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Abstract

Exposure to developmental toxins during gestation have been shown to be linked to neurological
disorders such as epilepsy, schizophrenia, and dyslexia [1]. In this report we describe efforts that
represent the ground work to develop a predictive neurotoxicity model to test developmental
toxicity on early neuronal differentiation from drugs and toxins for human consumption or
exposure. Developmental toxins are toxins that prevent stem cell differentiation into neurons by
impacting neural development [2]. Currency technologies used to evaluate a compound's
potential as a developmental toxin are centered around culturing stem cells in a two-dimensional
environment or exposing animal models to the compound. The stem cells are then monitored for
changes in proliferation, differentiation, and death. These classes of experiments proved not
only to be expensive, but also extremely time consuming and ineffective in some cases. These
technologies do not accurately mimic the in vivo environment, which uses ECM proteins and
cell-cell interactions to regulate cellular functions such as migration, apoptosis, and gene
expression. Our predictive model would provide a more biologically accurate alternative of the
human system compared to two-dimensional cell culture and animal models. Our model would
further improve the quality and relevance of developmental neurotoxicity research, reduce the
number of animal experiments and overall cost to evaluate the potential for a compound to act as
a developmental toxin.
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CHAPTER 1: Introduction

1.1 Introduction

For our Senior Design project, we worked towards designing a predictive model to identify
neurotoxic compounds, particularly focusing on developmental neurotoxins. Developmental
toxins prevent stem cell differentiation into neurons by impacting neural development through
many possible avenues, such as by damaging DNA, impacting gene expression, modifying
signaling proteins, and many others [2]. This type of toxicity is distinct from stem cell toxins,
which are those that are cytotoxic to stem cells, and neurotoxins, which are either cytotoxic or
functional toxins to neurons. We are interested in studying developmental neurotoxins due to
their profound impact on brain development, and therefore on people’s lives. In the US, about
one in six children are affected by developmental disabilities, many of which are related to
neurological development [3]. The exposure of the brain to various agents can lead to
developmental neurotoxicity. These alterations can have long-lasting impacts, such as causing a
number of other neurological disorders, like epilepsy, schizophrenia, and dyslexia [4]. Many
commonly-found agents, such as metals like lead and mercury, pesticides, nicotine and ethanol,
are known developmental toxins [2]. The EPA estimates that less than 1% of chemicals in the
environment have been tested for developmental neurotoxic effects due to slow and expensive
testing [1]. The prevalence of developmental neurotoxins in our environment, along with the
profound impact these toxins can have on individuals and communities highlights the need for an
increased understanding and awareness of developmental neurotoxicity. With our model, we
hope to make it easier to identify and study developmental neurotoxins, thus helping to reduce
their impact.

Currently, neurotoxicity testing uses several 2D assays to test toxicity of compounds for human
topical use, consumption and exposure [5]. Existing assays, such as cytotoxicity, cell viability,
and functional assays as well as qPCR and cell morphology, utilize stem cells, stem cell derived
neurons and cultured neurons to analyze the impact of toxins on cell fates [6—9]. While the
previous technologies discussed are useful, cell culture experiments represent a very costly class
of experiments that do not always produce reliable results. For this reason, we propose creating a
model based upon data collected from 3D culture systems in order to predict the cellular fate of
early neurons. By studying developmental toxicity in 3D, we can overcome the limitations of 2D
culture, which does not mimic in vivo cell-cell and cell-matrix interactions [10]. This would
allow the production of data that better represents the in vivo environment in order to make more
sound predictions about the microenvironmental factors that influence early neuronal
differentiation. While data included in this report is focused on neuronal differentiation, we
postulate that the methods developed could be applied to various cell types.

1.2 Background and Literature Review

1.2.1 Why 3D Culture?

Cell culture is an indispensable tool in areas of developmental biology, tissue engineering, and
protein pharmaceutical production. All early cell culture techniques are composed of
two-dimensional environments, where cells attach to plastics or extracellular matrix (ECM)
attachment molecules shown in Figure 1. In vivo, cells are in constant interaction with a variety
of ECM molecules that regulate cellular functions (migration, apoptosis, gene expression, etc)
which cannot be fully represented in the 2D environment [10]. The current drug development
pipeline costs anywhere from $800 million to $2 billion and can take up to 15 years to bring to
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market [10]. The process begins with a screening of compounds in a 2D cell culture
environment, followed by animal models and finally human clinical trials. This pipeline only
brings approximately 10% of initial leads through clinical development. Additionally, some
therapeutics make it all the way to phase III clinical trials before proving inefficacious, at which
point millions of dollars have already been allocated to research and development. A rapidly
growing field of literature has suggested that 3D cell culture systems promise to address these
challenges by providing cells a more realistic extracellular environment shown in Figure 1 [10].

Figure 1: Typical 2D (Left) and 3D (right) polymer matrix culture systems (adapted from [11])

3D culture has been shown to produce superior and more relevant results compared to 2D in a
variety of applications. One example is when cell culture systems are used as a model for drug
development, various studies have illustrated that pharmacaiduals that show promise in 2D have
reduced or no efficacy when tested in 3D culture systems. For example, a study performed by
Edmonson et. al. showed that an anti cancer drug, Melphalan, killed ~100% of an intestinal
cancer cell line at concentrations of 100uM but when the same concentration of the drug was
tested in a 3D spheroid culture system only ~20% of the cells were killed [12]. These results
indicate the need for cell culture techniques that better represent the invivo environment. As 3D
culture platforms offer a more robust way to culture cells and study their cellular functions, it
represents a new modality to understand the effect of compounds on the differentiation of stem
cells to early neurons.

1.2.2 Existing Technologies

Currently, neurotoxicity testing uses several 2D assays to test toxicity of compounds for human
topical use, consumption and exposure [5]. Existing assays, such as cytotoxicity, cell viability,
and functional assays as well as qPCR and cell morphology, utilize stem cells, stem cell derived
neurons and cultured neurons to analyze the impact of toxins on cell fates [6-9]. The next several
subsections will elaborate on specific examples of these 2D neurotoxicity assays and the type of
data collected.

1.2.2.1 Cytotoxicity and Cell Viability Assays

Succinate dehydrogenase activity assay, also known as a MTT assay, is a common cytotoxicity
colorimetric assay that measures cell viability and proliferation by enzymatically reacting with
succinate dehydrogenase in the mitochondria [13]. Essentially, the occurrence of mitochondrial
respiration catalyzes the reduction of the MTT dye into insoluble crystals [13]. Color produced
from the cells is proportional to the number of viable cells after the cells are lysed and processed
[13]. A great example of a cell viability assay is dye exclusion. This test allows researchers to
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determine the number of viable cells and dead cells [14]. Dyes, such as trypan blue, eosin or
propidium, are introduced into a cell suspension and will only dye cells without intact cellular
membranes [ 14]. Since viable cells have intact membranes, they will remain clear while dead
cells are dyed [14]. Using a hemocytometer, researchers can count a small fraction of the overall
cell suspension and calculate an estimate for the overall number of viable and dead cells [14].
MTT assays and dye exclusion allows researchers to determine the dose- and time-dependent
cytotoxic effect of their drug or compound of interest [13,14].

