly process of identifying the most potent and safe activating 

molecule through wet-lab testing, we will utilize bioAI with supervised machine learning as a 

new approach for drug discovery. We will optimize the bioAI algorithm previously developed by 

Lisa by incorporating parameters into the machine learning design.  

 

 

Figure 3. Activating molecule mechanism and antibody development © Vivian Zhang 
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Significance 

MRSA has been an increasingly large issue within the modern healthcare system. “In recent 

decades, due to the evolution of bacteria and the abuse of antibiotics, the drug resistance of S. 

aureus has gradually increased, the infection rate of MRSA has increased worldwide, and the 

clinical anti-infective treatment for MRSA has become more difficult” (Guo, 2020). According 

to WHO, S. aureus infections are of urgent concern, and there’s an urgent need of new 

antibiotics for methicillin-resistant and vancomycin-intermediate resistant bacteria (Genenva, 

2017). If our research works, we can not only discover an anti-infective drug for staph infection, 

but also propose a new method in drug discovery using bioAI. This method will not only save us 

time and money for all future drug discovery approaches, but also solve the antibiotic resistance 

problem worldwide. It would be another advancement in machine learning appliances in the 

biomedical field beyond bioinformatic. The machine learning technology is evolving constantly. 

Although similar research is being done on the same topic, the techniques we are using might be 

different and provide new insights to the field.  

Team and Management 

Backup Plan 

In the event that we are unable to optimize the bioAI algorithm to produce a new list of potential 

drug targets before the end of Winter Quarter, we have an alternative course of action. Instead of 

testing drug targets from our own list, we will select the top candidate of the previously selected 

list of drug targets (Table 1). Unfortunately, for our project, we had to proceed with our backup 

plan. The selected drug target for our project was NPY-Y2 receptor. 

Timeline 

During the Fall Quarter, we received training on mammalian cell culturing techniques and 

planned to conduct the zero experiment. However, our mammalian cells continuously were 

contaminated with mycoplasma. Therefore, we spent most of our time conducting literature 



 

20 

research into the drug target candidates and practicing wet lab techniques. In the Winter Quarter, 

we were unable to return to the lab for the first four weeks due to COVID-19 restrictions.  

 

Fall Quarter 

● Finalize materials and 

experimental plans 

● Learn and practice 

mammalian cell 

culture techniques 

Winter Quarter 

● Invasion assay 

● Order mAbs 

  

Spring Quarter 

● Inhibition assay 

 

 Table 2. Project timeline in terms of the academic year 

 

Budget  

Materials Cost 

Cell Solutions (FBS and DMEM) $226 

Mammalian CHO Cells $710.93 

Antibodies $500 

Total Cost $1,436.93 

Table 3. Budget breakdown 
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Chapter 2: Methods 

Our bioAI algorithm will select what it believes to be the most critical activating molecule for 

Sortase A. Therefore, by inhibiting the activating molecule with its corresponding antibody, it 

should drastically reduce the invasion of Staphylococcus aureus bacteria into mammalian 

cells. To test the efficacy of inhibiting the activating molecule, we have cultured Chinese 

Hamster Ovary (CHO) cells to conduct invasion assays. The purpose of the invasion assay is 

to quantify the level of infection of the CHO cells by S. aureus. Three sets of invasion assays 

were/will be conducted. The zero experiment invasion assay is the negative control where no 

activating molecule nor antibody were added; therefore, a very minimal level of invasion is 

expected. The positive control invasion assay will include the activating molecule, but no 

antibody; therefore, a very high level of invasion is expected. Lastly, the test invasion assay 

will include both the activating molecule and antibody. The results of this invasion assay will 

be compared to the negative and positive control to evaluate the effectiveness of targeting the 

selected activating molecule to prevent bacterial invasion. 

BioAI Design 

First, I would like to acknowledge the credit of our supervised machine learning algorithm to 

Lisa Jin. The datasets we are using are collected from external lab and are screened for the 

binding affinity to Sortase A. Most of the collected parameters are fixed biological parameters 

such as number or peptide and molecular weight, but the score parameter create some ambiguity. 

