
Santa Clara University Santa Clara University 

Scholar Commons Scholar Commons 

Information Systems and Analytics Leavey School of Business 

10-2020 

Buyer Financing in Pull Supply Chains: Zero-Interest Early Buyer Financing in Pull Supply Chains: Zero-Interest Early 

Payment or In-House Factoring? Payment or In-House Factoring? 

Xiangfeng Chen 

Qihui Lu 

Gangshu (George) Cai 
Santa Clara University, gcai@scu.edu 

Follow this and additional works at: https://scholarcommons.scu.edu/omis 

 Part of the Management Information Systems Commons 

Recommended Citation Recommended Citation 
Chen, X., Lu, Q., & Cai, G. (George). (2020). Buyer Financing in Pull Supply Chains: Zero-Interest Early 
Payment or In-House Factoring? Production and Operations Management, 29(10), 2307–2325. 
https://doi.org/10.1111/poms.13225 

This is the peer reviewed version of the following article: Chen, X., Lu, Q., & Cai, G. (George). (2020). Buyer Financing 
in Pull Supply Chains: Zero-Interest Early Payment or In-House Factoring? Production and Operations Management, 
29(10), 2307–2325. , which has been published in final form at https://doi.org/10.1111/poms.13225. This article 
may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving. 

This Article is brought to you for free and open access by the Leavey School of Business at Scholar Commons. It 
has been accepted for inclusion in Information Systems and Analytics by an authorized administrator of Scholar 
Commons. For more information, please contact rscroggin@scu.edu. 

https://scholarcommons.scu.edu/
https://scholarcommons.scu.edu/omis
https://scholarcommons.scu.edu/business
https://scholarcommons.scu.edu/omis?utm_source=scholarcommons.scu.edu%2Fomis%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=scholarcommons.scu.edu%2Fomis%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1111/poms.13225
mailto:rscroggin@scu.edu


Buyer Financing in Pull Supply Chains: Zero-Interest Early

Payment or In-House Factoring?

Xiangfeng Chen ∗ Qihui Lu † Gangshu (George) Cai ‡

Abstract

This paper investigates the efficacy of zero-interest early payment financing (alternatively

referred to as early payment) and positive-interest in-house factoring financing in a pull supply

chain with a capital-constrained manufacturer selling a product through a capital-abundant

retailer. Early payment is the prepayment of a wholesale cost to the manufacturer, whereas

in-house factoring is a loan service provided to the manufacturer by a branch financing firm of

the same retailer. We find that the retailer prefers early payment financing to bank financing

when the manufacturer’s production cost is low. If the retailer instead offers positive-interest in-

house factoring financing to the manufacturer, then the financing equilibrium domain enlarges as

compared to bank financing. Interestingly, early payment financing can outplay positive-interest

in-house factoring financing if the production cost is considerably low; otherwise, vice versa.

When the production cost is big enough, the retailer will not provide either early payment or

in-house factoring. Furthermore, our main qualitative result sustains with an identical wholesale

price across all three financing schemes and the financing equilibrium domain of early payment

shrinks as demand variability grows.

Keywords : bank financing; early payment; in-house factoring; pull supply chains; newsvendor

1 Introduction

In pull supply chains, retailers place “at-once” orders in a selling season, whereas manufacturers

must manage the inventory and take all the inventory risks. In the extant literature, pull supply

chains are often referred to as “retailers buying from a newsvendor” and are exemplified by consign-

ment inventory, vendor managed inventory (VMI), and drop shipping (Cachon, 2004). For example,

Trek Inc., a high-end bicycles manufacturer, is willing to bear all inventory costs, while retailers
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place “at-once” orders whenever demand is realized (Cachon, 2004). Ever since Procter & Gamble, 

Co. and Wal-Mart Stores, Inc. began the practice of “Reengineering the Corporation,” VMI has 

been one of the successful business models used by many big box retailers (Ç etinkaya and Lee, 

2000), such as Wal-Mart, Home Depot, Amazon, and Alibaba.

Unfortunately, many manufacturers are small, capital-constrained, and lack the creditworthiness 

to borrow sufficient cash to fund their production. According to Chen and Gupta (2014), millions 

of small businesses account for 60% to 80% of all US jobs, but 43% of small business owners have 

been capital-constrained at least once in the last four years and could not secure any financing. As 

reported by the World Bank Group Enterprise Surveys (Bank, 2016), 27% of 130,000 firms across 

135 countries identify “access to finance” as a major business constraint. The financial distress can 

further burden capital-constrained manufacturers, especially if the production lead time is long, 

such that the manufacturer has to produce and stock up on product before the retailer orders after 

the demand realizes in a short selling season (e.g., seasonal and holiday sales).

To help resolve manufacturers’ financial distress, zero-interest early payment has emerged as 

an alternative to traditional bank financing. In zero-interest early payment financing (hereafter 

referred to as early payment for brevity), a retailer will provide sufficient capital – a prepayment 

of the wholesale cost – for the manufacturer to carry on the contracted production. For example, 

big retailers, such as Costco, Amazon, Macy’s, and Walgreens, have helped fund their capital-

constrained manufacturers via early payment through the C2FO financing platform (C2FO, 2016). 

In 2009, Wal-Mart established a “Supplier Alliance Program,” promising to pay eligible suppliers 

about 60 days earlier (O’Connell, 2009), and in 2015, it also extended early payment terms to 

about 10,000 reliable suppliers who can obtain capital in 10 days via “early real-time payment 

software” (Green, 2015). As reported by Marks (2015), since 2015 Home Depot has also stepped 

up to pay its manufacturers earlier via Taulia supply chain finance systems. JingDong, the largest 

online business-to-consumer retailer in China (with a $67.2 billion net revenue in 2018, according 

to jd.com), has also offered early credit to its manufacturers. According to Chen et al. (2016), since 

2013 JingDong Finance has provided more than 30 billion RMB in advance buyer credit per year 

to its suppliers. While bank financing takes up about 35%-40% ($5.5-$6.4 trillion), the World Bank 

estimates that cash in advance represented about 19%-22% ($3-$3.5 trillion) of all trade finance 

arrangements in 2008 (Chauffour and Malouche, 2011). Nevertheless, to obtain a no-interest early 

payment, a manufacturer has few choices but to sacrifice a percentage of the early payment discount 

at its retailer’s discretion. For example, Wal-Mart commands a 2% discount for its early payment 

offer (Green, 2015).
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In practice, there is another alternative buyer-financing. Instead of providing a no-interest early 

payment, some retailers would rather charge interest on their advance payments to manufacturers 

as loans via a branch financing firm. For example, JingDong uses its factoring financing branch, 

JingDong Finance, to offer the JingBaoBei financing service to its manufacturers as loans with 

a fixed interest rate (Chen et al., 2016). Amazon also provides loans to small business suppliers 

via its Amazon Lending program (Chen and Gupta, 2014). Different from traditional factoring 

financing, JingDong Finance and Amazon Lending serve as the (in-house) “third-party” financiers 

for their respective parent companies. Hereafter, we refer to this type of advance payment as 

in-house factoring financing.

Mathematically, we would find that early payment could be treated as a special case of in-house 

factoring by setting the in-house factoring interest rate to zero and ignoring the setup costs (e.g., 

extra employees and licensing) for a branch financing firm. To focus on the impact of a positive 

interest rate, we have deliberately assumed zero setup costs; however, this does not erase the factual 

disparity between in-house factoring financing and early payment in the following additional aspects. 

In accounting, early payment is a prepayment for the retailer’s purchase from the manufacturer, 

whereas in-house factoring financing is a loan. In terms of procedure, early payment is part of 

the order payment and will not go through the loaning process. By contrast, in-house factoring 

must go through the loaning process. As a result, in-house factoring financing usually occurs when 

the retailer also has a financing subsidiary authorized with corresponding licenses, whereas early 

payment occurs as long as the retailer has sufficient capital to pay for its order upfront. In terms of 

interest rate, early payment as prepayment does not come with an interest rate, whereas in-house 

factoring financing typically commands a positive interest rate.

The extant literature has not documented whether early payment and in-house factoring can 

always outperform bank financing, although, in practice, retailers are actually selective on how to 

provide the financing service. The extant literature is also mute on whether it is always beneficial for 

the retailer to turn early payment into in-house factoring financing by charging a positive interest 

rate (even if the setup costs are zero) or vice versa. Therefore, it is not clear whether the retailer 

should offer early payment or in-house factoring, especially when bank financing is also viable to 

the manufacturer. If we assume retailers should offer those options, then at what conditions can the 

retailer be better off offering zero-interest early payment or in-house factoring, as compared to bank 

financing? Supposing the setup costs for in-house factoring branch are zero, should the retailer 

always choose in-house factoring over early payment? If yes, what is the optimal interest rate? How 

would other factors, such as identical wholesale price and demand variability, affect the retailer’s
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financing equilibrium strategy?

1.1 Main results

To answer the above research questions, we consider a stylized pull supply chain model where a 

capital-constrained manufacturer sells a product through a capital-abundant retailer. The manu-

facturer may borrow from either the bank via bank financing or the retailer via no-interest early 

payment or positive-interest in-house factoring (also see Figure 1 in the Model section). We first 

analyze bank financing and early payment financing separately and characterize their optimal so-

lutions respectively. We then compare early payment to in-house factoring financing.

Compared to bank financing, early payment financing demonstrates a better risk-sharing mech-

anism in coordinating the supply chain, because the retailer and the manufacturer each share a 

partial risk of the uncertainty. We find that, if the manufacturer’s production cost is not too high, 

the retailer prefers early payment financing to bank financing.

However, the retailer has incentives to command an extremely low wholesale price under early 

payment financing, so both the manufacturer and the whole supply chain could be worse off under 

early payment compared with bank financing. The viability of bank financing can be used to lever-

age against early payment, so in early payment financing the retailer must enhance the wholesale 

price to appeal to the manufacturer. Our analysis reveals that there exists a wholesale price Pareto 

zone, in which both firms can be better off in using early payment financing as long as the manufac-

turer’s production cost is sufficiently low. Even though the retailer’s profit deteriorates due to the 

competition against bank financing, the manufacturer produces more because of their higher profit 

margin, which leads to a higher profit for the whole supply chain. This observation demonstrates 

that the competition from bank financing forces the retailer in early payment financing to surrender 

part of its profit to the manufacturer, so the whole supply chain can be better coordinated.

To interpret the advantage of a no-interest commitment in early payment, we compare it to in-

house factoring financing with positive interest, a loan-type advance payment. Compared with bank 

financing, in-house factoring continues to exhibit the benefit of integrating finance and operations 

decisions by the retailer. Comparing early payment to in-house factoring, we surprisingly find 

that neither financing scheme can always dominate the other, and the upfront commitment of no 

interest in early payment can outplay positive-interest in-house factoring financing. In particular, 

when the production cost is low, early payment outpaces in-house factoring (the benefit increases if 

the latter’s setup costs are not zero); however, as the production cost increases, in-house factoring 

financing becomes more attractive and eventually dominates early payment financing.

4



Although both early payment and in-house factoring are considered better risk-sharing mecha-

nisms than bank financing, the benefits of positive interest in in-house factoring (interest benefit), 

a lower wholesale price (wholesale-price benefit), and a larger production quantity (production-

quantity benefit) vary over the manufacturer’s production cost and, thus, the retailer should adjust 

its interest strategy accordingly. In general, the retailer’s optimal interest rate increases with the 

manufacturer’s production cost before hitting the upper bound, which instead decreases with the 

production cost to warrant a reservation profit for the manufacturer when borrowing from bank 

financing.

Mathematically, early payment looks like a special case of the in-house factoring if we set the 

interest rate of in-house factoring to zero. Based on the above discussion, the optimal interest rate 

of in-house factoring will thus be zero when the production cost is low. However, this potential 

outcome is based on the assumption that the two financing procedures are the same and in-house 

factoring setup costs are zero, which cannot be true given that the retailer has to hire additional 

employees to process the factoring and to obtain financing licenses for doing so. This might explain 

why, in practice, we have not observed zero-interest in-house factoring.

We also extend our analysis to a scenario where the retailer would command an identical 

(uniform) wholesale price across all three financing schemes. Our analysis exhibits that either early 

payment or in-house factoring continues to dominate bank financing when the production cost is 

low, and the reverse is true otherwise. Provided that the production cost is low, early payment 

dominates other financing schemes if the wholesale price is also low; as the wholesale price increases, 

in-house factoring and then bank financing dominate sequentially. Like in the baseline model, the 

retailer can still decide whether to provide early payment or in-house factoring to manipulate its 

financing equilibrium choice by adjusting the identical wholesale price level. In another extension, 

we observe that the financing equilibrium domain of early payment shrinks as demand variability 

grows, because the manufacturer takes advantage of the risk-sharing mechanism to over-produce 

in early payment.

1.2 Related literature review

This paper is related to the literature on supply chain finance and pull supply chains. The first re-

lated research stream is on bank financing. For example, Buzacott and Zhang (2004) use a newsven-

dor model to investigate the interplay between inventory decisions and asset-based financing. 

Dada and Hu (2008) consider a capital-constrained newsvendor that can borrow from a bank and 

investigate conditions under which channel coordination can be achieved. Caldentey and Haugh
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(2009) study a two-echelon supply chain in which the retailer is budget constrained and investigate 

different types of procurement contracts (wholesale contract, flexibility contract, flexibility contract 

with hedging) between the agents. Based on a newsvendor model, Chen et al. (2011) compare three 

different payment schemes and show that the payment scheme can lead to different inventory de-

cisions. Zhou et al. (2020) explore the impact of two types of upstream firms’ guarantee in bank 

financing on firms’ performance and reveal a follower advantage in guarantor financing. Our paper 

also studies bank financing, but only as a benchmark case.

The second related research stream is on trade credit where a capital-abundant manufacturer 

can offer trade credit to a capital-constrained retailer. For example, Cai et al. (2014) examine the 

retailer’s financing strategy when using both bank credit and trade credit under moral hazards, and 

use empirical data to support their theoretical results. Jing et al. (2012) show that both bank credit 

and trade credit can be financing equilibrium under some conditions in a model with a manufacturer 

selling through a capital-constrained retailer. Peura et al. (2017) prove that trade credit can soften 

horizontal price competition in a Bertrand competition framework. Different from the trade credit 

literature, the manufacturer is no longer capital-abundant but rather capital-constrained in our 

model.

The third related research stream is on pull systems. Recent decades have witnessed more 

increasingly dominant, large, centrally managed “power retailers,” such as chain supermarkets, mass 

merchandisers, wholesale clubs, and category killers. Accordingly, numerous theories have been 

proposed to explain these powerful downstream retailers. For example, Cachon (2004) compares 

three different contracts, namely push, pull, and advance-purchase discount, to study the impact 

of contracts on inventory risk allocation. In the pull system, the retailer behaves as a leader and 

decides the wholesale price. Dong and Zhu (2007) illustrate how the inventory decision rights and 

ownership are shifted and/or shared between a supplier and a retailer under a two-wholesale-price 

contract, resulting in push, pull, or advance-purchase discount contracts. Yang et al. (2018) explore 

the impact of risk averse attitude on push and pull contracts and show that a push contract can 

outperform a pull contract for the whole supply chain when the supplier is sufficiently more risk 

averse than the retailer. Our model is similar to these pull supply chains; however, all these papers 

ignore financing decisions.

The fourth, and most related, research stream is on financing the suppliers. For example, 

Tunca and Zhu (2018) build a theoretical model to compare traditional bank financing and buyer 

intermediation in supplier financing (BIF), and they demonstrate that BIF induces lower wholesale 

prices and higher order quantities. Several papers have also been built upon pull supply chains with
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buyer financing. Deng et al. (2018) explore an assembly system with one assembler and multiple 

heterogeneous suppliers. They find that the assembler can still benefit from offering buyer financing 

even if its capital opportunity cost is higher than the bank’s risk-free interest rate. Reindorp et al.

(2015) study the equilibrium of purchasing ordering financing in the case of “buying from the 

newsvendor.” However, differently from those studies, we investigate early payment financing with 

zero interest rate and examine the impact of the manufacturer’s production cost on the retailer’s 

financing equilibrium, which is not the focal point of those previous models.