1.2.2.2 Functional Assays

Functional assays measure the neuron’s ability to function, such as generating action potentials
or creating calcium influxes to release neurotransmitters [15,16]. Two commonly used functional
assays are calcium imaging and patch clamp recording. Calcium imaging is used to analyze
neuronal signaling by allowing researchers to image or record the occurrence of action potentials
in neurons [15]. Calcium is used by neurons in their axon terminals to trigger exocytosis of
neurotransmitters, releasing them into the synaptic cleft and passing the signal to postsynaptic
neurons [15]. In order to capture neuron signaling, a bioluminescent calcium indicator such as
aequorin, derived from bioluminescent marine organisms, or chemical calcium dyes are used.
Due to aequorin’s large size it must be loaded into each cell by a micropipette or transfected into
the cells via genetic engineering [15]. Similarly, chemical dyes need to be introduced by
micropipettes. Once introduced, neuronal signalling can be imaged by high-speed confocal
microscopes [15].

Patch clamp recording is another type of functional assay to measure neuron activity. It can be
performed on single neurons, brain slices or live brains in sedated animals [16]. Researchers
place a glass micropipette electrode directly on a small area of the cell membrane and use suction
to firmly seal the tip of the pipette to the cell [16]. As the cellular membrane changes voltage
during action potentials, the electrode will be able to record the change in voltage. The tight seal
creates very high resistance, allows detection of small voltage changes and blocks external
currents from surrounding cells [16]. This method allows researchers to measure the neuronal
activity of individual cells [16].

1.2.2.3 Gene and Protein Expression

Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western Blots and
Immunocytochemistry allow researchers to analyze the gene and protein expression of cells as a
result of exposure to drugs or environmental compounds [17,18]. Researchers can identify cell
differentiation, maturity and up/down regulation of a gene or protein of interest [17,18].

RT-PCR identifies and magnifies the presence of genes of interest allowing the comparison of
gene expression pre- and post-exposure to the compound [17]. After cells have been exposed to
the compound, mRNA is isolated and prepped for RT-PCR. Primers are selected to identify key
genes for cell fate, such as beta 3 tubulin which is a marker for immature neurons [18] or MAP2
which is a marker for mature neurons [17]. During RT-PCR, the mRNA is reverse transcribed
into cDNA, which is then amplified by taq polymerase [17]. The chosen primers will only bind
to complementary sequences on the cDNA, amplifying the genes of interest to detectable levels
[17]. Researchers can use either gel electrophoresis or primers with a fluorescent tag to detect the
gene [17].
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Western Blots are used to detect the presence of a protein of interest [18]. After compound
exposure, the cells are lysed and processed to isolate protein. A BCA protein assay is used to
determine overall protein concentration [18]. Then, gel electrophoresis is used to separate the
protein mixture and transferred to a PVDF membrane to be stained with antibodies to detect the
protein of interest [18]. To detect fluorescence from the antibody stain a fluorescence
microscope, such as a confocal microscope, is used [18]. Images are taken of the membrane and
image processing software is used to analyze protein expression [18].

Immunocytochemistry is another technique to detect the presence of a protein of interest. After
cells are exposed to the toxin, they are fixed with paraformaldehyde and stained with fluorescent
primary and secondary antibodies for specific proteins of interest [ 18]. Multiple proteins can be
stained at the same time. Similar to western blots, a fluorescence microscope is used to image the
cells and an image processing software is used to analyze protein expression [18].
Immunocytochemistry produces similar results as western blots in addition to allowing
researchers to identify the protein location in the cell and morphology [18].

1.2.2.4 Morphology

Lastly, morphology can be used to identify the effect of the neurotoxin on stem cells or neurons.
Researchers can measure the change in cell size, fragment length per cell, branches per cell, and
total length per cell [19]. These morphological changes indicate the impact of the toxin on
cellular differentiation and signs of cytotoxicity [19]. For instance, Crumpton et. al. used
morphology in their study to identify the most sensitive period during differentiation for which
the toxin had the greatest effects on the stem cells [19]. They concluded that lead had the greatest
effect during the early initiation events of differentiation [19]. Although morphology is the
simplest neurotoxicity detection platform explored in this section, it is a cheap and powerful tool
that should not be ignored.

1.3 Proposed Goals

1.3.1 Mission

Our mission is to develop a three-dimensional neurotoxicity platform to test developmental
toxicity on early neuronal differentiation from drugs and toxins for human consumption or
exposure. Our model will provide a more biologically accurate alternative of the human system
compared to animal models, currently used for clinical and pharmaceutical research.

1.3.1 Initial Project Goals

During the spring and summer of 2020, we designed our initial project to be performed
completely in the lab. Our goal was to design a 3D cell culture system to test the developmental
neurotoxicity effect of acrylamide on neural differentiation. In order to perform this experiment,
we would culture and differentiate P19 cells in 3D alginate hydrogels. At various time points
during differentiation, different concentrations of acrylamide would be added to the system.
Then, we would analyze the morphological changes using microscopes, imaging and image
analysis as well as cell proliferation.
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1.3.2 Revised Project Goals Due to COVID-19

As a result of COVID-19, our project has gone through a number of revisions. Our initial project
would have been largely conducted in the lab. However, we realized over the summer prior to
our senior that this would not be feasible due to COVID-19, so we created the initial project
goals outlined above. These goals still relied on some lab time, though, and by the end of Fall
2020, it became clear that we would not be able to complete any meaningful work in the lab due
to the lab restrictions. At this time, we created revised project goals. The revised projects goals
are as follows:

1. Collect data from literature on how various factors affect neural differentiation, to
identify factors that have an impact on neural differentiation.

2. Analyze the combined data collected from literature using G-Tests, y*-tests and logistic
regression to determine significance of these factors to show the effect of the variables on
differentiation. Analyze large data sets using other techniques such as Principal
Component Analysis (PCA).

3. Combine significance tests and other data analysis into a model to inform future research
into developmental neurotoxicity tests in 3D culture.



CHAPTER 2: Project Overview
2.1 System Overview

In order to collect data to use in our model, we followed a general procedure that took place in
three steps: literature review, data collection and unification, followed by statistical hypothesis
testing. An initial literature review and data collection consisting of 50 articles regarding 7
different variables known to influence neural differentiation was narrowed down to 14 articles
regarding three different variables: 2D vs 3D culture environment, toxin presence, and matrix
stiffness outlined in Table 1. The final data set used for statistical analysis was chosen due to
their most comparable experimental setups and data collection methods.