Due to the timeframe when the data was collected, we were not able to trace back the meaning of 

the score parameter. Along with these parameters, we use the location parameter which are 

evaluate and weighted by human intelligence (Figure 4). Sortase A interactions occurs at the 

surface of the cells, so a general scoring guideline would be the closer the molecule is located 

near the cell membrane the larger the score. However, there’re other factors that we took into 

consideration for molecules that show presences in multiple parts of the cell.  

 

The datasets are preprocessed under feature scaling where we transform each parameter into 

comparable and standardized data. For parameter values that varies greatly, we would use 

normalization techniques, and for the parameters with Boolean values, we would transform them 
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into numerical data. For training and testing of the ML (machine learning) model, 80% of data 

are used for training and 20% of data are used for testing. The datasets that are used in the 

machine learning algorithm are less than 3000, which is relatively small. This leads us to the next 

step ---- wet lab testing, to confirm the results from the ML algorithm. 

 

Figure 4. BioAI algorithm structure 

Culturing and Passaging CHO Cells 

First, we transferred the CHO cells we ordered from stock to two petri dishes. Materials were 

heated up in a 37°C water bath, including: fresh Dulbecco's modified eagle medium (DMEM), 

PBS and cell media containing DMEM with 5% Fetal Bovine Serum (FBS). We extracted 2mL 

of the CHO cell suspension from the stock and put them into a falcon tube, and prepared five 

falcon tubes containing 2mL of the cell suspension. Then, we spined them in the centrifuge at 

3000rpm for 1 minute. A good result should show cell pellet in the bottom of the tubes. After 

that, we aspirated the liquid in the falcon tubes and avoided suctioning out the cell pellet in the 

bottom.  

 

The cell pellets observed from 2mL suspension were small, so it’s necessary to combine them 

before transferring them into the petri dish. So, we combined three of the five falcon tubes into 

one falcon tube and then the other two into a second tube. Then, 1mL of cell media was added to 

each tube and the cells were resuspended by pipetting up and down. Petri dishes were prepared 
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by adding 6mL of cell media, then the cell resuspension solutions were seeded into the petri dish 

by spreading them in droplets evenly over the surface. Lastly, we transferred the petri dishes into 

a 37°C incubator. 

 

After we have our CHO cell plates, their condition was checked daily, and media change and cell 

passage were performed according to their growth. The color of the media is important to note, 

because oxidation will make the media look brown and oxidation agents are harmful to the cells. 

When that happened, we changed the media. We also checked for contamination every day, if 

contamination was spotted, we bleached the petri dishes.  

 

To change the cell media, we first prepared PBS and DMEM with 5% FBS and heated them up 

to 37°C in the water bath. We first aspirated the old cell media in the petri dish, then washed 

them with 4mL PBS three times. Lastly, we added new DMEM with 5% FBS to the petri dish. 

 

When cell confluency of 80% or above was observed, we considered passaging the cells into two 

plates. To passage the cells, we first heated up DMEM with 5% FBS, PBS, and trypsin in a 37°C 

water bath. Then we aspirated the media in the petri dishes and washed them with 4mL PBS 

three times. Next, we added 2mL trypsin into the petri dishes and quickly placed the petri dishes 

into the 37°C incubator for 5 minutes. After 5 minutes, we tapped the petri dishes on the bottom 

a couple of times to detach more cells. When extracting the cells from the petri dishes, DMEM 

with 5% FBS was added to the top of the petri dish at an angle to make sure we have all the cells 

and to neutralize the trypsin. The cell suspension was collected into a 15 mL falcon tube and then 

spined down in a centrifuge at 3000 rpm for 1 minute. After this step, we should be able to 

clearly see a cell pellet in the bottom of the falcon tube. Next, we aspirated the supernatant, 

leaving only the cell pellet in the bottom for resuspension in 2mL of the cell media (DMEM with 

5% FBS). Lastly, we prepare the petri dishes by adding 6mL of the cell media to each petri dish, 

and then pipetting 1mL of cell suspension to each plate by evenly, spread out droplets. 
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Culturing Staphylococcus Aureus (RN4220) Cells 

To culture RN4220 bacteria cells, we need the alcohol lamp, LB agar plates, RN4220 bacteria 

cell stock solution, and inoculation loops. First, we thawed the RN4220 bacteria cell stock, 

stored in -80ºC condition, at room temperature. Then, we lit the alcohol lamp to create a sterile 

environment to avoid bacteria contamination. After thawing, we placed the LB agar plate near 

the alcohol lamp and sterilized the inoculation loop on top of the flame. We dipped the loop into 

the RN4220 stock solution and then spread the bacteria in the LB agar plate in zig-zag motion. 