The work by Tang et al. (2018) is closely related to our article and worth special mention-

ing. Tang et al. (2018) capture the interactions among a small supplier (Stackelberg follower), a 

manufacturer (Stackelberg leader) and a bank, to analyze how information influences the relative 

efficiency of two financing schemes: purchasing order financing (POF) and buyer direct financing 

(BDF). Theoretically, their POF is similar to our bank financing and their BDF is similar to our 

in-house factoring financing. But, their model and ours are different in multiple ways. First, for 

tractability, their model assumes that “the demand faced by the manufacturer is assumed to be 

known and is normalized to 1 without loss of generality.” Differently, we assume that demand is 

random following a general probability distribution function, which is typical in the newsvendor 

literature. Second, whereas their model focuses on the supply risk and effort information asym-

metry, our model focuses on the value of early payment and gains insights on when to choose 

which financing scheme under demand uncertainty. Third, Tang et al. (2018) “find that when the 

manufacturer and the bank have symmetric information, POF and BDF yield the same payoffs for 

all parties irrespective of the manufacturer’s control advantage under BDF.” They suggest that 

POF and BDF can outperform each other only under asymmetric information. Different from their 

finding, our analysis suggests that, even under symmetric information, early payment/in-house fac-

toring or bank financing can outperform each other under demand uncertainty, depending on the 

production cost level. Fourth, Tang et al. (2018) mainly compare POF to BDF, whereas we first 

compare early payment to bank financing, then compare in-house factoring to bank financing, and 

finally compare in-house factoring to early payment.

2 The Model

We consider a pull supply chain with one capital-constrained upstream firm (hereafter referred to as 

manufacturer), and one capital-abundant downstream firm (hereafter referred to as retailer), where 

the manufacturer produces and sells a product via the retailer to the market. The manufacturer 

charges a procurement (wholesale) price w per unit, whereas the retailer sells the product at a
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Table 1: Notations and abbreviations

p retail price

c unit production cost for the manufacturer

v unit product salvage value

i = b, e, I, denotes bank financing, early payment, and in-house factoring financing, respectively

wi wholesale price at i = b, e, I, and w∗

i is the equilibrium

D random variable representing uncertain market demand

f(·) and F (·) are density and cumulative probability function of D, respectively

F̄ (Q) = 1− F (Q)

h(Q) = f(Q)/F̄ (Q)

H(Q) = Qh(Q)

(x)+ = max[x, 0]

Q production quantity

S(Q) = Emin[D,Q]

J(Q) = 1 + h(Q)S(Q)/F̄ (Q)

V (Q) = QF̄ (Q)

Le(Q) = (c− v)Qe/(we − v)

LI(Q) = ((c(1 + rI)− v)QI/(wI − v)

Y (Q) =
∫ Q

0 DdF (D)

Q̃ satisfies H(Q̃) = 1

Q0 satisfies (p− v)F̄ (Q0) = c− v

Γ0(c) = (p−v)S(Q0)− (c− v)Q0

rf risk-free interest rate and rf = 0 in this paper

ri interest rate for financing option i, and i = b, I. r∗i is the optimal interest rate at i = b, I

r̂I solving ΠI(Q
∗

I , wI = p, r̂I) = Π∗

b

r̂MI solving ΩM
I (Q∗

I , w
M
I (r̂MI )) = ΩI(Q

∗

I , w
M
I (0))

Qi production quantity in financing option i

Q∗

i (wi) optimal production quantity for a given wholesale price wi in i

Πi(Qi, wi) profit of the manufacturer in i = b, e, I, and is Π∗

i in equilibrium

Ωi(Qi, wi) profit of the retailer in i = b, e, I model, and is Ω∗

i in equilibrium

Γi(Qi, wi) profits of total supply chain in i = b, e, I model, and is Γ∗

i in equilibrium

c̄i c̄e =
(p−v)F̄ (Q̃)

1+2F̄ (Q̃)
+ v and c̄b = (p− v)F̄ (Q̃)/J(Q̃) + v

c0 = (p− v)F̄ (Q̃) + v, and c0 ∈ (max{c̄e, c̄b}, č)

č = (p− v)S(Q̃)/Q̃+ v

ċi satisfies Γi(Q̃) = Ω∗

b (c), i = e, I and ċi ∈ (max{c̄e, c̄b}, č)

wM
i (c) satisfies Πi(Q

∗

i , w
M
i (c)) = Π∗

b , and i = e, I

wR
i (c) satisfies Ωi(Q

∗

i , w
R
i (c)) = Ω∗

b , and wR
i (c) ∈ (w∗

i , p), i = e, I

ĉi satisfies wM
i (ĉi) = wR

i (ĉi) and ĉi ∈ (v, ċi), i = e, I

c̈e satisfies Γ∗

e(c̈e) = Γ∗

b(c̈e), and belongs in (max{c̄e, c̄b}, ċe)

c̃1 solving (wM
I (r̂I)− v)F̄ (Q0(c)) = (c(1 + r̂I)− v)F̄ (LI(Q

0(c)))

c̃2 solving ΩI(Q
∗

I , w
M
I (r̂I)) = ΩI(Q

∗

I , w
M
I (rI = 0)))

c̃3 solving (wM
I − v)F̄ (Q0(c)) = (c− v)F̄ (Le(Q

0(c)))
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retail price p. Consistent with most newsvendor models (see, e.g., Cachon, 2004), p is assumed 

to be exogenous for tractability. The unit production cost for the manufacturer is c, and the unit 

product salvage value is v, where v < c, so the manufacturer has no incentive to produce unlimited 

amount of products. To avoid triviality, we assume p ≥ w ≥ c.

Conforming to the newsvendor literature, we consider a one-period, pull, newsvendor model, like 

in Cachon (2004), Chen and Gupta (2014), Dong and Zhu (2007), Ge and Qiu (2007), Wang et al.

(2014), and Yang et al. (2018), and assume that the retailer is the leader and decides the wholesale 

price at first, and subsequently the manufacturer (follower) decides the production quantity. This 

assumption reflects a situation where the retailer has a short selling season (e.g., seasonal or holiday 

sales) while the manufacturer has a long production lead time and there is only one production 

opportunity, such that the manufacturer has to produce and stock up on product well before the 

retailer’s at-once order is placed after the demand is realized. Both the retailer and the manufacturer 

are risk neutral and attempt to maximize their profits.

We assume demand, D, is random following a probability distribution function of f (D) and 

cumulative distribution function of F (D). The demand distribution has the Increasing Failure Rate 

(IFR) property with a failure rate h(D) = f (D)/F̄ (D), where F̄ (D) = 1−F (D). The failure rate of 

the demand distribution h(D) is assumed to be both increasing with D and convex on its support. 

Let Q be the manufacturer’s production quantity and H(Q) = Qh(Q). Let Q̃ be the threshold 

value satisfying H(Q̃) = 1. For tractability, we assume the manufacturer has zero initial working 

capital and must rely on outside sources to finance its operations by covering the producing cost, 

cQ. The manufacturer has limited liability, which is in line with Jing et al. (2012).

There are three alternatives to finance the manufacturer’s operations. In the first financing 

scheme, bank financing, the manufacturer borrows funds from a third party financial institution 

(e.g., a bank). Following the convention in bank financing literature, we assume the bank resides 

in a competitive financing market with a risk-free interest rate, rf , which is normalized to zero 

for simplicity (see, e.g., Dotan and Ravid, 1985; Brennan et al., 1988; Dammon and Senbet, 1988; 

Jing et al., 2012).

In the second financing scheme, zero-interest early payment financing ( also referred to as early 

payment for brevity), the manufacturer collects partial payment (prepayment in accounting) from 

the retailer in advance to cover the production cost, cQ. Early payment has helped many small 

or startup manufacturers, who lack creditworthiness or credit history, resulting no bank providing 

financing to them, which is not uncommon in developing economies (Bank, 2016). In practice, early 

payment is not a loan, because there is no interest rate imposed on the payment, and the prepayment
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is only part of the wholesale revenue to be paid to the manufacturer. The manufacturer collects 

the remaining payment upon delivery of the product to the retailer. However, if the demand is too 

low such that the retailer’s revenue cannot cover the early payment, the retailer will absorb the loss 

provided that the manufacturer’s production has already occurred. Given that the production cost 

equals the amount of early payment, in the case of insufficient demand, the manufacturer receives 

no additional payment and its profit is zero.

We further discuss another buyer-financing mechanism, in-house factoring financing (in Section 

4.1), in which the retailer provides a loan to the manufacturer with a positive interest rate of rI . The 

loan size is cQ to warrant the production. Mathematically, early payment looks like a special case 

of the in-house factoring financing; however, different from early payment financing, the interest 

rate is usually positive in in-house factoring financing (see, e.g., de Booth et al., 2015; Chen et al., 

2016). To the best of our knowledge, we have not observed zero-interest in-house factoring in 

practice. More importantly, early payment differs from in-house factoring financing in practical 

procedure. In early payment, the portion of cash transferred from the retailer to the manufacturer 

is a prepayment for an order that the retailer will purchase from the manufacturer. Therefore, the 

early payment is part of the total order payment, rather than a loan, and it will not go through 

the loaning process. By contrast, in-house factoring financing is a buyer-financing loan and must 

go through the loaning process. Meanwhile, in-house factoring financing typically occurs when 

the retailer also has a financing subsidiary, whereas early payment does not require a financing 

subsidiary so long as the retailer has sufficient capital to pay for its order upfront. In practice, 

in-house factoring also requires factoring specialists and financing licenses. To focus on the interest 

disparity between early payment and in-house factoring, we assume setup costs and license fees are 

zero and only use them as a tie breaker between early payment and in-house factoring.

We use subscript i = b, e, I to denote bank financing, early payment financing, and in-house 

factoring financing, respectively. For instance, wb denotes the wholesale price under bank financing. 

We let Π, Ω, and Γ represent the expected profits of the manufacturer, the retailer, and the whole 

supply chain, respectively.

We use Figure 1 to depict the event sequence in these financing schemes. In the beginning 

of the time period, the retailer offers a purchase order and decides whether to offer zero-interest 

early payment or in-house factoring financing (with a positive interest rate). If the retailer does 

not offer early payment or in-house factoring financing, then the manufacturer has to choose bank 

financing. Accordingly, as the leader, the retailer provides a purchase price wi for each financing 

scheme i, the manufacturer determines the production quantity Qi, and then the bank offers an
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interest rate rb(Qb, wb) in bank financing based on the fairly priced rule. In the end of the time

period, the demand is realized and the retailer collects the revenue and pays the manufacturer the

rest of the payment, wiS(Qi), minus the loan or early payment where S(Qi) = Emin[D,Qi]. If

the product is overstock, the manufacturer also receives vE(Qi − D)+ salvage income. In bank

financing, the manufacturer repays the bank. Overall, the total investment revenue for the lender

in financing scheme i is Emin[wimin[Qi,D]+v(Qi −D)+, c(1 + ri)Qi], where there is no interest

for early payment (i.e., re is zero).

The subgame perfect equilibrium of the game is solved backwards. We assume a tie-breaking

rule that the retailer will choose early payment over in-house factoring financing if it is indifferent

between the two because of the aforementioned setup costs.

Manufacturer

decides

production

quantity

Retailer decides

wholesale price

Manufacturer

get loans

from bank

Time

Manufacturer

produces and

demand is

realized
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Figure 1: Sequences of events in different financing schemes.

We first focus on comparing early payment to bank financing in Section 3 and then study in-

house factoring in Section 4. To highlight the robustness of our qualitative outcomes, we also con-

sider the case in which the retailer commands a uniform/identical wholesale price among different 

financing schemes in Section 5.1. We also consider a centralized supply chain without capital con-

straint as a benchmark. When Q = Q0, the total supply chain profit Γ(Q) = (p−v)S(Q)−(c−v)Q 

reaches the maximum, where Q0 satisfies (p − v)F̄ (Q0) = c − v. All notations are listed in Table 1.
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3 Analysis of Zero-Interest Early Payment

Provided that there is no interest in early payment, one concern is whether early payment is ben-

eficial to the retailer. To address this concern, we use this section to focus on early payment as

prepayment and compare it to bank financing. If the retailer offers early payment to the manufac-

turer, then the manufacturer would choose either early payment or bank financing. In this section,

we start with the isolated cases of bank financing and early payment financing and then compare

them.

3.1 Bank financing

If the retailer does not offer early payment or the manufacturer refuses to accept early payment,

the manufacturer will manage to borrow bank credit. In bank financing, the retailer first chooses

a wholesale price wb and then the manufacturer chooses the production quantity Qb. The capital-

constrained manufacturer then borrows a loan, cQb, from the bank to produce Qb units of product.

Since the bank market is perfectly competitive with rf = 0, the bank makes zero expected profit

by lending to the retailer. For any Qb (or equivalently, loan size cQb) chosen by the manufacturer,

the interest rate r∗b equates the bank’s expected return to its lending costs. Similar to the vast

literature on bank financing (see, e.g., Jing et al., 2012), the bank determines the interest rate

based on the following fairly priced equation:

Emin[wb min[D,Qb]+v(Qb −D)+, c(1 + r∗b )Qb] = cQb. (1)

The manufacturer’s optimal production problem can be formulated as:

max
Qb

Πb(Qb) = E
[

wbmin[D,Qb]+v(Qb −D)+ − c(1 + r∗b )Qb

]+
. (2)

Substituting Eq. (1) into Eq. (2), we obtain the manufacturer’s profit as follows:

Πb(Qb) = E
[

wb min[D,Qb] + v(Qb −D)+
]

− Emin[wb min[D,Qb] + v(Qb −D)+, c(1 + r∗b )Qb]

= (wb − v)S(Qb)− (c− v)Qb.

The retailer’s profit function can be written as Ωb(wb) = (p − wb)S(Qb). Solving the first or-

der condition for Πb(Qb), we obtain the manufacturer’s optimal production level Q∗
b to satisfy

F̄ (Q∗
b) = (c − v)/(wb − v). Based on the one-to-one mapping between Q∗

b and wb, we have

wb = (c−v)/F̄ (Q∗
b)+v. The following result describes the firms’ equilibrium strategies under bank

financing.

Lemma 1 Consider bank financing.

1. The manufacturer’s optimal production quantity Q∗
b satisfies (p− v)F̄ (Q∗

b) = (c− v)J(Q∗
b);

2. The retailer’s optimal wholesale price is w∗
b = (c− v)/F̄ (Q∗

b) + v;
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3. The bank’s optimal interest rate r∗b satisfies S
(

(1+r∗
b
)c−v

c−v V (Q∗
b)
)

= V (Q∗
b).

Because the bank earns zero expected profit (i.e., rf = 0), the manufacturer’s expected cost

of using bank financing is identical to that of using its own capital should it have enough capital.

From the retailer’s perspective, with the bank’s help, a capital-constrained manufacturer behaves

like one with sufficient capital, which is consistent with the extant literature that the competitive

bank market separates the manufacturer’s finance decisions from its operations decisions.

While bank financing helps both the manufacturer and the retailer, such benefits are affected

by the manufacturer’s production cost.

Corollary 1 Under bank financing, the retailer’s profit and the whole supply chain’s profit (i.e.,

Ω∗
b(c) and Γ∗

b(c), respectively) decrease with the production cost (i.e., c ∈ (v, p]).

Because the wholesale price increases as the production cost rises, the retailer’s marginal profit

decreases. The manufacturer’s marginal profit also decreases, even though the wholesale price

climbs. Consequently, the manufacturer’s production quantity declines and profits decrease for the

retailer and the whole supply chain.

3.2 Zero-interest early payment

In early payment, the retailer first sets the procurement price we, the manufacturer then decides to

produce Qe, and the retailer disburses an early payment, cQe, as a prepayment to the manufacturer.

After the demand is realized, the retailer receives a revenue of pmin[D,Qe] and pays the remaining

payment (wemin[D,Qe] + v(Qe − D)+ − cQe)
+ to the manufacturer. For simplicity, we use the

following notations, Le(Qe) = (c− v)Qe/(we−v) and Y (Qe) =
∫ Qe

0 DdF (D). Then, we can rewrite

the manufacturer’s profit function under zero-interest early payment financing as:

Πe(Qe, we) = E
[

max[wemin[D,Qe] + v(Qe −D)+, cQe]− cQe

]

= (we − v) [Y (Qe)− Y (Le(Qe)) + V (Qe)− V (Le(Qe))] . (3)

Solving for the manufacturer’s optimal production quantity, we have the following outcome.

Lemma 2 Consider zero-interest early payment financing with any given we.

1. The manufacturer’s optimal production quantity Q∗
e is solved by (we − v)F̄ (Q∗

e) = (c −

v)F̄ (Le(Q
∗
e)), if we > c; and Q∗

e = Q̃ if we = c;

2. Q∗
e increases with we; and Q∗

e ≥ Q̃.