14

We performed y*-test(s), G-Test(s) of Independence, Logistic Regression, and PCA on some or
all of the subsystem variables depending on the suitability of each data set outlined in Table 1.
All of the statistical tests performed were used to determine if there is or is no association
between the subsystem variable and neural differentiation with the exception of the PCA
analysis. The PCA analysis was performed to reduce the dimensionality of one of the datasets
from the stiffness subsystem variable (see section 5.2.2.2).

Table 1: Outline of Subsystem Data Collection and Analysis

Sub System

2D vs 3D

Toxin

Stiffness

Data source / Number of Articles
Used

1. Huang et al., Neuro Regen Res
(2013)

2. Brannvall et al, Journal of
Neuroscience Research (2007)

3. Zare-Mehrjardi et al., Int J Artif
Organs (2011)

4. Bozza et al., Biomaterials (2014)
5. Oritinau et al., BioMedical
Engineering OnLine (2010)

1. Engstrom et al., Toxicol In Vitro
(2016)

2. Lin et al., Chemosphere (2021)

3. Tasneem et al., Toxicol Lett (2016)

1. Banerjee et al., Biomaterials (2009)
2. Leipzig et al., Biomaterials (2009)
3. Rammensee et al., Stem Cells
(2017)

4. Ali et al., Acta Biomaterialia (2015)
5. Her et al., Acta Biomaterialia
(2013)

6. Engler et al., Cell (2006)

Statistical Tests
Used

1. Chi Square Test
(x*-test)

1. x’-test
2. G-Test

1. x*-test
2. G-Test
3. Logistic
Regression
4. PCA

Hypotheses

Null Hypothesis:
There is no
association between
the subsystem
variable and neural
differentiation.

Alternative
Hypothesis:

There is an
association between
the subsystem
variable and neural
differentiation.
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2.1.1 2D versus 3D

One factor we investigated was two-dimensional versus three-dimensional matrices. As outlined
in section 1.2.1, various research groups have found that cells cultured in 3D matrices have a
higher rate of stem cell differentiation as well as cell survival and proliferation [20-25]. We
investigated the significance of the impact of matrix dimensions on stem cell differentiation
using a y’-test.

2.1.2 Toxin

Research has shown that compounds that do not act as cytotoxins can still act as neural toxins.
However, the EPA estimates that less than 1% of chemicals in the environment have been
evaluated for their potential to cause developmental neurotoxicity [1]. For this reason, in addition
to investigating the influence of 2D and 3D matrices on neuronal differentiation, we also
investigated the effect of particular toxins on neuronal differentiation, proliferation, and death.
Data was collected on the effect of Acrylamide and Lead exposure on cellular characteristics
such as gene expression and cellular morphology and was analyzed for significance using y* and
G-tests.

2.1.3 Stiffness

Another factor that we investigated in regards to neuronal differentiation was matrix stiffness. A
wide variety of researchers have investigated the impact of stiffness on stem cell differentiation.
Overall, researchers have found that lower stiffnesses, like that of the brain, cause stem cells to
differentiate into neurons [26—34]. Due to its importance, we wanted to incorporate the impact of
stiffness into our predictive models. We investigated the impact of stiffness on differentiation by
combining various datasets collected from literature, analyzed them with statistical techniques to
determine significance, and completed Principle Component Analysis (PCA).

2.2 Systems Integration

The overall goal of this project was to create two models, as shown in Figure 2. The first would
input microenvironment cues (2D vs. 3D, stiffness, and developmental toxin), and output cell
fate. The second would input cell characteristics (morphology, cell viability and proliferation,
and gene or protein expression) and output toxin type (developmental, neuronal, stem cell or no
toxin). In order to create these models, we would need to do further data collection and lab work.

Figure 2:
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2.3 Team and Project Management

2.3.1 Schedule

Due to COVID-19, we had to shift to an entirely virtual project at the end of fall quarter. As a
result, we spent time during the fall working on preparing for lab work as well as developing our
model before pivoting to solely working on modeling in the winter and spring. In fall 2020, we
completed literature review, applied for funding, determined materials to purchase, and began
data collection from literature. In winter 2021, we continued to collect data, began to analyze our
data using contingency tables (y*-tests, G-tests, and linear regression), and PCA, reviewed
mathematical models in biological systems, and began to write our thesis. In spring 2021, we
completed our statistical analyses, senior design presentation and thesis. See the Gantt Chart in
the Appendix D for an overview of our progress throughout the year (Figure 11).

2.3.2 Budget and Materials

In the beginning of the year, we planned to perform lab experiments as outlined in section 1.3.1
and submitted our proposed budget for funding from Santa Clara University School of
Engineering located in Appendix C (Table 19 and Table 20). Due to COVID-19 restrictions, we
transitioned our project Winter quarter 2021 to a fully virtual format. Table 21 in Appendix C
outlines the finalized list of materials and cost.

2.3.31 Challenges

Throughout our project, we have run into issues related to obtaining raw data from articles,
determining a similar metric across articles and the COVID-19 pandemic. The largest challenge
was determining the feasibility of our original project due to COVID-19 restrictions. We
originally wanted to perform laboratory experiments on the effects of acrylamide toxicity on
neuronal differentiation in 2D versus 3D culture conditions using imaging and software to
quantify differentiation. During Fall quarter, our team was not able to access the lab but focused
on collecting protocols, researching background information for our project and collecting data
for a predictive model. Unfortunately, a second stay-at-home order was put into effect in
December, preventing Dr. Asuri from beginning to culture cells for our experiments and
restricting our access during the Winter quarter. We transitioned our project scope to a fully
computational project focusing on our predictive mathematical models.

To formulate our model, we gathered data from other’s previous research on our variables of
interest. Often the data was presented in graphs, requiring us to estimate the values using a grid
overlay, mentioned in Chapter 3. During the Fall quarter, we emailed numerous laboratories for
access to their raw data, but only one replied, proving it hard to obtain raw, high quality data for
our model. Of the data we did collect, the metric for measuring each experiment varied by paper.
Some researchers used normalized mRNA gene expression from RT-PCR, protein expression,
percent cells differentiated, percent cells positive for a marker, fluorescence, change in neuron
cell body area, number of neurite branches or neurite extension length to analyze the change in
neuronal differentiation. We struggled to find a common metric across articles to be able to
compare data between the papers for one variable. For instance, we collected papers analyzing
the effect of matrix stiffness on differentiating stem cells. A common metric among several of
the papers was the normalized expression of beta 3 tubulin. That selected data was then used in
our contingency tables and expected value tables were created to perform y*-test and G-test. For



several of our variables, the expected values were less than 5 going against the general rule of
thumb for a successful test.
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CHAPTER 3: Subsystem 1: 2D vs 3D

3.1 Subsystem Overview

A number of researchers have found that cells cultured in 3D matrices have a higher rate of stem
cell differentiation into neurons, as well as increased cell survival and proliferation, making
matrix dimensions an ideal microenvironmental input to add to our model [20-25].