Then, we used parafilm to seal the LB agar plate and placed the plate into the incubator 

overnight.  

 

To make LB Agar plates, we made a 100mL solution according to the formula that is 7.5g of 

Agar and 15g of TSB (tryptic soy broth) per 500mL of DI water. Then, we autoclaved the 

solution in 121°C for 45 minutes. After the solution cooled down, we poured 10 mL of the 

solution into each plate, and then closed the lid and waited until it solidified. Then, the ten plates 

were sealed with parafilm, stacked upside down, and stored in a 4°C fridge. 

 

Next day, we inoculated on bacteria in TSB media to allow for more efficient and optimal 

bacteria growth. The goal for our experiment is to use the bacteria for an invasion assay when 

it’s in the exponential growing phase. To inoculate the bacteria, we first added 5mL of TSB 

media to a culture tube. Then we used an inoculation loop to pick up one colony from the LB 

agar plate and dipped in liquid TSB solution. One colony of the bacteria is inoculated into one 

culture tube. Then, we incubated the bacteria culture in a shaking incubator for five hours under 

37°C. After finishing, they are stored in a 4°C fridge waiting to be used for invasion assay. 

Invasion Assay 

Overall design of the invasion assay experiment is to allow bacteria to invade mammalian cells. 

This invasion will be conducted in a 6-well plate where three wells contain fluorescent-stained 

bacteria. The other three wells are the negative control and will not have fluorescent-stained 
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bacteria. The level of invasion will be quantified using a FACS machine to compare the level of 

fluorescence between the test and control wells.  

 

Figure 5. Invasion assay developed by Zhang Lab 

 

Hemocytometer Cell Counting 

The day before the invasion assay, CHO cells needed to be passaged into a 6-well plate and 

counted using a hemocytometer. To do this, two 100mm plates of confluent CHO cells were 

detached with 2mL of trypsin, incubated for three minutes, neutralized with 5mL of DMEM, and 

resuspended in 1.5mL Dulbecco's modified eagle medium (DMEM) with 5% fetal bovine serum 

(FBS). These cells were collected into one 15mL falcon tube to obtain a total of 3mL of CHO 

cells. 0.5mL of CHO cells were added to each well containing 1mL of DMEM with 5% FBS. 

Store the 6-well plate overnight at 37ºC and 5% CO2. Next, to approximate the number of CHO 

cells in each plate, first collect 15µL of CHO cells from the remains of the falcon tube and mix it 

with 15µL of 0.4% trypan blue solution into a 1.5mL Eppendorf tube. This results in a dilution 

factor of 2. Add 10µL of the mixed solution into one of the hemocytometer chambers. Count the 

total number of cells in the four corner squares. 

 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙𝑠/𝑤𝑒𝑙𝑙 

=  
𝑇𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡 ∗  𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐶𝐻𝑂 𝑐𝑒𝑙𝑙𝑠 ∗  𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ∗  104

4
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Bacteria Labeling 

Bacteria should be in its exponential phase for the invasion assay. Therefore, the day before the 

invasion assay, one colony was inoculated into four culture tubes containing 5mL TSB media. 

The culture tubes were then incubated at 37ºC and 220rpm shaking for four hours. After four 

hours, store the bacteria in 4ºC until it needs to be used for the invasion assay. 

 

On the day of the invasion assay, check the OD600 of the bacteria culture. The desired OD600 is 

0.4 to 1.0, which suggests the bacteria are in the exponential phase of growth.  

 

Centrifuge the bacteria culture at 5,000rpm for 10 minutes at 4ºC to obtain a bacterial cell pellet. 