13



Lemma 2 indicates that the manufacturer can obtain a unique optimal production quantity for

any given we. Substituting Q∗
e into Eq. (3), we can rewrite the manufacturer’s payoff function as:

Πe(Q
∗
e, we) = (we−v)(Y (Q∗

e)− Y (Le(Q
∗
e))). (4)

The retailer’s expected profit can then be rewritten as:

Ωe(Q
∗
e, we) = (p− v)S(Q∗

e)− (c− v)Q∗
e − E[(we − v)min[D,Q∗

e]− (c− v)Q∗
e]
+

= (p− we)S(Q
∗
e)− (c− v)Q∗

e + Emin[(we − v)min[D,Q∗
e], (c − v)Q∗

e] (5)

= (p− we)S(Q
∗
e) + (we − v)Y (Le(Q

∗
e))− (c− v)Q∗

eF (Le(Q
∗
e)).

Based on Eq. (4) and (5), we obtain the whole supply chain’s profit Γe(Q
∗
e, we) = (p−v)S(Q∗

e)−

(c−v)Q∗
e and the following properties.

Lemma 3 Consider zero-interest early payment financing.

1. Πe(Q
∗
e, we) increases with we;

2. Ωe(Q
∗
e, we) is a unimodal function of we;

3. Γe(Q
∗
e, we) is a unimodal function of we.

The manufacturer’s profit straightforwardly increases with the wholesale price because of the

higher profit margin. Lemma 3 also shows that the retailer’s profit is a unimodal function of

we. This result occurs because the retailer can benefit from a larger production quantity as the

wholesale price grows, when we is sufficiently small. But, the benefit shrinks as the wholesale

price substantially increases and overshadows the benefit of a larger production quantity. As the

leader, the retailer can thus identify the unique optimal wholesale price for its procurement from

the manufacturer.

The retailer’s optimal wholesale price and the manufacturer’s optimal production quantity can

be further characterized by the following theorem.

Theorem 1 Consider zero-interest early payment financing.

1. There exists a production cost threshold point c̄e =
(p−v)F̄ (Q̃)

1+2F̄ (Q̃)
+ v, such that, if v < c ≤ c̄e, the

retailer’s optimal wholesale price w∗
e satisfies dΩe(Q

∗
e, we)/dwe = 0; otherwise if c̄e < c ≤ p,

then w∗
e = c.

2. The optimal order quantity Q∗
e and the retailer’s optimal profit Ω∗

e (weakly) decrease with c.

Theorem 1 reveals that when the manufacturer’s production cost is substantially higher (i.e.,

c̄e < c ≤ p), we have we
∗ = c, so the retailer squeezes all surplus from the manufacturer. This 

result occurs because, provided that the production cost is substantially high, the retailer’s profit 

margin is razor-thin and it has to bear all financial risk if the manufacturer defaults (caused by
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low demand). In this situation, the manufacturer’s expected payoff is zero (i.e., Π∗
e = 0), and the

retailer obtains all supply chain profit (i.e., Ω∗
e = Γ(Q̃) = (p−v)S(Q̃)− (c−v)Q̃). If the production

cost is low (i.e., v < c ≤ c̄e), then the retailer grants a profit margin to the manufacturer. As c

increases, the retailer’s optimal profit Ω∗
e decreases with c. In fact, if the manufacturer’s production

cost surmounts c̄e and reaches a higher threshold point č = (p−v)S(Q̃)/Q̃+v, then the retailer also

earns zero profit. If c ∈ (č, p], then Ω∗
e ≤ 0. Obviously, the retailer has no incentive to offer early

payment if the manufacturer’s production cost is too high (i.e., c > č), because when the production

cost is high, the retailer commands a wholesale price equal to the production cost such that the

manufacturer earns zero profit. The manufacturer thus becomes more risk-seeking by maintaining

a relatively high production level to earn a positive profit if demand is high or default otherwise,

which hurts the retailer.

Corollary 2 There exists a unique point c0 = (p−v)F̄ (Q̃)+v, such that, when c = c0, the zero-

interest early payment coordinates the supply chain (i.e., Γ0(c0) = Γ∗
e(c

0)).

Corollary 2 implies that the manufacturer’s risk-taking in production can lead to the first-best

outcome (a perfect coordination effect) in early payment, which does not occur in bank financing.

Overall, the early payment’s coordination effect is better when the production cost is neither too

high nor too low. When the production cost is low, the manufacturer keeps a substantial portion

of surplus such that the double marginalization negatively impacts the whole supply chain profit.

When the production cost is high, as the preceding discussion suggests, the financial risk cost to the

retailer is overwhelming, such that it hurts the retailer and the whole supply chain. Nevertheless,

the above coordination effect also reveals the risk-sharing mechanism embedded in early payment

when compared to bank financing, which is discussed more in the next section.

3.3 Comparison of early payment to bank financing

We now compare the firms’ performances in the above two financing schemes. As shown in

Corollary 1 and Theorem 1, the retailer’s optimal profits in both bank financing and early pay-

ment decrease with the production cost. In bank financing, we can identify a threshold point

c̄b = (p−v)F̄ (Q̃)/J(Q̃)+v, where the manufacturer’s optimal production quantity Q∗
b = Q̃ when

c = c̄b. If c < c̄b, we have Q∗
b > Q̃; otherwise Q∗

b ≤ Q̃. In early payment, as Theorem 1 describes,

if c = c̄e, then Q∗
e = Q̃. Comparing the retailer’s profits in bank credit and early payment leads to

the following outcome.

Theorem 2 1. ∗
b

∗
eFor any c ∈ (v, p], we

∗ ≤ wb
∗ and Π > Π ;
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2. There exists a unique threshold point ċe ∈ (max{c̄e, c̄b}, č) where ċe satisfies Γ(Q̃) = Ω∗
b(ċe),

such that, for the retailer, early payment financing outperforms bank financing (i.e., Ω∗
e ≥ Ω∗

b)

if v < c ≤ ċe; otherwise, Ω
∗
e < Ω∗

b .

Compared with bank credit, early payment brings about several interactive effects from the re-

tailer’s perspective. On the one hand, financing the manufacturer shifts partial demand uncertainty

risk from the manufacturer to the retailer (financial-risk effect). On the other hand, this cost-

sharing mechanism incentivizes a higher production quantity from the manufacturer (production-

quantity effect). Early payment also commands a discount for the retailer’s procurement cost

(wholesale-discount effect, i.e., w∗
e ≤ w∗

b ). When the production cost is lower, the manufacturer’s

default risk can be better contained. So, the production quantity effect and wholesale discount

effect in early payment financing stands out (see Figure 2 when c < ċe =0.626). However, when

the production cost is substantially high (i.e., ċe ≤ c ≤ p), the retailer has little room to further

push down the wholesale price while also facing a higher financial risk. Thus, the negative financial

risk effect overtakes the production quantity effect and wholesale discount effect. Therefore, for the

retailer, early payment falls behind.

��

��

�����	


���

��

���

�

��

�

��

��

��

��

��

� �

�

�
�

�

�
�

�

�
�

�

�
�

�����������
�
�

�

�����
�
�
�

�

Figure 2: Firms’ profit comparison between early payment and bank financing.

The retailer’s gain is the manufacturer’s loss. As Figure 2 depicts, the manufacturer always

prefers bank financing in the domain (i.e., Π∗
b ≥ Π∗

e), where the retailer prefers early payment.

Therefore, as long as the manufacturer can access bank financing, early payment is not sustainable

and the retailer will never achieve its optimal profit unless the retailer compromises some profits

to the manufacturer. We next explore such a compromise in financing equilibrium.

For consistency, in all graphs, we assume that p = 1, demand follows a Gamma distribution
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with µ = 100, and σ/µ = 0.9 throughout the paper unless mentioned otherwise.

3.4 Early payment Pareto zone and financing equilibrium domain

Given that both early payment and bank credit are viable, for the manufacturer to choose early

payment over bank credit, the former must generate at least the same amount of profit as the

latter. Accordingly, the retailer must sufficiently raise the wholesale price in early payment to

make it attractive to the manufacturer. We use the following lemma to identify this wholesale price

threshold.

Lemma 4 Consider from the manufacturer’s perspective. For any c ∈ (v, p],

1. there exists a unique wholesale price threshold point wM
e (c) such that the manufacturer earns

the same expected profit under early payment financing as that under bank financing (i.e.,

Πe(Q
∗
e, w

M
e (c)) = Π∗

b);

2. w∗
e(c) < wM

e (c) ≤ w∗
b (c).

Lemma 4 demonstrates that the manufacturer is willing to adopt early payment financing as

long as the retailer elevates the wholesale price to the level of wM
e (c). Because there is a positive

interest rate in bank financing, the threshold wholesale price wM
e (c) must be lower than the optimal

wholesale price in bank financing but higher than that in early payment (i.e., w∗
e(c) < wM

e (c) ≤

∗
e

∗
b

wb
∗(c)).

Similarly, we can identify another threshold wholesale price from the retailer’s perspective.

Lemma 5 From the retailer’s perspective, if v < c < ċe, there exists a unique threshold point 

we
R(c) ∈ (we

∗, p) such that the retailer earns the same profit under early payment as that under bank 

financing (i.e., Ωe(Q , we
R(c)) = Ω ).

Lemma 5 reveals another threshold wholesale price at which the retailer can earn the same 

profit in both financing schemes if the production cost is not too high (i.e., v < c < ċe). Recall 

from Theorem 2 that when c = ċe, the retailer earns the same profit in both financing schemes. 

So, in early payment, if v < c < ċe, the retailer can sacrifice some profit to the manufacturer by 

increasing the wholesale price up to we
R(c).

As displayed in Lemma 4 and Lemma 5, both threshold wholesale prices are higher than the 

retailer’s ideal optimal wholesale price. A concern then arises: Can the manufacturer and the 

retailer find a common ground so early payment emerges as the financing equilibrium? Our results 

say Yes.
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Theorem 3 1. There exists a critical point c = ĉe ∈ (v, ċe), where wM
e (ĉe) = wR

e (ĉe), such

that both the retailer and the manufacturer are indifferent between early payment and bank

financing;

2. [Pareto zone] For any c ≤ ĉe, there exists a Pareto zone for wholesale pricing in early

payment, that is we ∈ [wM
e , wR

e ], such that both the retailer and the manufacturer prefer early

payment to bank financing (i.e., Πe(Q
∗
e, we) ≥ Π∗

b and Ωe(Q
∗
e, we) ≥ Ω∗

b);

3. [Financing equilibrium] When v < c < ĉe, the unique sub-game perfect financing equilibrium

is early payment financing; when ĉe ≤ c ≤ p, the financing equilibrium is bank financing.

Theorem 3 first confirms that the retailer and the manufacturer can find a common ground. At

the threshold ĉe, the two threshold wholesale prices (i.e., wM
e (ĉe) and wR

e (ĉe)) intersect, as depicted

in Figure 3, so the retailer and the manufacturer are indifferent to both financing schemes. As the

production cost decreases, the retailer has a larger profit margin to share with the manufacturer.

As illustrated in Figure 3, both firms can benefit from early payment above bank financing for any

wholesale price in the Pareto zone.
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Figure 3: Pareto zone for wholesale pricing in early payment.

Given that the manufacturer would choose early payment as long as it is as profitable as bank 

financing, the retailer has incentives to set the wholesale price as low as possible to ultimately hit 

the manufacturer’s indifference point (i.e., we
M (c)). However, due to the wholesale price increase 

(i.e., we
∗ < we

M (c), see Lemma 4), the positive wholesale discount effect shrinks. Nevertheless, 

because the manufacturer is better motivated to produce more products, the positive production 

quantity effect rises, which pushes up the negative financial-risk effect. As long as the production 

cost is sufficiently low (i.e., v < c < ĉe), early payment can still outperform bank credit.
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Because the retailer has to surrender a profit margin to the manufacturer, the financing equi-

librium domain (i.e., v < c < ĉe) is smaller than the early payment profitable domain (i.e.,

v < c ≤ ċe in Theorem 2) given ċe > ĉe. However, because w∗
e < wM

e (c), the manufacturer

produces more products in financing equilibrium than in the isolated early payment. As a result,

the total supply chain profit is greater in financing equilibrium than in the isolated early payment

scenario. This observation thus exposes the detriment of letting the leader control both operations

and financing decisions. Without competition, the leader has incentives to jointly maneuver the

finance and operations decisions for its own benefit, which significantly discourages the follower

from fully contributing to the supply chain (e.g., the manufacturer produces less); accordingly, the

whole supply chain suffers. Therefore, the competition from an outside option (bank financing)

suppresses the retailer’s greed and brings out a higher supply chain welfare in early payment.

4 In-House Factoring and Comparison

One conspicuous feature of early payment is that the manufacturer pays no interest for early pay-

ment, whereas the retailer mandates a lower wholesale price in return. One question naturally

arises: Why doesn’t the retailer charge positive interest on advance payments upfront and con-

vert it into a loan-like in-house factoring? This section is devoted to answering this question by

characterizing in-house factoring and comparing it to bank financing and early payment.

4.1 Positive-interest in-house factoring

To focus on the factoring effect, we deliberately assume that a retailer charges an exogenous positive

interest rate rI on its advance payment to the manufacturer, which is consistent with the practice.

For example, in the practice of JingDong Finance, the interest rate has been stable around 9% (see,

e.g., Chen et al., 2016). According to de Booth et al. (2015), Netherlands’s factor interest rate has

been relatively stable at about 1.5%. Theoretically, an optimal endogenous interest rate can be

attained as discussed in Theorem 6 in Section 4.3, but this is not assumed in most of our discussion

to serve our aforementioned focus.

For any given positive interest rate rI , the retailer first sets the procurement price wI , the

manufacturer then decides to produce QI , and the retailer disburses an in-house factoring financing

loan, cQI , to the manufacturer. After the demand is realized, the retailer receives a revenue of

pmin[D,QI ] and pays the remaining payment (wI min[D,QI ]− cQI(1+ rI))
+ to the manufacturer.

We denote LI(QI) = (c(1 + rI) − v)QI/(wI − v) and Y (QI) =
∫ QI

0 DdF (D). Under in-house

factoring financing, for any given rI , the manufacturer’s profit function can then be rewritten as 
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follows:

ΠI(QI , wI) = E
[

wI min[D,QI ] + v(QI −D)+ − c(1 + rI)QI

]+

= (wI − v) [Y (QI)− Y (LI(QI)) + V (QI)− V (LI(QI))] . (6)

Let Q∗
I be the manufacturer’s optimal solution in Equation (6). Solving this optimal problem,

we obtain the manufacturer’s production quantity Q∗
I satisfying (wI − v)F̄ (Q∗

I) = (c(1 + rI) −

v)F̄ (LI(Q
∗
I)) if wI > c(1 + rI), and Q∗

I = Q̃ if wI = c(1 + rI). Similarly, we can further deduce

that Q∗
I increases with wI , and Q∗

I ≥ Q̃.

We submit Q∗
I into the retailer’s profit function and obtain,

ΩI(Q
∗
I , wI) = (p −wI)S(Q

∗
I) + Emin[(wI − v)min[D,Q∗

I ], (c(1 + rI)− v)Q∗
I ]− (c− v)Q∗

I (7)

= (p −wI)S(Q
∗
I) + (wI − v)Y (LI(Q

∗
I)) + (c(1 + rI)− v)Q∗

I F̄ (LI(Q
∗
I))− (c− v)Q∗

I .(8)

Solving the retailer’s problem, we can obtain similar results to those in Lemma 3 that, under in-

house factoring financing, ΠI(Q
∗
I , wI) increases with wI ; for any given wI , ΠI(Q

∗
I , wI) decreases

with rI ; ΩI(Q
∗
I , wI) and ΓI(Q

∗
I , wI) are unimodal functions in wI . One additional observation is

that for any wholesale price the manufacturer’s profit decreases with the newly imposed interest

rate (rI), because the manufacturer’s financial cost increases with the interest rate. In the following,

we first compare in-house factoring financing to bank financing and then to early payment.