O

Figure 3: Diagram of the 2D versus 3D Subsystem. We collected data from articles that put stem cells into two
dimensional and three dimensional matrices and measured neuronal differentiation rates.

3.2 Materials and Methods

3.2.1 Literature Review and Data Collection

For each subsystem, we started our process with literature review and data collection. We used
various tools from the SCU library to collect data, particularly using the Interlibrary Loan system
to get articles not owed by the library, and library database subscriptions, such as Engineering
Village, PubMed and ScienceDirect and Google Scholar to access other articles. We also used
search techniques such as boolean operators, narrowing down article types and years, and
specifying keywords in the title and abstracts of the papers to find the articles.

After finding the articles, we then extracted data from the articles. If the data was present in
tables, we then immediately transferred that data into our excel spreadsheet. However, in many
cases the data was only presented in graphs and figures. In that case, we first reached out to the
corresponding author of the paper to try and get the raw data from them. We did not hear back
from many of the authors, though. As a result, when the data was not available we would extract
images of the graphs, import the images into Google Drawings, and use grid lines to closely
approximate the values and standard deviation (Figure 4). A similar extraction method has been
used by other researchers [35-37]. Using this process, we collected data from six papers on stem
cell differentiation into neurons in 2D and 3D matrices [20-25].
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Figure 4: Diagram of the Data Extraction Method Using Gridlines (graph from [30]).

For our data analysis, we used five out of the six papers. These five papers all used beta III
tubulin expression, a common neuronal differentiation marker, as the measure of neuronal
differentiation [38]. We then calculated the fold of beta III tubulin expression for the matrices
versus the control, using the following formula:

experimental value — control value
control value

Fold change = (Eq. 1)

We set a two fold change from the control as the cut off between differentiated and
undifferentiated neurons. We made this cut-off based on a paper by Gurok et al. who studied the
expression of various markers over the course of stem cell differentiation into neurons [39]. They
found that there was roughly a two fold increase in beta III tubulin expression between stem cells
and differentiated neurons [39]. As a result, we said that samples with a two fold or greater
increase compared to the control were differentiated, and samples with less than a two fold
increase were undifferentiated. Based on these categories and available data from literature
review, we created a contingency table (Table 3) for statistical analysis. A contingency table
showcases the distributions of multiple variables, in this case depicting the distribution of
differentiated and undifferentiated cell samples for both 2D and 3D matrices.

Table 3: Contingency Table for 2D versus 3D

Dimensions Differentiated (>2 Undifferentiated (<2 | Total
fold increase) fold increase)

2D 0 10 10

3D 21 7 28

Total 21 17 38

3.2.2 Statistical Analysis

We completed a Chi Square Test (y*-test) on the data combined in the contingency table. The
resulting observed and expected tables for the y* -Test are located in Appendix A. We were
unable to complete other forms of analysis that we completed on the other subsystems, such as
the G Test and Logistic Regression, because of the zero in the 2D-differentiated box. The zero
results in undefined values and errors in the G Test and Logistic Regression computations.
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3.2.3.1 Chi Square Test

A y’-test tests whether the distributions of variables differ from one another. In our case, it tests
the distributions of differentiated and undifferentiated cells for 2D versus 3D matrix cultures.
This test lets us know if there is a significant difference between the experimental group and the
control in terms of differentiation [40]. The null hypothesis is that there is no relationship
between matrix dimensions and neural differentiation, and the alternative hypothesis is that there
is a relationship between dimensions and differentiation.

To complete the y*-test, we compared the observed and expected data. The observed data is the
data in the contingency table, with an individual value designated as O (observed count in row i
and column j). We computed the expected values from the contingency table using the following

formula:
E . = (row sum i)(column sum j)

i (table sum) (Eq. 2)
(expected value for row 1, column j)

The expected values should all be at least 5 to complete a y>-test. However, one of our values
(2D-undifferentiated) was less than 5, at 4.5. Even so, we still wanted to complete a y>-test to get
a rough estimate of whether there was a significant difference between the relationships of the
variables. However, it is important to note that our expected values did not entirely meet this
benchmark. The resulting observed and expected values are found in Appendix A.

Next, we computed the y*-value using the following formula:

0,~E;)?
x?= y  Cfid gy )
i€rows j€columns v
Finally, we used MATLAB to compute the p-value of the y*-value using the following code:
p=I-chicdf(x’ value, degrees of freedom), where degrees of freedom=(i-1)(j-1) and i and j are the

number of rows and columns respectively.

3.3 Results and Discussion

The p-value from the y*-test is 4.2313*10~. The p-value of 4.2313*107 is much lower than the
cutoff value of 0.05, so we can reject the null hypothesis that there is no relationship between
matrix dimension and neural differentiation. These results go along with all the individual
papers, which all indicate that there is a higher rate of neural differentiation in 3D matrices
versus 2D [20-25]. However, because one of our expected values does not meet the benchmark
of 5, we would want to do further statistical analysis to confirm these results. Nonetheless, these
results are promising, indicating that 3D matrices do have a significant effect on stem cell
differentiation into neurons. We would want to keep this in mind in the development of our
platform.



21

CHAPTER 4: Subsystem 2: Toxin

4.1 Subsystem Overview

A large body of literature has shown that the presence of particular compounds can influence
cellular differentiation, proliferation and death (Figure 5), therefore toxins are a variable of
interest for our model of developmental neuronal toxicity. Various factors such as the
concentration of the compound and the time at which cells are exposed determine the

compound's fate on cells [17,40,41].

4

Toxin
Exposure O

Figure 5: Diagram of the Toxin Subsystem. Toxins can can have one or more effect(s) on cells

4.2 Materials and Methods

4.2.1 Literature Review and Data Collection

As mentioned in section 3.2.1 the first step of each sub system was a literature review and data
collection. For the toxin exposure subsystem, we began by collecting data on two different
compounds previously shown to cause developmental toxicity: acrylamide and lead [6,13,39].
During the initial phases of literature review and data collection, data was collected from eleven
papers for acrylamide and nine papers for lead.

Toxin data collected ended up containing many different markers used to measure the
differentiation of cells, for example, one group would use the expression of a particular gene
while another group would use morphological characteristics. Because different cell markers
appear at different periods of cellular differentiation, we are unable to combine data of different
gene markers. Furthermore, the timing of toxin addition proved to be highly variable between
different groups which imposed further limitations when attempting to unify the data.