Remove the supernatant and resuspend the cell pellet with 2mL of PBS. Then, two bacterial 

cultures were combined into one tube so that there was a total of two culture tubes, each with 

4mL of PBS. One of the tubes will be stained with 5mM carboxyfluorescein succinimidyl ester 

(CFSE) fluorescent dye, and the other will not. To prepare the 5mM CFSE dye stock solution, 

18µL of DMSO was added to one vial of CFSE stock tube wrapped in tin foil. CFSE is light 

sensitive, so it should always be wrapped in tin foil to minimize light exposure. 8µL of CFSE 

stock solution was added to one culture tube. The culture tube stained with CFSE was wrapped 

in tin foil. Both culture tubes were incubated for 60 minutes in shaker at 225rpm and 37ºC. After 

60 minutes, centrifuge the tubes at 5,000rpm for 10 minutes. The CFSE-stained bacteria were 

then washed with 2mL of PBS three times. Measure the OD600 of the stained and unstained 

bacteria. The bacteria are now prepared for invasion into CHO cells. 

 

After preparing the bacteria, the CHO cells were prepared for invasion by changing its media 

with 1mL of fresh DMEM media. 

Invasion 

The following formula was used to calculate the volume of bacteria cells that needed to be added 

to each well of CHO cells to achieve a multiplicity of infection (MOI) of 40. The stained and 

unstained bacteria need to be calculated separately. It was assumed that the OD of 1.0 is 

equivalent to 8 × 108 cells/mL. 

 



 

27 

𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎 𝑐𝑒𝑙𝑙𝑠/𝑚𝐿 =  𝑂𝐷600 × 8 × 108 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎 𝑛𝑒𝑒𝑑𝑒𝑑 =  
𝑇𝑜𝑡𝑎𝑙 𝐶𝐻𝑂 𝑐𝑒𝑙𝑙𝑠/𝑤𝑒𝑙𝑙 

𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎 𝑐𝑒𝑙𝑙𝑠/𝑚𝐿
 

 

The CHO cells were then mixed with a certain volume of bacteria based on the above 

calculation. Three wells were mixed with stained bacteria and three wells were mixed with 

unstained bacteria. The 6-well plate was wrapped in tin foil and incubated at 37ºC for 60 

minutes. 

 

After 60 minutes, the bacterial invasion was terminated by adding 6µL of gentamicin to each 

well and incubating for 45 minutes. After 45 minutes, the CHO cells were washed with 2mL of 

PBS three times to wash away any debris and bacteria that didn’t invade the cells. To analyze the 

cells, the CHO cells needed to be collected and fixed so that it no longer changes. The CHO cells 

were collected by adding 1mL of trypsin-EDTA solution to each well, incubating for four 

minutes, and neutralizing it with 3mL of DMEM. The cells were centrifuged for five minutes at 

1340rpm and resuspended with 4% paraformaldehyde (PFA) solution in PBS to fix the cells. The 

cells were incubated in room temperature for 15 minutes and centrifuged for five minutes at 

1340rpm to form a cell pellet. The supernatant was discarded, and the cell pellet was 

resuspended in 1mL of PBS. The cells were analyzed using a FACS machine. 

Inhibition Assay 

In the inhibition step, we will add our drug candidate NPY-Y2 receptor antibody (Figure 6) to 

inhibit the Sortase A from activation, thus inhibiting the bacteria invasion (Figure 7). The 

inhibition assay is the testing experiment in which we will test the NPY-Y2 antibody’s 

effectiveness in stopping bacterial infection under different concentrations. Procedures for 

inhibition assay are the same as invasion assay with an additional step of incubating antibiotics 

for 45 to 60 minutes, before the beginning of the bacteria invasion process. 

Candidate NPY-Y2 Antibody 

Our final drug candidate, NPY-Y2 (Neuropeptide Y Receptor Y2) Antibodies, is selected from 

the ML algorithm. NPY-Y2 is the receptor for NPY (Neuropeptide Y), and it can also bind to 
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Sortase A to active Sortase A, as shown in Figure 6. Our Drug candidate is the NPY-Y2 

Antibody, which will bind to the Y2 receptor. NPY-Y2 aims to outcompete the binding between 

Y2 receptor and Sortase A, preventing Sortase A from binding to the Y2 Receptor, thus 

inhibiting Sortase A from becoming active. Without active Sortase A, bacteria are unable to 

invade mammalian cells. 

https://www.rndsystems.com/products/human-npy2r-antibody-557521_mab10211  

 

 

Figure 6. NPY-Y2 mammalian receptor inducing conformational change of S. aureus Sortase A 

from monomer into active dimer conformation © Vivian Zhang 

 