4.2 Comparison of in-house factoring to bank financing

To focus on in-house factoring financing, this subsection compares in-house factoring financing

to banking financing by assuming that the retailer does not offer early payment. As in Lemma

4 and Lemma 5, for any c ∈ (v, p], there exists a unique point wM
I (c) under in-house factoring

financing, such that given wM
I (c) the manufacturer earns the same expected profit as that under

bank financing. In addition, there exists a unique point ċI satisfying Γ(Q̃) = Ω∗
b , such that, for

any c ∈ (v, ċI), there exists a unique point wR
I (c) ∈ (w∗

I , p) where the retailer earns the same profit

∗
I

∗
b

∗
I

∗
b

∗
b

∗
b

under in-house factoring financing as under bank financing. Therefore, there exists a Pareto zone 

wI ∈ [wI
M , wI

R], in which both the retailer and the manufacturer prefer in-house factoring financing 

to bank financing (i.e., ΠI (Q , wI ) ≥ Π and ΩI (Q , wI ) ≥ Ω ). For its own benefit, the retailer 

mandates a wholesale price at wI
M (c).

Reasonably, the in-house factoring financing interest rate cannot be too high. We further define 

a threshold point r̂I , which satisfies ΠI (Q , wI , r̂I ) = Π (where wI = p). At this point, the 

wholesale price is at its highest level (i.e., wI = p), so r̂I is the upper bound of the interest rate. 

Beyond this threshold, the manufacturer always chooses bank financing over in-house factoring 

financing. Because the wholesale price in bank financing is no more than the retail price (i.e.,
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wI ≤ p), it is straightforward that r̂I ≥ r∗b .

Combining the above discussion on wM
I and r̂I , as in Theorem 3, we can characterize a threshold

policy for the retailer in selecting an equilibrium financing strategy between in-house factoring

financing and bank financing.

Theorem 4 [Financing equilibrium for in-house factoring financing] Suppose 0 < rI ≤ r̂I for any

c ∈ (v, ċI ].

1. For any c ∈ (v, ĉI ], w
M
I (rI) increases with rI ; whereas Q∗

I(w
M
I (rI)) decreases with rI ;

2. There exists a threshold point ĉI ∈ (v, ċI), where ĉI satisfies wM
I (ĉI) = wR

I (ĉI), such that

both the retailer and the manufacturer are indifferent between bank financing and in-house

factoring financing;

3. If v < c < ĉI , the unique sub-game perfect financing equilibrium is in-house factoring financ-

ing; otherwise (when ĉI ≤ c ≤ p), the equilibrium is bank financing.

Theorem 4 (1) shows that when c ∈ (v, ĉI ], as the interest rate increases, the retailer must 

grant a higher wholesale price for the manufacturer for in-house factoring financing. However, 

because the wholesale price increment cannot recoup the losses caused by the higher interest rate, 

the manufacturer reduces the production quantity.

Theorem 4 further identifies such a financing equilibrium domain that in-house factoring financ-

ing outperforms bank financing for both the retailer and the manufacturer. This outcome resembles 

Theorem 3, except for rI . If rI is too big (i.e., rI > r̂I ), then it is intuitive that in-house factoring 

is not competitive anymore and gives way to bank financing.

4.3 Comparison of in-house factoring to early payment

It is intuitive that the retailer will offer either early payment or in-house factoring, whichever more 

profitable. As previously discussed, mathematically early payment is a special case of in-house 

factoring financing when the interest rate is zero and there is no setup cost. Given that the retailer 

can earn additional interest from in-house factoring, one might wonder whether the retailer would 

have incentives to give up its interest by setting rI = 0. If the corner solution (i.e., rI = 0) does 

occur, based on the tie-breaking rule stated in the Model, early payment is chosen; otherwise, 

positive-interest in-house factoring dominates (i.e., rI > 0).

As it turns out, the relation between in-house factoring financing and early payment is more 

subtle than a monotonically increasing or decreasing rI . We use the following outcome to first 

characterize the thresholds comparing either early payment or in-house factoring financing to bank 

financing.
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Lemma 6 Given any rI ∈ [0, r̂I ], we have:

1. ċI = ċe;

2. ĉI ≥ ĉe.

To explain Lemma 6(1), we recall that ċe is the threshold point, at which the optimal wholesale

price in early payment equals the production cost, so the manufacturer earns zero profit and the

retailer earns the whole supply chain’s profit. Similarly, ċI is the corresponding threshold point

in in-house factoring financing. According to Theorem 3 and the preceding arguments leading to

Theorem 4, the retailer earns the same profit in early payment or in-house factoring financing as

in bank financing. Therefore, ċI = ċe, which implies the same upper bound for ĉe and ĉI .

Nevertheless, we find that the retailer’s profit is not always worse off when it has to raise the

wholesale price to wM
I . Indeed, for any given positive rI , we have ĉI > ĉe (Lemma 6(2)). This

observation suggests that when the production cost is substantially high (i.e., c ∈ (ĉe, ĉI)), the

retailer can no longer benefit from early payment compared with bank financing, but the retailer

can still benefit from in-house factoring financing compared with bank financing. Therefore, Lemma

6(2) reveals that when c ∈ (ĉe, ĉI), in-house factoring financing can outperform early payment for

the retailer in financing equilibrium, which is discussed in more detail as follows.

Theorem 5 [In-house factoring vs. early payment] For any rI ∈ (0, r̂I ], there exist thresholds

c̃3 ≤ c̃2 < c̃1, such that,

1. [Early payment dominates] If c < c̃3, the retailer prefers early payment financing to in-house

factoring financing (i.e., ΩI(Q
∗
I , w

M
I (rI)) < Ωe(Q

∗
e, w

M
e ));

2. [Contingent equilibrium area] If c̃3 ≤ c < c̃2, there exists an rMI (as illustrated in Figure

5) such that the retailer prefers in-house factoring financing to early payment if rI ≤ rMI

(i.e., ΩI(Q
∗
I , w

M
I (rI)) ≥ Ωe(Q

∗
e, w

M
e )); otherwise, the retailer prefers early payment (i.e.,

ΩI(Q
∗
I , w

M
I (rI)) < Ωe(Q

∗
e, w

M
e ));

3. [In-house factoring financing dominates] If c̃2 ≤ c < c̃1, the retailer prefers in-house factoring

financing to early payment, and its profit firstly increases and then decreases with rI ;

4. [In-house factoring financing dominates] If c̃1 ≤ c ≤ ĉI , the retailer prefers in-house factoring

financing to early payment, and its profit monotonically increases with rI .

To fully explain Theorem 5, we identify several intertwining forces. From the retailer’s per-

spective under in-house factoring financing, on the positive side, a positive interest rate generates 

extra financial income (interest effect). On the negative side, however, the interest rate forces the 

retailer’s hand to provide a higher wholesale price to the manufacturer (wholesale-price effect);
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meanwhile, the higher wholesale price is not able to recompense the additional financial cost for

the manufacturer, such that the production quantity shrinks (production-quantity effect).

When the production cost is low (i.e., c < c̃3, as illustrated in Figure 4(1) and the region of “E”

of Figure 5 for Theorem 5(1)), both the retailer’s and the manufacturer’s profit margins are large.

Consequently, both firms’ profits are sensitive to production quantity change. Adding any extra cost

to the production significantly curtails the manufacturer’s production quantity. Provided that the

production cost is small, the direct gain from the interest from in-house factoring financing (interest

effect) is not enough to compensate for the revenue loss due to the reduced production quantity

(production-quantity effect) and the higher wholesale price (wholesale-price effect); therefore, early

payment dominates in-house factoring financing.

�����

�����

�����

�����

�����

�����

�	���

�	���

�	���

� ��� ��� ��� ��� 


��
� �

��� ���

��

��


��	�


����


����


����


����


����

� ��� ��� ���

�

��
� �

��� ���

��

��

������

������

����	�

������

������

������

� ��� ��� ��� ��� 


�

�

��

��
� �

��� ���

��

��

��

�������

�	���
�

���

�

�

�

��




��� ��	

������ �
�

�

� � �

�

� ��

��

� 


��� ����

����� �

�

� � �

�

� �� �

Figure 4: Impacts of c and rI on the retailer’s profit in early payment and in-house factoring 
financing.

As the production cost increases (i.e., c̃3 ≤ c < c̃2, as illustrated in Figure 4(2) and the region 

of “I” of Figure 5 for Theorem 5(2)), the firms’ profit margins dwindle, and both firms become 

less sensitive to production quantity change. As a result, the financial gain from the interest 

effect becomes more predominant, whereas the negative impact of the wholesale-price effect and 

production-quantity effect is restrained as long as the interest rate is not too high (i.e., rI ≤ rI
M). 

In this situation, in-house factoring financing is still more attractive to the retailer, as depicted 

on the left side of Figure 5. However, if the interest rate is substantially high (i.e., rI > rI
M), 

the negative wholesale-price effect and production-quantity effect are relatively too enormous to 

overcome, such that early payment prevails (see the area of c̃3 ≤ c < c̃2 in Figure 5).
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Figure 5: Equilibrium regions of zero-interest early payment (E) and in-house factoring financing 
(I).

As the production cost continues to grow (i.e., c̃2 ≤ c < c̃1), the relative advantage of the 

positive interest effect against the negative wholesale-price effect and production-quantity effect 

expands, so the benefit of in-house factoring financing increases. In this scenario, similar to the 

previous scenario (i.e., c̃3 ≤ c < c̃2), the retailer actually enjoys a higher interest rate. When the 

interest rate crosses a threshold, the negative wholesale-price effect and production-quantity effect 

escalate; however, the interest effect is so substantial that in-house factoring financing is always 

more desirable.

When the production cost is substantially high (i.e., c̃1 ≤ c ≤ ĉI , as illustrated in Figure 4(3) 

and the region of “I” of Figure 5 for Theorem 5(4)), in-house factoring financing is dominant and 

the retailer has incentives to charge as high an interest rate as possible (i.e., rI reaches the upper 

bound r̂I ), because the financial gain from the higher interest overwhelms the operational revenue 

income.

The above phenomenon also reveals the interplay of the interest benefit of in-house factoring 

financing and the wholesale-price and production-quantity benefits in early payment. When the 

production cost is low, the wholesale-price and production-quantity benefits in early payment are 

more preeminent because of the larger profit margin and higher production quantity. However, as 

the production cost grows, the wholesale-price and production-quantity benefits in early payment 

diminish, while the interest benefit in in-house factoring financing is more commanding; thereupon, 

the retailer is more keen on reaping instant interest gains from in-house factoring financing.
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Although we assume an external interest rate to focus on the factoring effect, we can actually

characterize an optimal interest rate for in-house factoring financing as follows.

Theorem 6 Consider in-house factoring financing.

1. When c̃3 < c < c̃1, the optimal interest rate r∗I (c) increases with c;

2. When c̃1 ≤ c ≤ ĉI , the optimal interest rate reaches the upper bound (i.e., r∗I (c) = r̂I(c)), and

r̂I(c)) decreases with c.

As shown in Theorem 6, when c̃3 ≤ c < c̃1, there exists an optimal interest rate that is smaller

than rMI and increases with the production cost, as illustrated in the dotted line of Figure 5. In

this situation, as the production cost increases, the retailer has more incentives to collect instant

interest and, thus, raise the optimal interest rate (i.e., rI
∗(c)). When c̃1 ≤ c ≤ ĉI , the interest 

rate hits the upper bound (r̂I ), because in-house factoring has to compete with bank financing to 

guarantee a reservation profit for the manufacturer. As the production cost grows, the retailer has 

to compromise by reducing the optimal interest rate to keep in-house factoring attractive.

As Figure 5 depicts, the retailer has incentives to set the interest rate to its minimal level 

(i.e., rI = 0) under in-house factoring when the production cost is low (i.e., c < c̃3). But, as 

previously explained, in-house factoring differs from early payment in multiple aspects. To the 

best of our knowledge, we have not observed zero-interest in-house factoring in practice, partially 

because of setup costs and license fees for processing factoring. Theorem 6 also suggests that 

the retailer should alter its interest rate according to the manufacturer’s production cost, rather 

than fix it externally. Nevertheless, interest rate fixing is easier to implement and promotes the 

in-house factoring financing to a wide variety of manufacturers. It can also erase concerns of firm 

discrimination, such as that in the practice of JingDong Finance, which charges identical interest 

rates across different suppliers with in-house factoring (see, e.g., Chen et al., 2016).

4.4 The retailer’s financing equilibrium selection

This section will compare all three financing schemes: bank financing, early payment, and in-house 

factoring financing using the information discussed above. Here we assume that all three financing 

schemes are viable. As the Stackelberg leader, the retailer can decide whether to offer early payment 

or in-house factoring and adjust the wholesale price accordingly in the pull system in its optimal 

financing scheme.

Theorem 7 [Retailer’s Equilibrium Financing Choice] Given that the retailer charges the optimal 

interest in in-house factoring financing, comparing bank financing, early payment, and in-house
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factoring financing results in the following outcome.

1. [Early payment dominates] If v < c ≤ c̃3, the retailer prefers early payment financing;

2. [In-house factoring dominates] If c̃3 < c ≤ ĉI , the retailer prefers in-house factoring financing;

3. [Bank financing dominates] If ĉI < c ≤ p, the retailer prefers bank financing.

Theorem 7 summarizes the retailer’s financing equilibrium choice among bank financing, early 

payment, and in-house factoring financing. Consistent with Theorem 5, Theorem 7 confirms that 

early payment continues to dominate in-house factoring financing when the production cost is 

sufficiently small (i.e., v < c ≤ c̃3). Theorem 5 thus suggests that when v < c ≤ c̃3 the retailer 

should not set up financing branch for in-house factoring but instead rely on early payment (see 

the left region of “E” in Figure 5).

As the production cost grows (i.e., c̃3 < c ≤ ĉI ), the wholesale price is higher, resulting in 

a lower production quantity, such that the retailer has incentives to charge a positive interest by 

switching from early payment to in-house factoring (see the middle region of “I” in Figure 5) by 

obtaining a license for and setting up a factoring financing branch. In our model, the cost to set 

up in-house factoring financing is assumed to be zero. In practice, as long as the cost to set-up 

in-house factoring is manageable, the retailer will opt for it.

Theoretically, however, it is not as straightforward for the retailer to shift away from early pay-

ment to in-house factoring financing, because the retailer can always command a lower wholesale 

price to compensate for the early payment. The retailer’s shift between these two buyer financing 

schemes demonstrates the fundamentally different roles of wholesale pricing and interest rate in 

supply chain finance. In a pull supply chain, the manufacturer shoulders the inventory risk and 

is vulnerable to demand uncertainty. Provided that the manufacturer does not default, the man-

ufacturer will earn wI min[D, QI ] for wholesaling in in-house factoring financing and pay rI cQI 

interest to the retailer. Thus, the wholesaling earnings are directly associated with demand un-

certainty, while the interest is only indirectly affected by the uncertainty via production quantity. 

Correspondingly, the manufacturer has more incentives to produce more in early payment than in 

in-house factoring financing. If the manufacturer defaults, then the retailer will suffer from the 

losses from early payment or the in-house factoring loan. As the production cost increases, the 

default risk enhances. Therefore, in the range of c̃3 < c ≤ ĉI , the retailer has incentives to shift to 

a less risky financing instrument and in-house factoring financing stands out.

For the same reason, when the production cost is considerably high, the manufacturer’s default 

risk is also high, such that the retailer prefers the manufacturer to borrow from banks to finance 

its production (see the region of “B” in Figure 5).
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5 Extended Discussions

This section firstly extends our model to a uniform wholesale price and then discusses the impact

of demand variability.

5.1 A uniform wholesale price

Our baseline model has assumed that the retailer determines an optimal purchasing/wholesale

price w∗
i for each respective financing scheme i. After a specific financing scheme is determined, the

retailer can decide the wholesale price accordingly for each financing scheme. Our analysis shows

that the wholesale price is lower in early payment than with bank financing, which is intuitive and

has been observed in practice as an early payment discount (O’Connell, 2009). The retailer is likely

to offer a higher purchasing (wholesale) price with in-house factoring, because the retailer earns

extra interest from financing the manufacturer. In practice, however, it could be easier to implement

a single identical wholesale price for different supply chain financing schemes. Thus, one might

wonder whether the retailer can still benefit from early payment financing or in-house factoring even

if the wholesale price is identical across all financing schemes. For theoretical comprehensiveness,

this subsection provides a different perspective on how varying an identical wholesale price affects

the financing equilibrium.

To demonstrate that our main qualitative results are robust even if the wholesale price is

identical across different financing schemes, we assume that the identical wholesale price wx can

be any value in the feasible domain of [c, p]. In other words, wx could be equal to one of the

equilibrium wholesale prices in early payment, in-house factoring financing, and bank financing, or

even something else. We use wE
x to represent the wholesale price value that makes the manufacturer

indifferent between bank financing and early payment, and wI
x is the indifferent point between bank

financing and in-house factoring.