The changes in neurite length were represented as percentage changes with reference to negative
control and positive control, along with calculating fold change using equation 1. The negative
control was defined as 0 uM Lead t=0 without Nerve Growth Factor (NGF) and the positive
control was defined as 0 uM Lead t=0 with NGF. Nerve growth factor has been shown to play a
critical protective role in the development and survival of early neurons, so a culture without this
factor is a suitable negative control [43]. In situations where negative control was not present in
the data set, it was assumed to be zero fold change.

experimental value — negative control 4

Percent Change = 100 (Eq. 4)

positive control-negative control

To arrange the neurite extension data into contingency tables, we set a one fold increase as the
cut off between differentiated and undifferentiated neurons. This decision was made because a
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one fold difference was equal to the difference between the positive and negative control (neurite
extension with and without NGF at t=0). This means that any neurons that had over a one fold
increase in neurite extension compared to the negative control were considered differentiated and
any neurons that were less than one fold increase compared to the negative control were
considered differentiated for the purpose of our contingency table (Table 4).

Table 4: Contingency Table for Toxin Type

Toxin Concentration | Differentiated (>1 Undifferentiated (<1 | Total
fold increase) fold increase)

0-0.09uM 4 12 16

0.1-2uM 1 5 6

Total 5 17 22

4.2.2 Statistical Analysis

For the toxin data that we collected and combined into a contingency table, we performed a
x’-test and G-test. For the y-test, we used the same methodology described in section 3.2.3.1.
The resulting observed and expected tables for both the y* and G-Test are located in Appendix A.

4.2.2.1 G Test

The G-test of Independence is a likelihood ratio test that is used to determine whether the
number of observations in a specific category fits the theoretical expected value. The G-test is
used when you have one minimal variable with two or more states and it allows you to see if the
proportions of one variable different for different values of another variable [44,45].

The test generates a G statistic which can be used to calculate a p-value to determine if you can
accept or reject the null hypothesis. The null hypothesis is that there is no relationship between
the presence of a particular toxin and neural differentiation, and the alternative hypothesis is that
there is a relationship between presence of a particular toxin and neural differentiation. To
perform the test, a contingency table (Table 4) was created as described previously in section
3.2.2 and observed and expected values for contingency tables for analysis along with degrees of
freedom were calculated in the same manner as for the y*-tests mentioned in section 3.2.3.1.
Following the definitions of O ; and E ;, the G-statistic was calculated as shown below in
equation 5.

r c Oij
G= 2(1; ]Z[ 0] l-jln(E—” )) (Eq.5)

Finally, using the resulting G-statistic, a p-value is calculated in MATLAB by applying the
chi-square cumulative distribution function as previously described in section 3.2.3.1.
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4.3 Results and Discussion

As mentioned in section 4.2.1, the toxin data collected contained various different metrics of
differentiation which removed the option of combining the data from dissimilar papers. As a
result, we were unable to create a contingency table for any of the data collected by acrylamide
papers and only able to create a contingency table for lead from three of the nine papers that we
reviewed.

The p-value from the G test was 0.6714 indicating that we fail to reject the null hypothesis. The
p-value from the y*-test was 0.6801 indicating that we fail to reject the null hypothesis. These
results are not in agreement with published results, as the papers’ data used to create the
contingency table found that there was an effect of lead on neural differentiation. We hypothesize
that the differences in our results from the published work could be caused by the process of over
simplifying differentiation as a binary when creating our contingency table when in fact there are
many stages of differentiation between a stem cell and a mature, differentiated neuron.
Additionally, As mentioned in section 3.2.3.1, the expected values should all be at least five to
complete a G or y? test so the small sample size may also contribute to differences between the
literature and our findings.
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CHAPTER 5: Subsystem 3: Stiffness

5.1 Subsystem Overview

The impact of stiftness on cell differentiation has been heavily investigated and is well known to
influence cell fate [26—33,46], making it a prime variable to incorporate into our predictive
model. In general, cells differentiated on stiffnesses less than 1 kPa will express neurogenic
biomarkers, while those cultured on 10 kPa surfaces will express myogenic biomarkers [30] as
shown in Figure 6. In addition, those differentiated on 34 kPa surfaces will express osteogenic
biomarkers [30].
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Figure 6: Impact of Stiffness on Fate of Stem Cell Differentiation Adapted from [30]
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5.2 Materials and Methods

5.2.1 Literature Review and Data Collection

During our literature review, we read and collected data from 9 papers analyzing the impact of
various 2D culture stiffness on neural differentiation. The same methodology for literature
review and data extraction from graphs was followed, mentioned in section 3.2.1. Researchers
measured gene expression such as beta III tubulin, MAP2 and GFAP, as well as neurite
branching and extension to analyze the impact of stiffness on neural differentiation [26—33,46].
For our data analysis, we used data that measures beta III tubulin expression because this was the
most common metric across 6 out of the 9 papers. The stiffness categories were decided based on
Engler et al.’s research shown in Figure 6 [30]. The data was decided if it was differentiated or
undifferentiated using a 2-fold threshold using the same methodology mentioned in section 3.2.2
[39]. Based on these categories and available data from literature review, we created a
contingency table (Table 5) for statistical analysis.
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Stiffness Differentiated (>2 Undifferentiated (<2 | Total
fold increase) fold increase)

Low (<1kPa) 3 1 4

Medium (1-10kPa) 5 5 10

High (>10kPa) 1 5 6

Total 9 11 20

5.2.2 Statistical Analysis

For the stiffness data that we collected and combined into a contingency table, we performed a
x’-test, G-test and Logistic regression. We performed Principal Component Analysis (PCA) on
an extensive dataset provided by Engler et al. in their supplementary materials that measures the
gene expression of 21 neural lineage markers over various stiffness with and without blebbistatin
(BLEBB), a chemical that blocks mechanical signal transduction [30].

For the y’-test and G-Test, we used the same methodology described in section 3.2.3.1 and
4.2.2.1 respectively. The resulting observed and expected tables for both the y* and G-Test are
located in Appendix A.

5.2.2.1 Logistic Regression

Logistic regression analysis examines the association between categorical or continuous
independent variables and with one binary dependent variable, producing an odds ratio and p
value that indicates the strength and direction of association between the two variables [47]. This
method is optimal for measuring the relationship between various stiffnesses, a categorical
independent variable, with differentiation, a binary dependent variable. In order to perform
logistic regression, we used the link function and standard equation shown below [48].

Zogllj—;i =Bo + Byx; (Eq. 6)

wherei=1, 2,...n

After performing logistic regression and solving for Bo and 1, equation 6 can be rewritten as
equation 7 to solve for the proportion of cells differentiated per stiffness category.