 

 

 

Figure 7. NPY antibody inhibiting NPY-Y2 receptor and preventing activation of Sortase A  

© Vivian Zhang 
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CHO Cell Culturing with Antibody Candidate 

For each concentration of the NPY-Y2 antibody, we prepare triplicates in 6-well plates. We have 

in total of 21 wells grouped into 7 groups as following:  

A. No antibody (Negative control with unlabeled bacteria) 

B. No antibody  

C. 0.2 μg/mL 

D. 0.5 μg/mL 

E. 1 μg/mL 

F. 2 μg/mL  

G. 8 μg/mL 

After the addition of antibody, we culture the CHO cells with antibody for 45 to 60 minutes. 

Flow Cytometry 

We analyzed the samples using BD Accuri C6 Plus Flow Cytometer. Flow cytometer will collect 

the samples and measure the cell counts and their corresponding fluorescent level. When using 

the BD Accuri C6 Plus Flow Cytometer, we need to warm up the machine for 30 minutes. Then 

we clean the SIP tip, where the samples are being collected, and run the instrument QC (quality 

control) to ensure that the flow cytometer can function properly. SIP clean is performed with SIP 

clean liquid and DI water. Then, we can insert the samples in the SIP tip to collect data. SIP 

clean is performed, between data collection of each sample as well. Figure 8 indicates the 

mechanism that infections from CFSE-stained bacteria can make CHO cell fluorescence. 

 
Figure 8. Invasion and inhibition assay analysis using flow cytometry  
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Chapter 3: Data Analysis and Results 

Flow Cytometry 

The degree of internalization, or invasion, of S. aureus into the CHO cells was measured using 

the BD AccuriTM C6 Plus Software flow cytometry. The flow cytometer counts the number of 

cells it collects and measures each cell’s fluorescence level. Therefore, by staining the bacteria 

with CFSE dye, we can analyze the degree of internalization into mammalian cells based on the 

relative fluorescence intensity. The higher the degree of internalization, the higher the 

fluorescent intensity. The flow cytometer measures fluorescence level using fluorescein 

isothiocyanate (FITC)-A mean fluorescence intensity. The FITC-A score is plotted against cell 

count and the gating was manually adjusted based on the general peaks of the graph representing 

CFSE-labeled and unlabeled bacteria trials.  

 

The uptake index measures the relative degree of internalization based on the fluorescence level 

of the CHO cells. It allows for comparison of data between experiments by taking into account 

the relative proportional differences of number of CHO cells to bacteria cells. Therefore, the 

uptake index also suggests the activity of Sortase A, which allows for invasion of S. aureus in 

the CHO cells.  

Uptake Index (UI) = Mean FITC-A * Percentage of Fluorescent Molecules 

Invasion Assay 

We performed the invasion assay four times throughout the school year, and we were finally able 

to complete a successful experiment in our fourth experiment. For the invasion assay, three wells 

represented the negative control which had CHO cells infected with unlabeled bacteria. And 

another three wells represented the positive control which had CHO cells infected with CFSE-

labeled bacteria.   
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Figure 9. Negative control (unlabeled bacteria). The x-axis, FITC-A, represents the fluorescent 

level from low to high. The y-axis represents the cell count. 

 

 

Figure 10. Positive control (CFSE-labeled bacteria). The x-axis, FITC-A, represents the 

fluorescent level from low to high. The y-axis represents the cell count. 
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  Raw Data 

Antibody 

Concentration 

(µg/mL) 

Wells 
Mean 

FITC-A 

FITC-A Stained 

Percentage 

Percentage of 

area (%) 

0  

(Negative Control, 

unstained) 

A1 565.68 73.24 0.46 

A2 3,387.42 40.91 5.14 

A3 2,676.00 35.55 0.82 

0 

(Positive Control) 

B1 54,971.66 306.7 52.07 

B2 141,801.80 145.68 51.88 

B3 53,722.23 307.38 51.98 

Table 4. Raw data collected from flow cytometry of invasion assay 

 

  Processed Data 

Antibody 

Concentration 

(µg/mL) 

Wells 
Uptake Index 

(UI) 
Average UI Normalization 

0  

(Negative Control, 

unstained) 

A1 414.304032 

917.138518 0.005092325188 

A2 1385.793522 

A3 951.318 

0 

(Positive Control) 

B1 168598.0812 

180102.1113 1 

B2 206576.8622 

B3 165131.3906 

Table 5. Processed data with UI and error bar calculations 
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Figure 11. Final results of invasion assay 

Inhibition Assay 

For the inhibition assay, we conducted 7 trials of varying antibody concentrations in triplicate. 