When all financing schemes are available, it is intuitive that the manufacturer will choose the

most beneficial financing scheme; however, as the financial service provider, the retailer can decide

whether to offer early payment, in-house factoring, or none of them. We now explore the interaction

between the manufacturer and the retailer and summarize the financing equilibrium in the following

theorem.

Theorem 8 Consider the case with an identical wholesale price wx in bank financing, early pay-

ment and in-house factoring (i.e., wb = we = wI = wx).

1. If v < c ≤ č, then: when c < wx ≤ wE
x , the financing equilibrium is early payment; when
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wE
x < wx ≤ wI

x, the financing equilibrium is in-house factoring; when wI
x < wx ≤ p, the

financing equilibrium is bank financing;

2. If č < c ≤ p, then the financing equilibrium is bank financing.

Theorem 8 depicts a slightly different picture (illustrated in Figure 6) than that of Theorem 7 

because we allow the identical wholesale price wx to vary in the entire feasible domain. Hence, the 

fundamental disparity is that Theorem 8 assumes an identical wholesale price for all three financing 

schemes, whereas the retailer has the freedom to command different purchasing/wholesale prices in 

Theorem 7 for the baseline model. While the manufacturer always prefers a financing scheme with 

a lower interest rate when the wholesale price is fixed at the same level, as the Stackelberg leader, 

the retailer can still designate different wholesale price levels (identical for all financing schemes), 

and decide whether to offer either early payment or in-house factoring to dictate the final financing 

equilibrium outcome.

When the production cost is sufficiently low (i.e., v < c ≤ č), the ultimate financing equilibrium 

relies on the wholesale price level. In this situation, the manufacturer’s default risk is not too high. 

When the identical wholesale price is low (i.e., c ≤ w ≤ wx
E), the final production quantity could 

suffer due to the low marginal profit for the manufacturer; therefore, the retailer has incentives 

to offer a zero-interest early payment to boost the manufacturer’s production quantity, such that 

early payment emerges as the financing equilibrium (see the “E” region of Figure 6). When the 

identical wholesale price is in its medium level (i.e., wx
E < w ≤ wI

x), the manufacturer’s marginal 

profit is up and, thus, the manufacturer has more incentives to increase the production quantity. 

Correspondingly, the manufacturer’s default risk increases, and the retailer then prefers in-house 

factoring by demanding interest to compensate for the higher default risk and its own lower profit

margin. When the identical wholesale price is very high (i.e., w > wI
x), the manufacturer’s default 

risk is overwhelming for the retailer, such that the retailer prefers that the manufacturer utilizes 

bank financing.

In the above scenarios, because the manufacturer’s default risk increases with the production 

cost, the region for early payment or in-house factoring financing as the financing equilibrium 

shrinks as the production cost grows (see Figure 6). For the same reason, when the production cost 

is considerably high (i.e., č  < c ≤ p), the retailer will avoid the default risk by offering no financing, 

forcing the manufacturer to borrow from bank financing. This qualitative observation is the same 

as that in Theorem 7 of the baseline model.
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Figure 6: Financing equilibrium under a fixed wholesale price.

5.2 Impact of demand variability

To investigate the impact of demand variability, we hereby introduce a mathematical inequality,

J(Q̃) ≥ 1 + 2F̄ (Q̃), which represents the situation where demand variation is relatively large. If

J(Q̃) < 1 + 2F̄ (Q̃), the demand variation is relatively low. Due to limited space, we focus on only

early payment versus bank financing, and the analysis on in-house factoring financing can be done

similarly.

Comparing the optimal production quantity between early payment and bank financing, we

obtain the following lemma.

Lemma 7 1. If demand variability is relatively high (i.e., J(Q̃) ≥ 1+2F̄ (Q̃)), we have Q∗
e ≥ Q∗

b

for any c ∈ (v, p];

2. If demand variability is relatively low (i.e., J(Q̃) < 1 + 2F̄ (Q̃)), when c < c̄b, Q
∗
e ≤ Q∗

b ; and

when c ∈ (c̄b, p], Q
∗
e > Q∗

b .

Lemma 7 exhibits that the production quantity in early payment is always higher than that in

bank financing when the demand variability is sufficiently high (see Figure 7, left subfigure). This

occurs because, as explained in Section 3.2, early payment is a better risk-sharing mechanism than

bank financing for the supply chain. Nevertheless, the relative advantage of a higher production

quantity is subjugated when the production cost is sufficiently small, so the retailer has more

incentives to squeeze a higher profit margin from the manufacturer, leading to a lower production

quantity in early payment (see Figure 7, right subfigure when c < 0.37).
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Figure 7: Comparison of production quantities between early payment and bank financing.

The demand variability naturally affects the total supply chain profit. Compared with Theorem

2, the following outcome demonstrates that the total supply chain profit advantage in early payment

is more sensitive to demand variability, compared with that of the retailer.

Theorem 9 There exists a threshold point c̈e ∈ (max{c̄e, c̄b}, ċe) where Γ∗
e(c̈e) = Γ∗

b(c̈e), such that:

1. When J(Q̃) ≥ 1 + 2F̄ (Q̃): if c ∈ (v, c̈e], then Γ∗
e ≥ Γ∗

b ; if c ∈ (c̈e, p], Γ
∗
e < Γ∗

b ;

2. When J(Q̃) < 1 + 2F̄ (Q̃): if c ∈ (v, c̄b), then Γ∗
e < Γ∗

b ; if c ∈ [c̄b, c̈e], then Γ∗
e ≥ Γ∗

b ; if

c ∈ (c̈e, p], Γ
∗
e < Γ∗

b .

The twist in Theorem 9 occurs when the production cost is sufficiently low. Note that the

manufacturer’s financing scheme preference is not always aligned with the retailer’s preference.

When the demand variation is high (i.e., J(Q̃) ≥ 1 + 2F̄ (Q̃)), the retailer charges a higher risk

premium for providing early payment; as a result, the retailer’s gain in early payment surpasses the

manufacturer’s loss, such that the whole supply chain performs better with early payment when the

production cost is low. When the demand variation is low (i.e., J(Q̃) < 1 + 2F̄ (Q̃)), the retailer’s

gain in early payment can no longer make up the manufacturer’s loss, such that the whole supply

chain can benefit from bank financing especially when the production cost is sufficiently low.

To inspect how demand variability influences the efficiency improvement of early payment com-

pared with bank financing, we further use
Ω∗

e−Ω∗
b

Ω∗
b

(%) to represent the retailer’s efficiency improve-

ment when switching from bank financing to early payment financing. As Figure 8 depicts, the 

threshold value of ĉe decreases as the coefficient variance of demand changes from σ/µ = 0.3 to 

0.9. This observation intuitively suggests that the region of early payment as the financing equilib-
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Figure 8: The retailer’s efficiency improvement as demand variability increases.

rium shrinks as the demand variability grows. More interestingly, Figure 8 also exhibits that the

retailer’s improvement in efficiency in early payment first concavely increases and then decreases

with the production cost. When the production cost is low, in early payment, the retailer can

benefit more from the supply chain’s risk-sharing mechanism than the damage of over-production

from the manufacturer.

6 Conclusions

This paper investigates the efficacy of no-interest early payment financing and positive-interest

in-house factoring financing in a pull supply chain with a capital-constrained manufacturer selling

through a retailer. We first characterize the optimal solutions in both bank financing and early

payment financing. The comparison of these two financing schemes shows that as long as the man-

ufacturer’s production cost is not too high, the retailer will strictly prefer early payment financing

to bank financing. The early payment financing demonstrates a coordination effect on the supply

chain because of the embedded risk-sharing mechanism between the retailer and the manufacturer.

However, the retailer has incentives to command a lower wholesale price in early payment, so both

the manufacturer and the whole supply chain may suffer.

However, to compete with bank financing, the retailer has to raise the wholesale price to at-

tract the manufacturer to employ early payment. Although the retailer’s profit drops due to the

competition from bank financing, there exists a wholesale price Pareto zone, such that both firms

are willing to implement early payment financing as long as the manufacturer’s production cost is
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sufficiently low.

We further study in-house factoring financing, in which the retailer charges positive interest 

and essentially turns advance payment into a loan. Comparing in-house factoring financing with 

bank financing, we find that the financing equilibrium domain of in-house factoring financing can 

be larger than that of early payment. This finding reveals that in-house factoring financing can 

outperform early payment for the retailer and, thus, the whole supply chain. Particularly when 

the production cost is low, early payment without interest is more attractive, which indicates the 

advantage of the upfront commitment of no interest in early payment as compared to positive-

interest in-house factoring. However, as the production cost grows, the preference for in-house 

factoring financing also increases and outpaces early payment financing. But, if the production 

cost is substantially high, it is profitable for the retailer to charge the interest rate at its upper 

bound, which decreases with the production cost.

Our extended analysis indicates that the main qualitative finding continues to hold when the 

retailer commands an identical wholesale price across all three financing schemes. We also demon-

strate that, as demand variability increases, the production quantity is more likely to be higher 

in early payment than in bank financing, but the financing equilibrium domain of early payment 

shrinks.

This paper conveys three major managerial insights. First, this paper portrays a threshold policy 

on when to implement early payment financing compared with bank financing. It thus theoretically 

validates the reasoning for using early payment in practice, even if there is no interest charged on 

early payment. Second, we further manifest that it could be beneficial for the downstream firm 

to impose positive interest on advance payment via in-house factoring financing even if there is a 

setup cost. Our theory provides a guideline on whether to demand interest on advance payments 

and, if yes, under what conditions. Third, the implementation of early payment or in-house factor 

financing also depends on other factors, such as production cost and demand variability. Therefore, 

the managers in charge of early payment or in-house factoring financing should evaluate all these 

factors before implementing concrete financing terms.

This paper has its limitations and can be extended in several directions. First, due to computa-

tional complexity, we cannot analytically characterize a contract menu in the presence of asymmetric 

information, although we can numerically show that, with information asymmetry, the financing 

equilibrium domain becomes smaller. This research direction remains our top priority. Second, 

for tractability, the initial capital is assumed to be zero, which can be relaxed in future studies. 

Lastly, for tractability, we have assumed that the manufacturer will borrow either bank credit or
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buyer financing but not both at the same time. In practice, it is possible for the manufacturer to 

borrow both, especially if the retailer’s initial capital is not sufficient to cover all the manufacturer’s 

financial need.
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Appendix: Online Supplements

Proofs for “Buyer Financing in Pull Supply Chains: Zero-Interest Early Payment

or In-House Factoring?”

Proof of Lemma 1. (1) Submit wb = (c− v)/F̄ (Qb) + v into the retailer’s payoff function

Ωb(wb) = (p − wb)S(Qb), we can rewrite the retailer’s payoffs function as Ωb(Qb) = [(p − v) −

c−v
F̄ (Qb)

]S(Qb).We then get dΩb(Qb)
dQb

= (p−v)F̄ (Qb)−(c−v)J(Qb). Since
[

S(Qb)/F̄ (Qb)
]′
= J(Qb) > 0,

we know S(Qb)/F̄ (Qb) increases in Qb. With the IFR property, h(Qb) increases in Qb. Thus, we

know J(Qb) = 1 + h(Qb)S(Qb)/F̄ (Qb) increases with Qb. Combining with that F̄ (Qb) decreases

with Qb, we know that dΩb/dQb decreases with Qb. Thus, we know that Ωb(Qb) is a unimodal

function in Qb ≥ 0. When Qb = 0, we have dΩb/dQb = p − c > 0, and Qb = +∞, dΩb/dQb < 0.

Thus, the optimal Q∗
b is solved by (p− v)F̄ (Q∗

b) = (c− v)J(Q∗
b).

(2) Obviously, we have w∗
b = (c− v)/F̄ (Q∗

b) + v.

(3) We denote, T (Q∗
b) =

(1+r∗
b
)c−v

c−v V (Q∗
b). From Eq. (1) and w∗

b = (c− v)/F̄ (Q∗
b) + v, we know,

the bank’s optimal interest rate satisfies c−v
F̄ (Q∗

b
)

∫ T (Q∗
b
)

0 DdF (D) + (c(1 + r∗b ) − v)Q∗
b F̄ (T (Q∗

b)) =

(c − v)Q∗
b . After simplifying the above equation, we get S (T (Q∗

b)) = V (Q∗
b). Furthermore, we

know S(Q) = Emin[D,Q] ≤ Q, and so T (Q∗
b) ≥ S (T (Q∗

b)) = V (Q∗
b). Thus,

(1+r∗
b
)c−v

c−v ≥ 1, and

then we have r∗b ≥ 0. Q.E.D.

Proof of Corollary 1. With Lemma 1, we get the retailer’s and the manufacturer’s optimal

expected payoffs, Ω∗
b =

[

p− v − c−v
F̄ (Q∗

b
)

]

S(Q∗
b), Π

∗
b = c−v

F̄ (Q∗
b
)
[S(Q∗

b) − Q∗
b F̄ (Q∗

b)]. The bank obtains

an expected net profit rfcQ
∗
b = 0, and the total profit in the supply chain with bank loans is

Γ∗
b = (p − v)S(Q∗

b) − (c− v)Q∗
b . From Lemma 1, ∂Ω∗

b/∂Q
∗
b = 0, we have,

dΩ∗
b

dc =
∂Ω∗

b

∂Q∗
b

dQ∗
b

dc +
∂Ω∗

b

∂c =
∂Ω∗

b

∂c = −
S(Q∗

b
)

F̄ (Q∗
b
)
< 0. Obviously, we have dQ∗

b/dc < 0 and Q∗
b < Q0. Then, when c > v, we

have (p − v)F̄ (Q∗
b) − (c− v) > (p − v)F̄ (Q0) − (c− v) = 0. Thus, dΓ∗

b(c)/dc = ((p − v)F̄ (Q∗
b) −

(c− v))dQ∗
b/dc −Q∗

b < 0. Q.E.D.

Proof of Lemma 2. (1) Taking derivative of Qe in Eq. (3), we can get, dΠe

dQe
= (we − v)F̄ (Qe)−

(c − v)F̄ (Le(Qe)). When we > c, we have Le(Qe) < Qe, with the IFR property, d2Πe

dQ2
e

= (we −

v)F̄ (Qe)[
c−v
we−vh(Le(Qe)) − h(Qe)] < 0. Then, when we > c, the optimal production quantity Q∗

e

can be solved by (we − v)F̄ (Q∗
e) = (c− v)F̄ (Le(Q

∗
e)).

Now, we consider the properties of function V (Q) = QF̄ (Q). We have V ′(Q) = F̄ (Q)(1−H(Q)).

With our assumption of IFR property on demand, we know H(Q) is increasing in Q. Then 1−H(Q)

is decreasing in Q. Thus V ′(Q) is decreasing in Q. Thus, the function V (Q) is a unimodal function

and the point Q̃ is the maximum point. Furthermore, if Q > Q̃, V (Q) decreases with Q; otherwise,

1



V (Q) increases with Q.

With the relation (we−v)F̄ (Q∗
e) = (c−v)F̄ (Le(Q

∗
e)), and Le(Q

∗
e) =

c−v
we−vQ

∗
e, we get Q

∗
eF̄ (Q∗

e) =

Le(Q
∗
e)F̄ (Le(Q

∗
e)). So, the optimal production quantity Q∗

e satisfies V (Q∗
e) = V (Le(Q

∗
e)). Since the

function V (Q) is a unimodal function, we must have Le(Q
∗
e) ≤ Q̃ ≤ Q∗

e. With the IFR property,

we know H(Le(Q
∗
e)) ≤ H(Q̃) ≤ H(Q∗

e) and H(Q̃) = 1. Therefore, when we = c, Q∗
e = Q̃.

(2) From IFR property, h(Q∗
e) > h(Le(Q

∗
e)). Thus, from (we − v)F̄ (Q∗

e) = (c − v)F̄ (Le(Q
∗
e)),

we have that,
dQ∗

e

dwe
=

1−H(Le(Q
∗
e))

(we − v)h(Q∗
e)− (c− v)h(Le(Q∗

e))
> 0 (A-1)

and then Q∗
e ≥ Q̃. Q.E.D.

Proof of Lemma 3. (1) For any we ∈ (c, p], we have dΠe(Q∗
e ,we)

dwe
= ∂Πe(Q∗

e ,we)
∂Q∗

e

dQ∗
e

dwe
+ ∂Πe(Q∗

e ,we)
∂we

=

Y (Q∗
e) − Y (Le(Q

∗
e)) + Q∗

eF̄ (Q∗
e). Function Y (Q) =

∫ Q
0 DdF (D) is increasing in Q. So, with the

continuity of Πe(Q
∗
e, we) in we ∈ (c, p], we know the manufacturer’s profit Πe(Q

∗
e, we) increases with

we ∈ (c, p].