_exp(Bo—Pux,)

- 1+expPo—Pix;) (Eq. 7)

We used MATLAB to perform logistic regression, provided by Santa Clara University Design
Center. The data from the contingency table was input into MATLAB as a stiffness matrix with
1, 2, and 3 representing the three stiffness categories, the number of data points considered
differentiated and the overall sample size per category. Using the generalized linear model




26

function, b values for equation 6, standard deviation and p-values were generated. The MATLAB
code is private domain and can not be provided in this report.

5.2.2.2 Principal Component Analysis

Principal Component Analysis (PCA) is a helpful dimensionality reduction tool. PCA essentially
identifies which variables are closely associated and which are the most unique, allowing the
preservation of as much variability as possible while reducing dimensions [49,50]. We performed
this test to identify which genes in Engler ef al.’s dataset were the most unique and should be
focused on for future laboratory research, reducing the number of future experiments that need to
be run.

In order to conduct PCA, z-scores are computed for each variable (X,), the covariance matrix is
computed from the z-scores, eigenvectors are computed from the covariance matrix (V(4,)), then
reduced dimensionality is computed using the following transformed equation [49,50]:

PCA= Y V(&) *X, (a8
K=0

We analyzed a dataset from Engler ef al. that measures the gene expression of 21 neural lineage
markers over various culture stiffnesses ranging from 0.1kPa to 34kPa [30]. Engler et al.'s
dataset is located in Appendix B. We used MATLAB to run PCA. The code is private domain
and is not provided in this report. Although we ran several iterations, our final analysis focused
on the dataset without the addition of BLEBB since we are interested in how mechanical signals
influence cell fate.

After running our MATLAB code, two graphs were generated. The first graph is the Pareto of
Effects, a bar graph which graphs percent of variance over variance. This graphic indicates how
many distinct clusters of variables exist in the dataset after dimensionality reduction and what
percent of variance the corresponding cluster represents in the dataset [51]. The second graph is a
biplot, which graphs each gene where the cosine of the angle between the gene and axis indicates
its importance [49]. The cosine of the angle between pairs of genes indicates their correlation
[49]. Genes with high correlations will point in similar directions and can be stacked, while
genes with low correlations will have large angles and can be perpendicular to each other [49].

5.3 Results and Discussion

The y*-test had a p-value of 0.1736, while the G-Test had a p-value of 0.15. Both of these values
are well above the level of significance (p=0.05), therefore we did not reject the null hypothesis,
which states that there is no association between stiffness and differentiation.

Logistic regression yielded the following model, where xi corresponds to 1, 2 or 3 depending on

the stiffness category and p is the proportion differentiated:
exp(2.64-1.37x))

~ Trew(o6a137r) (Ea?
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Equation 9 has a negative slope, indicating an inverse correlation between the variables. As
stiffness increases, the odds of neural differentiation decreases, as seen in Figure 7. This trend
was expected based on previous literature [26-31].

0.8 | ‘
logit
O obs. proportions
0.7 [ .
go6r
5
205} o
£
©
Soa4r
S
s
o 03r
0.2
0.1 ' ; ‘
1 18 2 285 3
Stiffness
Figure 7: Graph of Logistic Regression Model (logit) Compared to Observed Values Extracted from Stiffness
Contingency Table.

MATLAB generated p-values of 0.0847 and 0.1218 for the two coefficients incorporated into the
logistic regression model. Neither of the p values are significant with an alpha of 0.05, therefore
we fail to reject the null hypothesis.

These results from the y*-test, G-test and logistic regression were unexpected because all
literature incorporated into our contingency table significantly showed that stiffness influences
neural differentiation [26-31]. As mentioned in Chapters 1, 3 and 4, the expected value in each
category must be greater than 5 in order for the statistical tests to accurately reflect the data.

After running our PCA script, the Pareto of Effects bar graph identified 3 unique clusters of
genes shown in Figure 8. Cluster 1 makes up roughly 80% of the variance in the dataset, while

cluster 2 and 3 consist of 20% of the variance.
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Figure 8: Pareto of Effect Representing Unique Clusters in PCA Data Set from Engler et al. [30]
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The generated biplot identifies which genes belong to the three significant clusters as well as
their importance shown in Figure 9. N-Cadherin is the most distinctly unique gene with the
largest cosine of the angle between the gene and x-axis. N-Cadherin is commonly known as an
adhesive protein, but it is also used by cells to promote neural differentiation and stabilize neural
identity by dampening anti-neural signals [52]. The middle cluster contains 13 genes, indicating
these are relatively similar and only one from this cluster needs to be investigated in future
research. The bottom cluster contains 3 genes, Neural Cell Adhesion Molecule (CAM) 1 being
the most significant due to the largest cosine angle value. Neural CAM 1 influences neuronal
migration, axonal branching and synaptogenesis [53]. The red dots represent outliers in the data
set identified from the PCA. Engler ef al.’s dataset did not have any replicates, therefore no
formal outlier analysis was conducted. In future experiments, N-Cadherin, Neural CAM 1 and
one gene of choice from the middle cluster should be focused on.
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CHAPTER 6: Engineering Standards

6.1 Ethical Justification

As engineers, we understand that it is vital to consider the ethical implications of our work. We
have three main ethical justifications for our project. First, by consolidating and analyzing a wide
variety of sources on the impact of substrate stiffness, matrix dimensions and neurotoxins on
neural differentiation, we hope to help others reduce the number of experiments that they need to
complete on neural cells. This will allow more researchers to complete research on neurons, as
they will not be as prohibited by cost, which in turn will produce more data on developmental
toxicity. As more research is done on this topic, we will be able to better understand the impact
of these toxins on the brain, and reduce exposure to such toxins in commercial products. Further,
reducing the number of experiments will reduce the number of stem cells that need to be used for
research purposes.

Second, our project will allow researchers to begin to shift away from animal models. This shift
allows researchers to better understand the workings of the human brain, as animal models do
not mimic human brain development well [54]. This will further improve the quality of research
being done on brain development and developmental neurotoxicity. Further, moving away from
animal models removes the ethical quandaries regarding animal research. While there are ethical
justifications for using animal models, such as the benefits to human health, moving away from
these models will open up these benefits to more people who may feel repulsed by benefiting
from animal research [55].

Third, we believe that the choice of project itself, studying developmental neurotoxicity, is
ethically justified. Developmental neurotoxins can have large impacts on brain development,
resulting in various neurological disorders later in life [56]. As a result, we believe that the time
and energy invested in this project will have benefits for many people because it will help open
the doors for more research and understanding on developmental neurotoxicity. Further, our
findings on the impact substrate stiffness and dimensions on neural differentiation can aid in
other neurological research, not only developmental toxicity, broadening the applicability of our
research.