All wells were infected with either CFSE-labeled or unlabeled (negative control) bacteria. 

 

  Raw Data 

Antibody 

Concentration 

(µg/mL) 

Wells 
Mean 

FITC-A 

FITC-A Stained 

Percentage 

Percentage of 

area (%) 

0 

(Positive Control) 

A1 35,127.55 91 6.5 

A2 33,065.98 84.9 5.1 

A3 19,739.84 87.4 3.2 

0.2 

B1 39,460.67 84.6 9.8 

B2 32,917.81 73.3 7.5 

B3 13,630.06 85.7 0.70 

0.5 

C1 36,869.85 14 0.4 

C2 22,170.89 77.5 3.2 

C3 29,922.30 80.7 8.7 

1 
D1 42,151.69 72.4 12.4 

D2 16,870.77 82.2 2.5 
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D3 70,524.21 82.6 32.1 

2 

E1 16,798.42 91.7 2 

E2 53,153.67 85.4 16.6 

E3 58,144.34 83.3 28.6 

8 

F1 15,782.05 87.7 3.1 

F2 19,293.13 82 3 

F3 15,150.84 73.4 2.4 

0  

(Negative Control, 

unstained) 

G1 6,982.30 9.4 3.6 

G2 6,576.16 53.6 23.7 

G3 3,636.97 8 3.1 

Table 6. Raw data collected from flow cytometry of inhibition assay. Red highlighted trials (C1 

and G2) are outliers that were not included in data processing. 

 

 

 

 

 

  Processed Data 

Antibody 

Concentration 

(µg/mL) 

Wells 
Uptake Index 

(UI) 
Average UI Normalization 

0 

(Positive Control) 

A1 31966.0705 

25763.90256 1 

A2 28073.01702 

A3 17252.62016 

0.2 

B1 33383.72682 

23064.48099 0.8952246631 

B2 24128.75473 

B3 11680.96142 

0.5 
C1 5161.779 

20664.86793 0.8020860922 C2 17182.43975 
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C3 24147.2961 

1 

D1 30517.82356 

34212.86465 1.327937977 

D2 13867.77294 

D3 58252.99746 

2 

E1 15404.15114 

36410.54018 1.413238545 

E2 45393.23418 

E3 48434.23522 

8 

F1 13840.85785 

13593.98034 0.5276366927 

F2 15820.3666 

F3 11120.71656 

0  

(Negative Control, 

unstained) 

G1 656.3362 

473.6469 0.01838412868 

G2 3524.82176 

G3 290.9576 

Table 7. Processed data of inhibition assay. Red highlighted trials (C1 and G2) are outliers that 

were not included in Average UI calculations.  

 

 

Figure 12. Final results of inhibition assay  
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Chapter 4: Discussion and Conclusion 

Invasion Assay 

The invasion assay needed to be repeated several times due to technical error during the invasion 

assay experiment (e.g. cross-contamination of samples) and technical difficulties with the flow 

cytometry. Once we resolved our own technique issues, we tried to overcome difficulties with 

the flow cytometry by analyzing our samples using a fluorometer to measure fluorescence 

intensity and hemocytometer to count the remaining cells. Unfortunately, we still obtained 

unusual results that were not reliable and could not be processed to measure the uptake index. 

The results were unreliable because the DI water showed fluorescence as well. Fortunately, in 

our fourth experiment, the flow cytometer was fixed, and we were able to process our data on the 

day of the experiment.  

 

For the negative control, ideally we expect to see 100% of CHO cells to be unlabeled because the 

flow cytometry should count all CHO cells and measure minimal fluorescence in all of them. As 

shown in Figure 9, in this negative control well, 95.8% of the collected CHO cells were 

unlabeled. This is shown by a significant peak at a low FITC-A score. This result is as expected 

for the negative control. This suggests that there was no cross-contamination of the negative 

control with the CFSE-labeled bacteria in the positive control wells.  