(2) For any we ∈ (c, p] in Eq. (5), we get ∂Ωe(Q∗
e ,we)

∂Q∗
e

= (p − v)F̄ (Q∗
e) − (c − v), ∂Ωe(Q∗

e ,we)
∂we

=

−S(Q∗
e) + Y (Le(Q

∗
e)). Consequently, we get

dΩe(Q
∗
e, we)

dwe
=

∂Ωe(Q
∗
e, we)

∂Q∗
e

dQ∗
e

dwe
+

∂Ωe(Q
∗
e, we)

∂we

= ((p − v)F̄ (Q∗
e)− (c− v)) ·

Q∗
e

we − v
· (1−M(Q∗

e))− S(Q∗
e) + Y (Le(Q

∗
e)). (A-2)

From Lemma 10, we know 1−M(Q∗
e) decreases with we. We know, d(Q∗

e/(we−v))
dwe

= −Q∗
eM(Q∗

e)
(we−v)2

<

0. Obviously, (p − v)F̄ (Q∗
e) − (c − v) decreases with we. Also, with the results dQ∗

e/dwe > 0 and

dLe(Q
∗
e)/dwe < 0 (from (A-10)), the functions −S(Q∗

e) and Y (Le(Q
∗
e)) decreases with we. Thus, we

know dΩe/dwe decreases in we, which means that Ωe(Q
∗
e, we) is a unimodal function in we ∈ (c, p].

(3) Also, from the above results, we have dΓe(Q
∗
e, we)/dwe = ((p − v)F̄ (Q∗

e) − (c − v))dQ
∗
e

dwe
=

((p − v)F̄ (Q∗
e) − (c − v)) · Q∗

e

we−v · (1 − M(Q∗
e)) is a decreasing function in we, which means that

Γe(Q
∗
e, we) is a unimodal function in we ∈ (c, p]. Q.E.D.

Proof of Theorem 1. (1) First, for any given we, we denote K(Q∗
e) = −V (Q∗

e)U(Q∗
e)− (Y (Q∗

e)−

Y (L(Q∗
e))), where

U(Q∗
e) = 1− (1−M(Q∗

e))
(p − v)F̄ (Q∗

e)− (c− v)

(we − v)F̄ (Q∗
e)

. (A-3)

Then, from Eq. (A-2), we get dΩe(Q
∗
e, we)/dwe = K(Q∗

e).

From Lemma 10, we have 0 ≤ 1−M(Q∗
e) ≤ 1/2. Obviously, we have (p−v)F̄ (Q∗

e)−(c−v)
(p−v)F̄ (Q∗

e)
< 1. Then,

when we = p, (1 − M(Q∗
e))

(p−v)F̄ (Q∗
e)−(c−v)

(p−v)F̄ (Q∗
e)

≤ 1/2, and then U(Q∗
e) > 1/2. Furthermore, for any

we, we have V (Q∗
e) > 0, Y (Q∗

e)− Y (Le(Q
∗
e)) ≥ 0. Thus, when we = p, K(Q∗

e) = −V (Q∗
e)U(Q∗

e)−

(Y (Q∗
e)− Y (Le(Q

∗
e))) < 0.

From Lemma 10, if we = c, thenM(Q∗
e) = 1/2, and Q∗

e = Q̃, Le(Q
∗
e) = Q̃, Y (Q∗

e)−Y (Le(Q
∗
e)) =

2



0. Thus, when we = c, we have K(Q∗
e|we = c) = −V (Q̃)

(

1− (p−v)F̄ (Q̃)−(c−v)

2(c−v)F̄ (Q̃)

)

. From the definition

of c̄e, we can verify that: if c ≤ c̄e, then K(Q∗
e|we = c) ≥ 0; if c > c̄e, then K(Q∗

e|we = c) < 0.

From the proof of Lemma 3, we know that K(Q∗
e) decreases with we. Thus, there are two

sceneries for the optimal wholesale price w∗
e : 1) Scenario c̄e < c ≤ p: From above, there is

K(Q∗
e|we = c) ≤ 0. Thus, for all we ∈ (c, p], we have dΩe(Q

∗
e, we)/dwe < 0. The optimal

wholesale price is w∗
e = c; 2) Scenario v < c ≤ c̄e. From above, there is K(Q∗

e|we = c) > 0 and

K(Q∗
e|we = p) < 0. So, there must exist one w∗

e ∈ (c, p] satisfying K(Q∗
e|we = w∗

e) = 0, i.e.,

dΩe(Q
∗
e, w

∗
e)/dw

∗
e = 0. Then, w∗

e is the optimal wholesale price.

(2) Now, we prove that, under the equilibriumQ∗
e, w

∗
e , we have dQ

∗
e(c)/dc ≤ 0 and dΩ∗

e(c)/dc < 0

in both domains c ∈ (v, c̄e) and c ∈ [c̄e, p], respectively.

We first prove that the above results in the domain of c ∈ [c̄e, p]. When c ∈ [c̄e, p], from part

(1), we obtain w∗
e = c and Q∗

e(c) = Q̃, and Ω∗
e(c) = (p − v)S(Q̃) − (c − v)Q̃. Then, we have

dQ∗
e(c)/dc = 0 and dΩ∗

e(c)/dc = −Q̃ < 0 in c ∈ [c̄e, p].

Now we use contradiction approach to prove dQ∗
e(c)/dc ≤ 0 and dΩ∗

e(c)/dc < 0 in the domain

of c ∈ (v, c̄e). To prove that, We hereby suppose dQ∗
e(c)/dc > 0 for some c ∈ (v, c̄e).

Before we conduct the contradiction approach to prove the results, we analyze the properties

of dLe(Q
∗
e(c))/dc, dM(Q∗

e(c))/dc and ∂Q∗
e(c, w

∗
e)/∂c in advance.

Firstly, we analyze the property of dLe(Q
∗
e(c))/dc. From Lemma 2, the Q∗

e and w∗
e satisfy (w∗

e −

v)F̄ (Q∗
e) = (c−v)F̄ (Le(Q

∗
e)), where Le(Q

∗
e) =

(c−v)Q∗
e

w∗
e−v . Then, we multiple both sides with Q∗

e/(w
∗
e−

v), we have Q∗
eF̄ (Q∗

e) = Le(Q
∗
e)F̄ (Le(Q

∗
e)). By doing total derivative on both sides of this equation,

we have, F̄ (Q∗
e)

dQ∗
e(c)
dc −Q∗

ef(Q
∗
e)

dQ∗
e(c)
dc = F̄ (Le(Q

∗
e))

dLe(Q∗
e)

dc −Le(Q
∗
e)f(Le(Q

∗
e))

dLe(Q∗
e)

dc . Reorganiz-

ing the equation giving us dLe(Q∗
e)

dc = F̄ (Q∗
e)−Q∗

ef(Q
∗
e)

F̄ (Le(Q∗
e))−Le(Q∗

e)f(Le(Q∗
e))

· dQ
∗
e(c)
dc = −Le(Q∗

e)
Q∗

e

· H(Q∗
e)−1

1−H(Le(Q∗
e))

· dQ
∗
e(c)
dc .

Recall that, from the proof of proof of Lemma 2, we have H(Le(Q
∗
e)) < 1 < H(Q∗

e). Therefore,

with the assumption dQ∗
e(c)/dc > 0, we obtain dLe(Q

∗
e(c))/dc < 0.

Secondly, we analyze the property of dM(Q∗
e(c))/dc. From the definition of M(Q∗

e) in Lemma

10 and dLe(Q∗
e)

dc in the preceding paragraph, we have,

dM(Q∗
e)

dc
=

H ′(Q∗
e)

dQ∗
e(c)
dc (1−H(Le(Q

∗
e)))−H ′(Le(Q

∗
e))(H(Q∗

e)− 1)Le(Q∗
e)

Q∗
e

· H(Q∗
e)−1

1−H(Le(Q∗
e))

· dQ∗
e(c)
dc

(H(Q∗
e)−H(Le(Q∗

e)))
2

=
1−H(Le(Q

∗
e))

(H(Q∗
e)−H(Le(Q∗

e)))
2
·
dQ∗

e(c)

dc

[

H ′(Q∗
e)−H ′(Le(Q

∗
e))

Le(Q
∗
e)

Q∗
e

·
(H(Q∗

e)− 1)2

(1−H(Le(Q∗
e)))

2

]

= Θ(w∗
e)

1−H(Le(Q
∗
e))

(H(Q∗
e)−H(Le(Q∗

e)))
2
·
dQ∗

e(c)

dc
,

where Θ(w∗
e) = H ′(Q∗

e) − H ′(Le(Q
∗
e))

Le(Q∗
e)

Q∗
e

· (H(Q∗
e)−1)2

(1−H(Le(Q∗
e)))

2 is defined in the proof of Lemma 10.

From the proof of Lemma 10, for any we ∈ (c, p], Θ(we) > 0. So, we must have Θ(w∗
e) > 0. Thus,

with the assumption dQ∗
e(c)/dc > 0, we have dM(Q∗

e)
dc > 0.

3



Thirdly, we analyze the property of ∂Q∗
e(c,w

∗
e)

∂c . Because, for any we, Le(Q
∗
e(c)) =

c−v
we−vQ

∗
e(c, we),

then, for any fixed we, taking partial derivatives on both sides, we obtain ∂Le(Q∗
e(c))

∂c = Q∗
e(c)

we−v +

c−v
we−v

∂Q∗
e(c)
∂c . So, for any given we, from (we−v)F̄ (Q∗

e) = (c−v)F̄ (Le(Q
∗
e)), taking partial derivatives

on both sides, we have −(we−v)f(Q∗
e(c, we))

∂Q∗
e(c,we)
∂c = F̄ (Le(Q

∗
e(c, we)))−(c−v)f(Le(Q

∗
e(c, we)))

(

Q∗
e(c,we)
we−v + c−v

we−v
∂Q∗

e(c,we)
∂c

)

.After rearranging this equation, we get ∂Q∗
e(c,we)
∂c = − Q∗

e(1−H(Le(Q∗
e)))

(c−v)[H(Q∗
e)−H(Le(Q∗

e))]
.

So, from the proof of Lemma 2, H(Le(Q
∗
e)) < 1 < H(Q∗

e), we have ∂Q∗
e(c,we)
∂c < 0. When we = w∗

e ,

we also have ∂Q∗
e(c,w

∗
e)

∂c < 0.

We now use the contradiction approach. On the one hand, from (A-1) in the proof of Lemma

2, for any fixed c, we have ∂Q∗
e(c,we)
∂we

> 0. We further have dQ∗
e(c)
dc = dQ∗

e(c,w
∗
e)

dc = ∂Q∗
e(c,w

∗
e)

∂we
·

dw∗
e

dc + ∂Q∗
e(c,w

∗
e)

∂c . Given that dQ∗
e(c)
dc > 0, ∂Q∗

e(c,w
∗
e)

∂c < 0, ∂Q∗
e(c,w

∗
e)

∂we
> 0, we must have dw∗

e

dc =
(

dQ∗
e(c)
dc − ∂Q∗

e(c,w
∗
e)

∂c

)

/∂Q∗
e(c,w

∗
e)

∂we
> 0 in the domain of c ∈ (v, c̄e).

On the other hand, we consider the property of K(Q∗
e(c), w

∗
e(c)) with regard to c given the

equilibrium Q∗
e(c) and w∗

e(c). From the proof of Lemma 2, we know V (Q) = QF̄ (Q) is decreasing

in Q when Q ≥ Q̃. We already know Q∗
e(c) ≥ Q̃. Thus, with the assumption dQ∗

e(c)/dc > 0, we

must have V (Q∗
e(c)) = Q∗

e(c)F̄ (Q∗
e(c)) decreasing in c. Also, from dQ∗

e(c)/dc > 0, (c − v)Q∗
e(c)

increases in c. Hence, (p − v)Q∗
eF̄ (Q∗

e(c)) − (c − v)Q∗
e(c) is decreasing in c. From the property

explained previously, we know M(Q∗
e(c)) is increasing in c. So, the function 1 −M(Q∗

e(c)) is de-

creasing in c. Obviously, the expected sale, S(Q), increases with Q. So, if dQ∗
e(c)/dc > 0, the

function S(Q∗
e(c)) is increasing in c. The function Y (Q) =

∫ Q
0 DdF (D) is increasing in Q. Thus,

from the previous property dLe(Q
∗
e)/dc < 0, we can infer that the function Y (Le(Q

∗
e(c))) is de-

creasing in c. From Part (1) in the above, we know, when v < c ≤ c̄e, the optimal w∗
e(c) satisfies

the first-order condition K(Q∗
e(c), w

∗
e (c)) = 0, that is, K(Q∗

e(c), w
∗
e(c)) =

(p−v)Q∗
e F̄ (Q∗

e(c))−(c−v)Q∗
e(c)

w∗
e(c)−v ·

(1−M(Q∗
e(c)))−S(Q∗

e(c))+Y (Le(Q
∗
e(c))) = 0. Solving K(Q∗

e(c), w
∗
e(c)) = 0, we have w∗

e(c) = v+

(p−v)Q∗
eF̄ (Q∗

e(c))−(c−v)Q∗
e(c)

S(Q∗
e(c))−Y (Le(Q∗

e(c)))
·(1−M(Q∗

e(c))). Thus, from the above results, we get that (p−v)Q∗
eF̄ (Q∗

e(c))−(c−v)Q∗
e(c)

S(Q∗
e(c))−Y (Le(Q∗

e(c)))
·

(1 − M(Q∗
e(c))) is decreasing in c. Consequently, we know w∗

e is decreasing in c (i.e., dw∗
e

dc ≤ 0),

which is contradictory to the conclusion of dw∗
e (c)
dc > 0 concluded in the preceding paragraph for the

same assumption (i.e., dQ∗
e(c)/dc > 0). Therefore, the assumption dQ∗

e(c)/dc > 0 is problematic

for some c ∈ (v, c̄e). As a result, we must have dQ∗
e(c)/dc ≤ 0 for all c ∈ (v, c̄e).

At last, we prove dΩ∗
e(c)
dc < 0 when c ∈ (v, c̄e). From part (1), we have K(Q∗

e) = 0. Then, from

Eq. (A-2), there must have ((p− v)F̄ (Q∗
e)− (c− v)) · Q∗

e

w∗
e−v · (1−M(Q∗

e)) = S(Q∗
e)− Y (Le(Q

∗
e)) =

Q∗
eF̄ (Q∗

e)+Y (Q∗
e)−Y (Le(Q

∗
e)) > 0. Furthermore, from Lemma 10, we have 0 ≤ 1−M(Q∗

e) ≤ 1/2.

So, we have (p − v)F̄ (Q∗
e) − (c − v) > 0. Thus, ∂Ω∗

e/∂Q
∗
e = (p − v)F̄ (Q∗

e) − (c − v) > 0. Also,

we have ∂Ω∗
e/∂c = −Q∗

eF (Le(Q
∗
e)) < 0. So, when c ∈ (v, c̄e), with ∂Ω∗

e/∂w
∗
e = 0, ∂Ω∗

e/∂Q
∗
e > 0,
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∂Ω∗
e/∂c < 0 and dQ∗

e/dc ≤ 0, we have,
dΩ∗

e

dc
=

∂Ω∗
e

∂w∗
e

dw∗
e

dc
+

∂Ω∗
e

∂Q∗
e

dQ∗
e

dc
+

∂Ω∗
e

∂c
< 0. (A-4)

Q.E.D.

Proof of Corollary 2. Firstly, from the definitions of c0, c̄e, c̄b, we have that c0 > c̄e and

c0 > c̄b. From Theorem 1, we know, if c = c0 > c̄e, then Q∗
e = Q̃ and the total profit of the

supply chain is Γ∗
e(c

0) = (p − v)S(Q∗
e) − (c0 − v)Q∗

e = (p − v)S(Q̃) − (c0 − v)Q̃. Obviously, when

c = c0 = (p− v)F̄ (Q̃) + v, we have (p− v)F̄ (Q0) = c0 − v = (p− v)F̄ (Q̃), and then Q0 = Q̃. Thus,

Γ0(c0) = Γ∗
e(c

0) = (p− v)S(Q̃)− (c0 − v)Q̃. Q.E.D.