6.2 Environmental and Sustainability Implications

As mentioned in the Ethics section, our project will ideally be used by other researchers to
reduce the number of experiments and animal models needed to be completed for research on
developmental neurotoxicity. By reducing the number of experiments needed, we will reduce the
environmental impact of researching developmental neurotoxicity. Further, animal research has a
large environmental impact, so reducing the need for animal models will make developmental
neurotoxicity research more sustainable [57].

6.3 Economic Considerations

By reducing the need for animal models and the number of experiments, it will make
developmental toxicity research more economically feasible. Reducing the number of animal
models will reduce the cost of developmental toxicity research, as animal research comes with
many costs, such as creation of facilities to house and care for the animals [58]. Reducing the
number of experiments will decrease the cost of completing research as well, as people will have
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to purchase fewer materials and spend less time. As a result, our project will have positive
economic impacts.

6.4 Health and Safety Implications

As discussed in section 1.1.1, using two-dimensional cells cultured during drug development has
shown to be ineffective due to culturing conditions that are not similar to the in vivo
environment, affecting proliferation and differentiation. Our project represents a more relevant
way to study developmental toxicity than currently available methods by using
three-dimensional cell culture. Which in turn will further improve safety of pharmaceutical drugs
and other biotechnology products, as researchers will be able to better and more relevantly
evaluate if materials or compounds are developmental toxins.

6.5 Social and Political Considerations

Federal government is the primary source of research and development funding; the NIH alone
invests 41.7 billion dollars each year into medical research, much of which is related to drug
development [59]. If proved effective, our model could serve as a pre-screening tool for drug
development. This would greatly reduce the number of experiments required to bring a product
or material to market and therefore reduce the cost of research and development to taxpayers.
Additionally, as many developmental toxicology studies make use of stem cells, some cell lines
have ethical sourcing complications. Our project has additional social considerations as it
reduces the use of these types of cells during experimentation.
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CHAPTER 7: Summary and Conclusions

7.1 Summary of the Project

Our senior design project had three main stages. The first stage was literature review. In this
stage, we researched the current available methods to study developmental toxicity as well as the
different microenvironmental factors that impact neuronal differentiation. From this initial
search, we narrowed down our pool of microenvironmental inputs to three main inputs: matrix
stiffness, matrix dimensions, and toxin addition. The next stage of our project was data
collection. We extracted data from over fifty papers on the impact of various factors on stem cell
differentiation. We then combined the data from papers with comparable experimental methods
into contingency tables. After data collection, we moved on to the final stage of our project: data
analysis. We completed y*- and G-tests to determine significance of the microenvironment
inputs. We also completed logistic regression to determine the correlation between stiffness and
differentiation. Further, we used PCA to reduce the number of variables, thus simplifying further
experimentation on neuronal differentiation. However, the only microenvironment input that was
significant according to our tests was matrix dimensions. This result was surprising because our
literature review indicated that both stiffness and toxin addition have an impact on stem cell
differentiation into neurons [26—31]. We believe that this is due to our small sample sizes. As a
result, we would like to do further research into this field.

7.2 Systems Integration and Future Work

In order to integrate the aforementioned subsystems, future work will need to be done to increase
the sample size per category in the matrix dimension, toxin, and stiffness contingency tables. For
variables that have a statistically significant influence on neural differentiation, these will be
incorporated into our final predictive models. The goal of our project is to create two models as
diagrammed in Figure 10.
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Figure 10: Diagram of Two Predictive Models to Predict Cell Fate and Toxin Type
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In the first model, researchers will input data on selected microenvironmental cues of which stem
cells will be subjected to. Then, the model will predict cell fate such as differentiation into
neurons or other cell types, no occurrence of differentiation or occurrence of apoptosis or
necrosis. In the second model, data regarding the cell fate such as morphology, cell viability,
proliferation and gene or protein expression will be inputed. This data can take the form of
neurite length, alive/dead cell counts or important biomarkers derived from literature or our PCA
analysis such as beta III tubulin, N-Cadherin or Neural CAM 1. Once the data is input into the
model, it should predict the toxin type added to the system which can include developmental
toxins, neural toxins, stem cell toxins or no toxins. These two models can be used individually or
as a system to predict the influence of a chemical on neural differentiation, each providing
important information on cell fate and toxin type respectively.

In order to complete the predictive models, there is more work to be done in the future. First, we
would generate more data in the lab regarding the impact of stiffness and toxin addition on stem
cell differentiation to fill in the holes in our data collection from literature. Additionally, we
would like to collect data on other variables such as diffusion and adhesion sites on stem cell
differentiation from literature. Then, we would continue to fill in gaps in the contingency tables
by generating data from the lab. Second, we would begin to develop the predictive models using
statistical analysis of the lab generated data and the data from papers. The goal is to have two
models: one where researchers input microenvironmental cues and the model predicts the stem
cell differentiation, and another where researchers input cell characteristics and the model
outputs toxin type. Finally, we would validate the models in the lab to ensure that they accurately
predict stem cell differentiation and toxin type.

7.3 Lessons Learned

Our team learned a number of invaluable lessons from this project. First, we increased our
proficiency in literature research. We learned how to use various search techniques and data
bases to get a wide variety of sources that apply to our research. Second, we improved our data
analysis techniques. We were able to practice y’-tests and logistic regression, which we had
learned in prior courses. Further, we learned new techniques such as G-tests and PCA, which we
will be able to use for future research projects. Finally, throughout this process, we improve our
teamwork and communication skills, figuring out how to allocate work well. All of these skills
will be indispensable as we all move forward in our careers.
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APPENDIX
Appendix A: Observed and Expected Tables for y*-test and G-Test

A.1 y*-Test Observed and Expected Tables for 2D versus 3D

Table 7: Observed Values for 2D versus 3D Contingency Table

Observed 2D 3D Total
Differentiated (>2 fold
increase) 0 21 21
Undifferentiated (<2
fold increase) 10 7 17
Total 10 28 38

Table 8: Expected Values for 2D versus 3D Contingency Table

Expected 2D 3D Total
Differentiated (>2 fold
increase) 5.5 15.5 21.0
Undifferentiated (<2
fold increase) 4.5 12.5 17.0
Total 10.0 28.0 38.0
Table 9: y>-Test Values for 2D versus 3D
x*-Test 2D 3D
Differentiated (>2 fold increase) 5.53 1.97
Undifferentiated (<2 fold increase) 6.83 2.44
x? 16.76
p 4.23E-05