 

For the positive control, we expected to see two peaks of CHO cells infected with labeled and 

unlabeled bacteria. As shown in Figure 10, in this positive control well, 52.1% of the CHO cells 

were infected with labeled bacteria. 

 

After measuring the normalized uptake index and calculating the standard deviation for the error 

bars, the final results of the invasion assay in Figure 11 shows a significant difference between 

the CHO cells infected with labeled and unlabeled bacteria. The invasion assay experiment 

suggests that the CFSE-labeling of bacteria can be an effective way to evaluate the relative 

degree of internalization. We can now proceed with the inhibition assay using this technique.    
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Inhibition Assay 

This was our first time conducting the inhibition assay. As shown in Figure 12, the error bars are 

significant. This suggests a low precision and high variability of data collection. Therefore, the 

data collected is not reliable and needs to be repeated. Nonetheless, the data produced interesting 

results that are worth mentioning and exploring.  

 

For the inhibition assay, we expected to see a decrease in uptake index as the antibody 

concentration increases. As shown in Figure 12, there is the expected decrease in uptake index; 

however, at higher antibody concentrations of 1µg/mL and 2µg/mL, there’s an increase in uptake 

index. Although this upward trend at higher antibody concentrations could be due to technical 

errors during the experiment, this trend could also illustrate the CHO cell’s temporal resistance 

to the NPY-Y2 antibody drug.  

 

It’s known that cancer cells have the ability to adapt and become resistant to immunotherapies 

similar to how bacteria cells develop resistance to antibiotics (Farquhar, et. al., 2019). The trend 

seen in Figure 12 is also seen in recent research studies exploring drug-dependent or stress-

dependent growth curves for multicellular organisms like bacteria, mammalian cells, and cancer 

cells (Guinn, et. al, 2022). This adaptation, unlike resistance acquired from genetic mutations, is 

temporal and correlated with drug concentrations. The adaptation can occur within hours and is 

likely due to an intrinsic stress response (Guinn, et. al, 2022).  

 

Furthermore, previous research explores the stochastic effect that explains why genetically 

identical cells may differ drastically when exposed to the same stimuli. The stochastic effect, in 

contrast to the deterministic effect, refers to the statistical, dosage-independent nature of a 

stimuli like a drug (Farquhar, et. al., 2019). In other words, the dosage of a drug doesn’t 

determine the effect on a mammalian cell; instead, a higher dosage only increases the probability 

of an effect. Numerous examples of the stochastic effect have been highlighted in research, even 

on the single-cell level where gene expression fluctuates stochastically (or gene expression 

noise). Gene expression noise likely occurs due to the “intrinsic randomness of underlying 

biochemical reactions or processes extrinsic to the gene” (Farquhar, et. al., 2019). This response 

is regulated by an intrinsic stress response. It’s currently unclear how gene expression noise 
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impacts drug resistance in mammalian cells. However, understanding the development of 

mammalian cell resistance to drugs could have profound implications on cancer immunotherapy 

as well as our research on immuno-anti-infectives. Furthermore, this could also make clear 

pharmacodynamics and drug dosing.  

Future Steps 

Inhibition Assay 

More inhibition assay trials need to be done to produce more reliable results for better 

interpretation. Research has shown that an incubation time of around 1-2 hours is recommended 

for the murine IgG1 antibody; however, it’s recommended to conduct our own trials of varying 

incubation time to assess its impact on the uptake index. Another adjustment to the inhibition 

assay includes reducing the range of antibody concentration to be 0 - 4 µg/mL instead of 0 - 8 

µg/mL. This will also help elucidate the potential drug-dependent growth curve discussed earlier. 

Furthermore, another possible experiment is to assess the inhibition assay using neural cells. 

Neural cells have the highest expression of NPY-Y2 receptors (Hökfelt, et. al., 1998). Therefore, 

by testing the antibody’s effectiveness, we can find a more accurate correlation between 

concentration and invasion rate. 