Proof of Theorem 2. (1) Firstly, we prove that, if v < c ≤ ċe, then Ω∗
e ≥ Ω∗

b ; otherwise, Ω
∗
e < Ω∗

b .

With the result
dΩ∗

b

dc = −
S(Q∗

b
)

F̄ (Q∗
b
)
in Corollary 1, we can show that

d2(Γ(Q̃)−Ω∗
b
)

dc2
=

F̄ 2(Q∗
b
)+S(Q∗

b
)f(Q∗

b
)

F̄ 2(Q∗
b
)

·
dQ∗

b

dc < 0, which means that function Γ(Q̃)− Ω∗
b is a concave function in c. When c = c̄b, from the

definition of c̄b, (p− v)F̄ (Q̃) = (c− v)J(Q̃). Thus, from Lemma 1, Q̃ = Q∗
b . Then Γ(Q̃) = Γ(Q∗

b) =

Ω∗
b + Π∗

b > Ω∗
b . So, when c = c̄b, there is Γ(Q̃) − Ω∗

b > 0. From the definition of č, if c = č, then

Γ(Q̃) = 0. Obviously, Ω∗
b = (p − w∗

b )S(Q
∗
b) > 0. So, when c = č, there is Γ(Q̃) − Ω∗

b < 0. Thus,

from the concavity of function Γ(Q̃)−Ω∗
b , in the region of (c̄b, č), there exists a unique ċe satisfying

Γ(Q̃) − Ω∗
b = 0. Furthermore, As a result, we have Γ(Q̃) > Ω∗

b when c̄b ≤ c < ċe, and Γ(Q̃) ≤ Ω∗
b

when c ≥ ċe.

Now, we prove that ċe > c̄e.

According to the definition of c̄e and c̄b: c̄e =
(p−v)F̄ (Q̃)

1+2F̄ (Q̃)
+ v, c̄b =

(p−v)F̄ (Q̃)

J(Q̃)
+v. Obviously, when

J(Q̃) ≥ 1 + 2F̄ (Q̃), we have c̄b ≤ c̄e; otherwise, c̄b > c̄e.

Firstly, we consider the case J(Q̃) ≥ 1 + 2F̄ (Q̃). So, in this case, there is c̄b ≤ c̄e. When

c = c̄e, there is c−v
p−v = F̄ (Q̃)

1+2F̄ (Q̃)
< F̄ (Q̃). From the definition of Q0, we have F̄ (Q0) = c−v

p−v . Then,

we have Q̃ < Q0. From the definition of c̄b, when c = c̄b, there is Q∗
b = Q̃. Furthermore, from

(p−v)F̄ (Q∗
b) = (c−v)J(Q∗

b ), we know Q∗
b is decreasing in c. Since c̄b ≤ c̄e, then, at point c = c̄e, we

have Q̃ ≥ Q∗
b . Thus, when c = c̄e, Q

0 > Q̃ ≥ Q∗
b . From the definition of Q0, for any given c, the Q0

is the maximum point of Γ(Q). So, when c = c̄e, we have Γ(Q̃) ≥ Γ(Q∗
b) > Ω∗

b , i.e., Γ(Q̃)−Ω∗
b > 0.

Thus, from the above definition of ċe, we know that ċe must be greater than c̄e.

Secondly, we consider the case J(Q̃) < 1 + 2F̄ (Q̃). So, in this case, there is c̄b > c̄e. Since

ċe > c̄b, then we have ċe > c̄e.

Consequently, the unique point ċe satisfies Γ(Q̃) = Ω∗
b and max{c̄e, c̄b} < ċe < č. Furthermore,

from the concavity of function Γ(Q̃) − Ω∗
b , we know: Γ(Q̃) > Ω∗

b when max{c̄b, c̄e} ≤ c < ċe, and

Γ(Q̃) ≤ Ω∗
b when c ≥ ċe.

From Lemma 2 and Theorem 1, when c ≥ c̄e, w
∗
e = c, Q∗

e = Q̃. So, Ω∗
e = Γ(Q̃). So, from the
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above results, we have: Ω∗
e > Ω∗

b when max{c̄b, c̄e} ≤ c < ċe, and Ω∗
e ≤ Ω∗

b when c ≥ ċe.

(2) Now, we show that w∗
e ≤ w∗

b and Π∗
b ≥ Π∗

e for any c ∈ (v, p].

From Theorem 1, we know Q∗
e decreases with c. Then Le(Q

∗
e) increases with c. Thus, c−v

w∗
e−v =

Le(Q∗
e)

Q∗
e

increases in c. From Lemma 1 and Corollary 1, we have that (w∗
b − v)F̄ (Q∗

b) = c − v, and

Q∗
b decreases with c. Then c−v

w∗
b
−v = F̄ (Q∗

b) increases in c. When c → v, c−v
w∗

e−v → 0, c−v
w∗

b
−v → 0;

When c = c̄e < p, Q∗
e = Le(Q

∗
e) = Q̃, F̄ (Q∗

b) < 1, and we have c−v
w∗

e−v = 1 > c−v
w∗

b
−v . Thus, when

c < c̄e,
c−v
w∗

e−v > c−v
w∗

b
−v , i.e., w

∗
e < w∗

b . Furthermore, if c > c̄e, we have c−v
w∗

e−v = 1, and c−v
w∗

b
−v ≤ 1.

Consequently, for all c ∈ (v, p], we have w∗
e ≤ w∗

b .

Next, we prove Π∗
e ≤ Π∗

b . Recall that Π∗
e = (w∗

e − v)[Y (Q∗
e) − Y (Le(Q

∗
e))] and Π∗

b = (w∗
b −

v)Y (Q∗
b). Given c > c̄e, Q∗

e = Le(Q
∗
e) and Π∗

e = 0, Π∗
b ≥ 0, then Π∗

e ≤ Π∗
b . Right now, we

consider the case of c ∈ (v, c̄e]. When c = c̄e, Y (Q∗
e) − Y (Le(Q

∗
e)) = 0 < Y (Q∗

b). When c → v,

there is Q∗
e → +∞, Le(Q

∗
e) → 0, Q∗

b → +∞, Y (Q∗
e) − Y (Le(Q

∗
e)) = Y (Q∗

b) → +∞. Since

Y (Q∗
e)− Y (Le(Q

∗
e)) and Y (Q∗

b) decrease in c ∈ (v, c̄e], we get Y (Q∗
e) − Y (Le(Q

∗
e)) < Y (Q∗

b). And

w∗
e < w∗

b , we obtain Π∗
e = (w∗

e − v)[Y (Q∗
e) − Y (Le(Q

∗
e))] < (w∗

b − v)Y (Q∗
b) = Π∗

b . Thus, for any

c ∈ (v, p], Π∗
e ≤ Π∗

b . Q.E.D.

Proof of Lemma 4. (1) In this part, we first prove there exists a unique point we = wM
e such that

Πe(Q
∗
e, w

M
e ) = Π∗

b . From Lemma 1, it is obvious that p− v > (c− v)/F̄ (Q∗
b) = w∗

b − v, i.e., p > w∗
b .

For any given c, we have a constant Π∗
b(c) ≥ 0. Then, when we = c, we have Πe(Q

∗
e, c) = 0 ≤ Π∗

b ;

when we = p, from (3) and (2) we have,

Πe(Q
∗
e, p) = E [(p− v)min[D,Q∗

e(p)]− (c− v)Q∗
e(p)]

+ ≥ E [(p − v)min[D,Q∗
b ]− (c− v)Q∗

b ]
+

≥ E [(w∗
b − v)min[D,Q∗

b ]− ((1 + r∗b )c− v)Q∗
b ]
+ = Π∗

b .

The above first inequality results from that the Q∗
e(p) is the optimal decision. From Lemma 3,

we know Πe(Q
∗
e, we) increases in we. Thus, for a given c, we have a unique we = wM

e satisfying

Πe(Q
∗
e, w

M
e ) = Π∗

b .

(2) Now, we prove, for any c ∈ (v, p], wM
e (c) ≤ w∗

b (c) by contradiction approach.

Firstly, we suppose, for some c ∈ (v, p] there is wM
e (c) > w∗

b (c). Then, we have,

Π∗
b = E [(w∗

b (c)− v)min[D,Q∗
b ]− ((1 + r∗b )c− v)Q∗

b ]
+

< E
[

(wM
e (c) − v)min[D,Q∗

b ]− ((1 + r∗b )c− v)Q∗
b

]+
≤ E

[

(wM
e (c)− v)min[D,Q∗

b ]− (c− v)Q∗
b

]+

≤ E
[

(wM
e (c) − v)min[D,Q∗

e(w
M
e (c))] − (c− v)Q∗

e(w
M
e (c))

]+
= Πe(Q

∗
e, w

M
e (c)).

The above last inequality results from that theQ∗
e(w

M
e (c)) is the optimal decision when we = wM

e (c).

The result Π∗
b < Πe(Q

∗
e, w

M
e (c)) is contradictory with the definition of wM

e (c). Thus, for any given

c, we have wM
e (c) ≤ w∗

b (c).
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From Theorem 2, we have Π∗
e(c) < Π∗

b(c). So, for c ∈ (v, p], there is Π∗
e(Q

∗
e, w

∗
e(c)) = Π∗

e(c) <

Πe(Q
∗
e, w

M
e (c)). From Lemma 3, for any given c, we have that Π∗

e increases in we. Thus, we obtain

w∗
e(c) < wM

e (c). So, we obtain w∗
e(c) < wM

e (c) ≤ w∗
b (c). Q.E.D.

Proof of Lemma 5. (1) From Lemma 2, we know Q∗
e increases in we. When we = p, the

manufacturer sets an optimal production quantity Q∗
e(p), and the retailer gets a profit Ω∗

e(p) =

Ωe(Q
∗
e(p), p). From Eq. (5), for any given c, when we = p, Ω∗

e(p) = Emin[(p−v)min[D,Q∗
e(p)], (c−

v)Q∗
e(p)]− (c− v)Q∗

e(p) ≤ 0 < Ω∗
b . Thus, we have the result: Ω∗

e(p) < Ω∗
b for any c ∈ (v, ċe].

(2) We prove there exists a unique wR
e ∈ (w∗

e , p) satisfying Ωe(Q
∗
e, w

R
e ) = Ω∗

b when c̄b ≤ c < ċe.

From the proof of Theorem 2, we get Γ(Q̃) > Ω∗
b . Also, for a given c ∈ [c̄b, ċe), when we = c,

we have Γ(Q̃) = Γe(Q
∗
e, c) = Ωe(Q

∗
e, c) + Πe(Q

∗
e, c) = Ωe(Q

∗
e, c). Then, we have, Ωe(Q

∗
e, c) > Ω∗

b .

In the following, we consider two cases: c̄b ≤ c̄e (i.e., J(Q̃) ≥ 1 + 2F̄ (Q̃)) and c̄b > c̄e (i.e.,

J(Q̃) < 1 + 2F̄ (Q̃)).

Case 1: c̄b ≤ c̄e. There are two sceneries: c̄b ≤ c ≤ c̄e and c̄e < c < ċe.

When c̄e < c ≤ ċe, from the proof of Theorem 1, for all we, we have dΩe(Q
∗
e, we)/dwe < 0.

We already know, when we = c, Ωe(Q
∗
e, c) > Ω∗

b , and from part (1), when we = p, Ω∗
e(p) < Ω∗

b .

Furthermore, from Lemma 3, Ωe(Q
∗
e, we) is a unimodal function of we. Thus, there exists a unique

wR
e , which satisfies Ωe(Q

∗
e, w

R
e ) = Ω∗

b . Since w∗
e = c, then wR

e > w∗
e .

Now, we consider the case c̄b ≤ c ≤ c̄e. From the proof of Theorem 1, when we = w∗
e , Ωe(Q

∗
e, we)

reaches the maximum value. Thus Ωe(Q
∗
e, w

∗
e) > Ωe(Q

∗
e, c) > Ω∗

b . Thus, with the result Ω∗
e(p) < Ω∗

b

in part (1) and unimodal property of Ωe(Q
∗
e, we), we know that there exists a unique wR

e ∈ (w∗
e , p],

which satisfies Ωe(Q
∗
e, w

R
e ) = Ω∗

b .

Case 2: c̄b > c̄e. We consider the case c̄b ≤ c < ċe. In this case, from the proof of Theorem

1, when we = w∗
e , we know dΩe(Q

∗
e, we)/dwe < 0. Similarly with the above scenario c̄e < c ≤ ċe in

case 1, we can find a wR
e satisfying Ωe(Q

∗
e, w

R
e ) = Ω∗

b , and wR
e > w∗

e = c.

(3) We prove there exists a unique wR
e ∈ (w∗

e , p) satisfying Ωe(Q
∗
e, w

R
e ) = Ω∗

b when v ≤ c < c̄b.

Since v ≤ c < c̄b ≤ max{c̄e, c̄b} ≤ ċe, then from Theorem 2, we have Ωe(Q
∗
e, w

∗
e) = Ω∗

e > Ω∗
b .

With the result of Ω∗
e(p) < Ω∗

b in part (1), and the property that Ωe(Q
∗
e, we) is a unimodal function,

in the region (w∗
e , p), there exists a unique wR

e , which satisfies Ωe(Q
∗
e, w

R
e ) = Ω∗

b and wR
e > w∗

e .

Thus, from parts (2) and (3), we know there exists a uniquewR
e ∈ (w∗

e , p) satisfying Ωe(Q
∗
e, w

R
e ) =

Ω∗
b for any v ≤ c < ċe. Q.E.D.

Proof of Theorem 3. 1. From Lemma 5, when c = ċe, w
R
e (c) = c. From Lemma 4, for any given

c ∈ (v, p], we have wM
e (c) > c. Thus, there must exist a point ĉe < ċe such that wM

e (ĉe) = wR
e (ĉe).

2. From the above result, for any fixed c ∈ (v, ċe], there may exist two scenarios between wM
e
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and wR
e . When c ≥ ĉe, we have wM

e > wR
e , the unique sub-game perfect financing equilibrium is

bank financing. When c < ĉe, we have wM
e < wR

e , i.e., there exists a Pareto zone we ∈ [wM
e , wR

e ]

such that Πe(Q
∗
e, we) ≥ Π∗

b and Ωe(Q
∗
e, we) ≥ Ω∗

b . Thus, the unique sub-game perfect financing

equilibrium is early payment financing.

3. From above results, we know, when v < c < ĉe, the unique financing equilibrium is early

payment financing; when ĉe ≤ c ≤ p, the equilibrium is bank financing. Q.E.D.

Proof of Theorem 4. Following the same procedure in Theorem 3, we can easily get the results.

Q.E.D.

Proof of Lemma 6. Firstly, following the same procedure in Lemma 3, we can easily prove

ΠI(Q
∗
I , wI) increases with wI

Now, we prove that, for any given wI , ΠI(Q
∗
I , wI) decreases with rI .

With the equations of (wI − v)F̄ (Q∗
I) = (c(1 + rI)− v)F̄ (LI(Q

∗
I)) and LI(Q

∗
I) =

(c(1+rI )−v)Q∗
I

wI−v ,

we can show that, −(wI − v)f(Q∗
I)

dQ∗
I

drI
= cF̄ (LI(Q

∗
I))− (c(1+ rI)− v)f(LI(Q

∗
I))

dLI (Q
∗
I
)

drI
,
dLI (Q

∗
I
)

drI
=

cQ∗
I

wI−v + c(1+rI)−v
wI−v

dQ∗
I

drI
. So, we have,

dQ∗
I

drI
=

cQ∗
I
(M(Q∗

I
)−1)

(1+rI )c−v ,
dLI (Q

∗
I
)

drI
=

cQ∗
I
M(Q∗

I
)

wI−v . Thus,

dQ∗
I/drI ≤ 0, dLI(Q

∗
I)/drI ≥ 0. (A-5)

So, for any rI , there is
dΠI(Q

∗
I , wI)

drI
= (wI − v)

[

Q∗
If(Q

∗
I)
dQ∗

I

drI
− LI(Q

∗
I)f(LI(Q

∗
I))

dLI(Q
∗
I)

drI

]

≤ 0. (A-6)

So, for a fixed purchasing price wI , the manufacturer’s payoffs function ΠI(Q
∗
I , wI) decreases with

rI .

(1) First, we prove that, for any c ∈ (v, ĉI ], the point wM
I (rI) is increasing in rI .