A.2 y* and G-Test Observed and Expected Tables for Toxin

Table 10: Observed Values for Toxin Contingency Table

38

Observed 0-0.09uM 0.1-2uM Total
Undifferentiated (<1
Fold) 12 5 17
Differentiated (>1 Fold) 4 1 5
Total 16 6 22
Table 11: Expected Values for Toxin Contingency Table
Expected 0-0.09uM 0.1-2uM Total
Undifferentiated (<1
Fold) 12.36 4.64 17
Difterentiated (>1 Fold) 3.64 1.36 5
Total 16 6 22
Table 12: y2-Test Values for Toxin
x*-Test 0-0.09uM 0.1-2uM
Undifferentiated (<1 Fold) 0.01 0.03
Differentiated (>1 Fold) 0.04 0.10
X’ 0.17
p 0.6801




Table 13: G-Test Values for Toxin

39

G-Test 0-0.09uM 0.1-2uM
Undifferentiated (<1 Fold) -0.36 0.38
Differentiated (>1 Fold) 0.38 -0.31
G 0.18
p 0.6714
A.3 y? and G-Test Observed and Expected Tables for Stiffness
Table 14: Observed Values for Stiffness Contingency Table
Observed Low (<1kPa) |Medium (1-10kPa) | High (>10kPa) Total
Differentiated (>2 fold
increase) 3 5 1 9
Undifferentiated (<2 fold
increase) 1 5 5 11
Total 4 10 6 20
Table 15: Expected Values for Stiffness Contingency Table
Expected Low (<1kPa) |Medium (1-10kPa) | High (>10kPa) Total
Differentiated (>2 fold
increase) 1.8 4.5 2.7 9
Undifferentiated (<2 fold
increase) 2.2 55 33 11
Total 4 10 6 20




Table 16: y2-Test Values for Stiffness
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x*-Test Low (<1kPa) Medium (1-10kPa) High (>10kPa)
Differentiated (>2 fold
increase) 0.80 0.06 1.07
Undifferentiated (<2
fold increase) 0.65 0.05 0.88
X’ 3.50
p 0.1736
Table 17: G-Test Values for Stiffness
G-Test Low (<1kPa) Medium (1-10kPa) High (>10kPa)
Differentiated (>2 fold
increase) 1.53 0.53 -0.99
Undifferentiated (<2 fold
increase) -0.79 -0.48 2.08
G 3.76
p 0.15
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Appendix B: Principal Component Analysis Dataset

Table 18: Expression of Neural Lineage Markers due to Various Culture Stiffnesses [30]

Lineage | 0.1 kPa | 1kPa | 11kPa | 34kPa | 1kPa | 11 kPa | 34 kPa

Gene Description Symbaol Marker | MSC MSC MSC MSC MSC MSC MSC
Inhibitors Added Bleb Bleb Bleb

Actin, Actin, Actin, Actin, Actin, Actin, Actin,

(Normalization) MSC MSC MSC MSC MSC MSC MSC
Microtubule-Assoc Prot. Tau MAPT N 5.56 7.63 3.70 1.51 1.45 .88 1.02
Tau Tubulin Kinase | TTBK1 N 5.23 7.28 4.40 1.89 1.62 1.38 1.09
Tau Tubulin Kinase 2 TTBK2 N 3.56 4.89 3.50 1.74 1.29 0.97 0.93
Tubulin, Alpha 3 TUBA3 N 1.97 1.25 (.94 0.64 1.11 0.55 0.46
Tubulin, Beta 1 TUBBI N 841 8.88 5.13 1.50 3.63 1.85 1.26
Tubulin, Beta 3 TUBB3 N 5.70 3.73 1.49 1.17 1.62 1.02 0.86
Tubulin, Beta 4 TUBB4 N 8.55 9.67 398 (.79 342 1.46 0.94
Glial Der. Neurotrophice Fetr GDNF N 9.88 9.67 2.65 1.15 2.18 1.38 1.20
GDNF Receptor Alpha 1 GFRAL N 5.14 529 2.01 1.16 1 45 1.15 1.02
N-Cadherin CDH2 N 2.19 4.70 6.38 1.62 1.52 1.58 1.14
TNF Receptor Member 5 CD40 N 3.73 6.51 3.72 210 1.82 1.39 1.24
TNF Receptor, Member 6 FAS N 441 6.62 4.21 207 2.38 1.71 1.01
Brain-Der. Neurotrophic Fetr BDNF N 4.27 572 1.14 1.35 2.52 1.09 1.18
Neurofilament Light Chain NEFL N 3.62 4.13 2.00 1.23 1.97 0.93 0.86
Internexin Neuronal [Fa INA N ©.53 6.17 2.52 1.33 2.13 (.64 0.79
Nerve Growth Factor Beta NGF N 448 446 2.33 1.75 1.20 0.66 0.94
Neuregulin | NRGI N 4.38 4.67 297 1.58 2.12 1.15 0.95
Signal Activator of Transcrpt. 3 STAT3 N 4.57 5.41 2.07 1.64 1.56 0.73 0.98
Nestin NES N 3.30 4.25 1.38 222 1.27 0.44 0.96
Neural CAM 1 NCAMI N 7.57 4.55 2.58 245 233 1.58 1.73
Integrin, Beta 3 ITGB3 N 0.59 0.72 058 (.56 0.78 0.59 0.55




Appendix C: Proposed Budget and Finalized Budget

C.1 Proposed Budget

Table 19: Hydrogel Materials
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Material Source Quantity Cost
Alginate Abcam 1 kit (good for 100 | $505
tests)
Crosslinker - Collagen | Sigma Aldrich 30 mg $241
Acrylamide Sigma Aldrich 100 mL $43
Table 20: Cell Culture and Differentiation Materials
Material Source Quantity Cost
P19 Cells Dr. Zhang’s Lab
Dissociation Reagent Thermofisher 100 mL $15
trypsin- EDTA
a-MEM Thermofisher 1L $110
T-75 Flasks Thermofisher 100 flasks $337
Fetal calf serum Thermofisher 100 mL $171
Newborn calf serum Thermofisher 100 mL $32
Dulbecco’s PBS Thermofisher 1L $49
without calcium and
magnesium
All trans-retinoic acid | Sigma Aldrich 100 mg $47
Total $1550
C.2 Finalized Budget
Table 21: Finalized Budget and Materials Used for Senior Design 2021
Material Source Quantity Cost
MATLAB SCU Engineering Design Center | N/A $0
Journal Databases SCU Library N/A $0
Google Suite SCU N/A $0
Total $0
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Appendix D: Project Schedule

Oct.  Oct. Nov. Nov. Dec. Dec. Dec. Jan. Jan. Feb. Feb. Mar. Mar. Mar. Apr. Apr. May May
Task Prior 70 21 4 18 2 16 30 13 27 10 27 3 17 31 14 28 12 26 Jun9

Preliminary
Literature
Review

Materials
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Protocol
Development

Data Collection
from Literature

Contingency
Tables

Significance
Tests

s Wi HEEEEEEEENEE
HEEN

Figure 11: Gantt Chart of Senior Design Project Progress

Senior Design
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