BioAI Optimization 

Currently, the BioAI algorithm only selects drug target candidates based on the location of the 

drug target. Additionally, parameters need to be added to optimize the selection of potential drug 

target candidates. One set of parameters include physicochemical features of the protein (e.g. 

estimated half-life, isoelectric point) which ultimately determines the protein’s function and 

chemistry. Another set includes structural features (e.g. types of chains, cross-links, β-strands, 

turns, helices, transmembrane domains) which determine the protein’s binding abilities. And 

lastly, functional features (e.g. subcellular location, interaction with different proteins, metal-

binding) which provides insight into the protein’s involvement with different pathways and 

potential diseases. The parameters need to be selected while taking into account the significance 

or impact of the parameter on the safety and efficacy of the anti-immuno-infective drug design. 
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Some parameters can be obtained from public databases, while other parameters would require 

further laboratory tests. More parameters involving human intelligence that give scores based on 

researcher’s knowledge would also be considered. In the end, the purpose of using BioAI is to 

accelerate research’s progress under supervision. Another aspect for future improvement is to 

add more drug candidates to our current datasets. More training and testing data will allow the 

ML algorithm to have better accuracy. In our project, our dataset is screened for binding affinity 

with Sortase A, narrowing down the options. However, this strategy infringes on the validity and 

accuracy of the ML algorithm itself. BioAI has the potential to accelerate and aid in drug 

research and discovery. With more data input, we are hoping that our model can be improved, 

and similar strategies can be applied to anti-infective drug research in general. 

 

 

  



 

40 

Chapter 5: Engineering Standards and Realistic 

Constraints 

 

Ethical 

The Ethics aspect of our project would be the choice of cell line. We use the CHO (Chinese 

hamster ovarian) cell line. Because it’s an animal cell line, it’s less controversial than a human 

cell line. 

 

Social 

Our project aims to find a drug that can prevent staph. bacterial infections in a clinical setting 

which would decrease the mortality caused by bacterial infection. Also, if our approach of 

incorporating machine learning in drug development would be applied to other research of anti-

infective drugs, there will be a more efficient way for anti-infective drug research and 

development. 

 

Political  

Excessive use of antibiotics often correlates with inappropriate prescription and administration 

and antibiotics therapy. Research has found that there’s a positive correlation between antibiotic 

usage and antibiotic resistance where in areas that consume higher amounts of antibiotics, higher 

rates of antibiotic resistance are found (Lobanovska, M., & Pilla, G., 2017). 

 

Antibiotics are also being widely abused in the agricultural industry. Antibiotics are commonly 

used to prevent infections and as growth promoters in livestock. In many developed nations, 

livestock consume an estimated 50–80% of antibiotics (Cully, 2014). Humans consume most of 

the rest, with crops, pets and aquaculture collectively accounting for about 5% (Cully, 2014). 

This is not only related politically, but also tied into environmental and health aspects. 

 

Environmental 
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This abuse of antibiotics in the agricultural industry leads to pollution to the environment. The 

antibiotic resistant gene can increase by up to 28,000-fold in soils in one year (Wang, etc.…, 

2022). This pollution also influences the water sources, along with the organisms that live in 

water. 

Health and Safety 

With antibiotic-caused pollution from agriculture, we can also see higher risks of interspecies viral 

transmission, as well as the spread of antibiotics resistance genes from bacteria that infect animals to 

bacteria that infect humans, escalating the problem of antibiotic resistance in bacteria. 

 

From a drug design perspective, we will carefully consider the trade-offs that determine which molecules 

will be the most suitable option for drug design. The drug will target molecules that originally exist in our 

body that can also activate Sortase A. Our drug will be designed to inhibit the molecules playing a certain 

role in the human body. We may or may not know the exact outcome of inhibiting the target molecules. 

So, we need to consider if the human body can endure these side effects. If the side effects are not severe, 

we need to take careful consideration and thorough testing to determine the safe dosage one would use. 

 

Sustainability 

The sustainability of our project is mostly focused on lab supplies and minimizing the waste 

produced by protocol optimization. 
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Appendices 

Appendix A: CHO cells contaminated with mycoplasma (A), with bacteria (B), and healthy 

CHO cells (C) 

A.  

 
B.  

 
C.  
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Appendix B: Invalid invasion assay data results. A) Negative control shows cross contamination 

with CFSE-labeled bacteria trials from flow cytometry analysis. B) Fluorometer analysis shows 

fluorescence for DI water, suggesting improper calibration of fluorometer settings. 

 

A.   

 
 

B.  
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