Similarly with Lemma 2, the profit function of the manufacturer ΠI(QI , wI) is a unimodal

function in QI . From Eq. (6), for any given c and wI , ΠI(QI , wI) is decreasing in rI . Thus, for

any given c and wI , the maximum value of the manufacturer’s profit function, ΠI(Q
∗
I , wI), must

decrease in rI . Furthermore, we know ΠI(Q
∗
I , wI) increases in wI . From the definition of wM

I , we

have ΠI(Q
∗
I , w

M
I ) = Π∗

b . Thus, the point wM
I must increase in rI .

Now, we prove that, for any c ∈ (v, ĉI ], Q
∗
I(w

M
I (rI), rI) decreases with rI .

Consider r1I and r2I with 0 ≤ r1I < r2I ≤ r̂I . With the result that wM
I increases in rI ,

we have wM
I (r1I ) < wM

I (r2I ). From the above result, for any riI , wM
I (riI), i = 1, 2, we have

V (Q∗
I(w

M
I (riI), r

i
I)) = V (L(Q∗

I(w
M
I (riI), r

i
I))). Then, from Eq. (6), we have

ΠI(Q
∗
I(w

M
I (riI), r

i
I), w

M
I (riI)) = (wM

I (riI)− v)

∫ Q∗
I
(wM

I
(ri

I
),ri

I
)

L(Q∗
I
(wM

I
(ri

I
),ri

I
))
xf(x)dx.

With the definition of wM
I (riI), the value of above functions must equal Π∗

b . Since w
M
I (r1I ) < wM

I (r2I ),

we must have Q∗
I(w

M
I (r1I ), r

1
I ) > Q∗

I(w
M
I (r2I ), r

2
I ). Thus, Q

∗
I(w

M
I (rI), rI) decreases in rI .

(2) From Theorem 2, the ċe satisfies Γ(Q̃) = Ω∗
b . Also the ċI satisfies Γ(Q̃) = Ω∗

b . Thus, we
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have ċe = ċI .

(3) Now, we prove that ĉI > ĉe.

(i) Firstly, we show that, when c = ĉe, Q
∗
e(w

M
e ) > Q∗

I(w
M
I ) > Q∗

b .

According to the definitions of wM
e and wR

e , we have Πe(Q
∗
e, w

M
e ) = Πb(Q

∗
b) and Ωe(Q

∗
e, w

R
e ) =

Ωb(Q
∗
b). Since, when c = ĉe, we have wM

e = wR
e . So, Γe(Q

∗
e, w

M
e ) = Γb(Q

∗
b). We know the supply

chain total profit Γ(Q) is a concave function of Q, and Q0 is the optimal point. So we must have

Q∗
e(w

M
e ) > Q0 > Q∗

b .

Also, according to the definitions of wM
I , we have ΠI(Q

∗
I , w

M
I ) = Πb(Q

∗
b). From Theorem 1, and

c = ĉe > c̄e, the retailer’s optimal decision is w∗
I = ĉe(1+ rI). Since c = ĉe > c̄b, from Lemma 7, the

manufacturer’s optimal decision Q∗
I(w

∗
I ) > Q∗

b . Follow the same procedure in Lemma 2, we can show

that Q∗
I(wI) increases with wI . Since wM

I > w∗
I , then, Q

∗
I(w

M
I ) > Q∗

I(w
∗
I ). Thus, Q∗

I(w
M
I ) > Q∗

b .

From the above result in part (1), with the fixed c = ĉe, we already have Q∗
e(w

M
e ) > Q∗

I(w
M
I ).

Thus, we have Q∗
e(w

M
e ) > Q∗

I(w
M
I ) > Q∗

b .

(ii) Now, we prove that ĉI > ĉe.

Since the supply chain’s profit function Γ(Q) is concave on Q, when c = ĉe, with the results

Γe(Q
∗
e, w

M
e ) = Γb(Q

∗
b) and Q∗

e(w
M
e ) > Q∗

I(w
M
I ) > Q∗

b , we have ΓI(Q
∗
I , w

M
I ) > Γe(Q

∗
e, w

M
e ). We

already have Ωe(Q
∗
e, w

M
e ) = Ωb(Q

∗
b), ΠI(Q

∗
I , w

M
I ) = Πe(Q

∗
e, w

M
e ) = Πb(Q

∗
b). Thus, ΩI(Q

∗
I , w

M
I ) =

ΓI(Q
∗
I , w

M
I )−ΠI(Q

∗
I , w

M
I ) = ΓI(Q

∗
I , w

M
I )−Πe(Q

∗
e, w

M
e ) > Γe(Q

∗
e, w

M
e )−Πe(Q

∗
e, w

M
e ) = Ωe(Q

∗
e, w

M
e ) =

Ωb(Q
∗
b). Thus, we get, ΩI(Q

∗
I , w

M
I ) > Ωb(Q

∗
b), ΠI(Q

∗
I , w

M
I ) = Πb(Q

∗
b). So, when c = ĉe, we have

wR
I > wM

I . Thus, we get ĉI > ĉe. Q.E.D.

Proof of Theorem 5. Recall Corollary 2. Given rI = 0, the early payment financing coordinates

the supply chain when c = c0. Then we have Q0(c) = Q̃ if c = c0. Both Q0(c) and Q∗
I(w

∗
I ) decrease

in c, and Q∗
I(w

∗
I ) ≥ Q̃. Then we have Q∗

I(w
∗
I ) < Q0(c) if c < c0; otherwise, Q∗

I(w
∗
I ) = Q̃ > Q0(c).

From Lemma 6, we know Q∗
I(w

M
I (rI), rI) decreases with rI . Thus, with the definition of c̃3, c̃2

and c̃1, we have c̃3 < c̃2 < c̃1 < c0.

For any given c ∈ (v, ĉI ], rI ∈ [0, r̂I ] and wI = wM
I (rI), the retailer’s profit function is:

ΩI(Q
∗
I , w

M
I (rI)) = (p − v)S(Q∗

I(w
M
I (rI))) − (c − v)Q∗

I(w
M
I (rI)) − Π∗

b . And the supply chain to-

tal profit pS(Q) − cQ is concave, where the maximum point is at the point of Q0(c). So, if

Q∗
I(w

M
I (rI)) < Q0(c), ΩI(Q

∗
I , w

M
I (rI)) increases in Q∗

I ; otherwise, ΩI(Q
∗
I , w

M
I (rI)) decreases in Q∗

I .

If c < c̃3, Q
∗
I(w

M
I (rI)) < Q∗

I(w
M
I (0)) < Q0(c). And we have that ΩI(Q

∗
I , w

M
I (rI)) increases in

Q∗
I . Since Q∗

I(w
M
I (rI)) decreases in rI (from Lemma 6), ΩI(Q

∗
I , w

M
I (rI)) decreases in rI , then we

have Ωe(Q
∗
e, w

M
e ) = ΩI(Q

∗
I , w

M
I (0)) > ΩI(Q

∗
I , w

M
I (rI)).

If c > c̃1, Q
∗
I(w

M
I (0)) > Q∗

I(w
M
I (r̂I)) > Q0(c). And ΩI(Q

∗
I , w

M
I (rI)) decreases in Q∗

I . Since

9



Q∗
I(w

M
I (rI)) decreases in rI , ΩI(Q

∗
I , w

M
I (rI)) monotonically increases in rI .

If c < c̃1, we have Q∗
I(w

M
I (r̂I)) < Q0(c). Since Q∗

I(w
M
I (rI)) decreases in rI , we can find an

r∗I < r̂I solving Q∗
I(w

M
I (r∗I )) = Q0(c). Recall c̃2 solving ΩI(Q

∗
I , w

M
I (r̂I)) = ΩI(Q

∗
I , w

M
I (0)). We

have Q∗
I(w

M
I , r∗I (c̃2)) = Q0(c̃2). Given c = c̃2, Ω

M
I (Q∗

I , w
M
I (rI), c̃2) decreases in rI ∈ [rMI (c̃2), r̂I ].

Then c̃2 ≤ c < c̃1, Ω
M
I (Q∗

I , w
M
I (rI)) > ΩI(Q

∗
I , w

M
I (0)), and ΩM

I (Q∗
I , w

M
I (rI)) firstly increases but

then decreases in rI .

If c̃3 ≤ c < c̃2, we can find an rMI < r̂I solving ΩM
I (Q∗

I , w
M
I (rMI )) = ΩI(Q

∗
I , w

M
I (0)). For any

given c ∈ [c̃3, c̃2), we have ΩM
I (Q∗

I , w
M
I (rI)) ≥ ΩI(Q

∗
I , w

M
I (0)). If rI ≤ rMI (c), ΩM

I (Q∗
I , w

M
I (rI)) <

ΩI(Q
∗
I , w

M
I (0)). Q.E.D.

Proof of Theorem 6. Part 1. We prove that for any c ∈ (v, p], r̂I(c) decreases in c.

From the proof of Lemma 6, for any given c, at wI = p, ΠI(Q
∗
I(c), p, rI) decreases in rI . Follow

the same procedure in the proof of Theorem 1, we can easily prove that, for any given rI , dQ
∗
I/dc <

0, and dLI(Q
∗
I(c))/dc > 0. We know the manufacturer’s optimal profit is ΠI(Q

∗
I(c), p, rI) = (p −

v)[Y (Q∗
I(c)) − Y (LI(Q

∗
I(c)))]. Thus, for any given rI , ΠI(Q

∗
I(c), p, rI ) decreases in c.

Now, we consider two cases dΠ∗
b(c)/dc ≥ 0 and dΠ∗

b(c)/dc < 0.

(i) Suppose dΠ∗
b(c)/dc ≥ 0. Let c̀1 < c < c̀2, we have Π∗

b(c̀1) ≤ Π∗
b(c̀2). We already

know, for any feasible rI , ΠI(Q
∗
I(c̀1), p, rI) > ΠI(Q

∗
I(c̀2), p, rI). With the definition of r̂I(c),

ΠI(Q
∗
I(c̀1), p, r̂I(c̀1)) = Π∗

b(c̀1), ΠI(Q
∗
I(c̀2), p, r̂I(c̀2)) = Π∗

b(c̀2). Since dΠ
∗
b(c)/dc ≥ 0 and c̀1 < c̀2, we

have ΠI(Q
∗
I(c̀2), p, r̂I(c̀2)) = Π∗

b(c̀2) > Π∗
b(c̀1) = ΠI(Q

∗
I(c̀1), p, r̂I(c̀1)) > ΠI(Q

∗
I(c̀2), p, r̂I(c̀1)). Thus,

we know r̂I(c̀1) > r̂I(c̀2), i.e., dr̂I(c)/dc < 0.

(ii) Suppose dΠ∗
b(c)/dc < 0. Let c̀1 < c < c̀2, we have Π

∗
b(c̀1) > Π∗

b(c̀1). Thus ΠI(Q
∗
I(c̀1), p, r̂I(c̀1)) >

ΠI(Q
∗
I(c̀2), p, r̂I(c̀2)). With the relation ΠI(Q

∗
I(c), p, rI ) = (p−v)[Y (Q∗

I(c))−Y (LI(Q
∗
I(c)))]. Thus,

we have Q∗
I(c̀1) > Q∗

I(c̀2), and then LI(Q
∗
I(c̀1), r̂I(c̀1)) < LI(Q

∗
I(c̀2), r̂I(c̀2)). So, (1+r̂I (c̀1))c̀1−v

p−v =
LI(Q

∗
I
(c̀1),r̂I(c̀1))

Q∗
I
(c̀1)

<
LI (Q

∗
I
(c̀2),r̂I(c̀2))

Q∗
I
(c̀2)

= (1+r̂I(c̀2))c̀2−v
p−v . Thus, we know (1 + r̂I(c))c increases in c and

(1+ r̂I(c))c ≤ p. When c = p, we know (1+ r̂I(p))p ≤ p, and we must have r̂I(p) = 0. So, we must

also have dr̂I(c)/dc < 0. Therefore, for any c ∈ (v, p], r̂I(c) decreases in c.

Part 2. Now, we consider the optimal interest rate r∗I in [c̃3, ĉI ].

For any given c̃3 < c ≤ c̃1, the optimal optimal rate r∗I satisfies (wM
I (r∗I ) − v)F̄ (Q0(c)) =

(c(1 + r∗I ) − v)F̄ (LI(Q
0(c))), Π∗

I(w
M
I (r∗I ), Q

0(c)) = Π∗
b , and Q0(c) solves F̄ (Q0(c)) = c−v

p−v . We

have LI (Q
0(c))

Q0(c)
=

c(1+r∗
I
(c))−v

wM

I
(c)−v

. If c increases, we have LI (Q
0(c))

Q0(c)
increases in c. And then

c(1+r∗
I
(c))−v

wM

I
(c)−v

increases in c. Let c̃0 solves c(1+r∗I (c)) = wM
I (c), then we obtain Q0(c̃0) = Q̃. If c ∈ [c̃3, c̃1] increases,

c(1+r∗
I
(c))−v

wM

I
(c)−v

< 1 increases to 1. Since wM
I (c) increases in c, to keep

c(1+r∗
I
(c))−v

wM

I
(c)−v

increasing to reach c,

we must have r∗I (c) increase in c. Recall that (wM
I (r̂I)− v)F̄ (Q0(c)) = (c(1+ r̂I)− v)F̄ (LI(Q

0(c))),
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and we have r∗I (c̃1) = r̂I . As a result, for any given c ∈ [c̃3, c̃1), r
∗
I (c) ≤ r̂I(c̃1). When c ∈ [c̃1, ĉI ],

the optimal interest rate reaches the upper bound (i.e., r∗I = r̂I), and we already know r̂I decreases

with c. Q.E.D.

Proof of Theorem 7. The results are directly from Theorems 5 and 6, and are thus skipped for

brevity. Q.E.D.

Proof of Theorem 8. We first study the firms’ preferences between early payment and bank

financing supposing both are available in the following lemma.

Lemma 8 Consider the case with an identical wholesale price wx in bank financing and early
payment financing (i.e., wb = we = wx).

1. For any c ∈ (v, p] and wx ∈ [c, p], the manufacturer always prefers early payment to bank
financing (i.e., Πb(Q

∗
b , wx) < Πe(Q

∗
e, wx));

2. If v < c ≤ č, then there exists a unique wE
x ∈ (w∗

e , p) such that, when wx ∈ [c, wE
x ], the retailer

prefers early payment (i.e., Ωb(Q
∗
b , wx) ≤ Ωe(Q

∗
e, wx)); when wx ∈ (wE

x , p], the retailer prefers
bank financing (i.e., Ωb(Q

∗
b , wx) > Ωe(Q

∗
e, wx)). If č < c ≤ p, then for any wx ∈ [c, p], the

retailer prefers bank financing (i.e., Ωb(Q
∗
b , wx) > Ωe(Q

∗
e, wx)).

Lemma 8 with an identical wholesale price is parallel to Theorem 2 with non-identical whole-

sale prices. Lemma 8 first indicates that the manufacturer always prefers early payment to bank 

financing if the wholesale price is identical, which is different from when the wholesale prices are 

not identical. The underlying reason is that when the wholesale price is not identical, the retailer 

will command a big enough wholesale price discount in early payment. But, when the wholesale 

prices are fixed at the same level in both financing schemes, which are assumed to be available 

in Lemma 8, it is intuitive that the manufacturer will always prefer early payment because of the 

benefit of paying no interest.

For the retailer, the preference structure is similar to that without identical wholesale prices, 

although the outcome also depends on the identical wholesale price level. Overall, when the pro-

duction cost is high enough, the retailer still prefers the manufacturer to use bank financing due 

to the manufacturer’s overwhelming default risk. This demonstrates that the production cost con-

tinues to play an important role in the retailer’s equilibrium financing decision, and the retailer’s 

preference between the two financing schemes does not qualitatively alter in terms of whether the 

wholesale price is identical.

We now list the firms’ preferences between in-house factoring and bank financing supposing 

both are available as follows.

Lemma 9 Consider the case with an identical wholesale price wx in bank financing and in-house 
factoring financing (i.e., wb = wI = wx).

11



1. For any c ∈ (v, p] and wx ∈ [c, p], there exists an interest rate rMx , such that: when rI ∈
[0, rMx ), the manufacturer prefers in-house factoring (i.e., Πb(Q

∗
b , wx) < ΠI(Q

∗
I , wx, rI)); when

rI ≥ rMx , the manufacturer prefers bank financing (i.e., Πb(Q
∗
b , wx) ≥ ΠI(Q

∗
I , wx, rI)).

2. If v < c ≤ č, then there exists a unique wI
x, where wI

x > wE
x , such that, when wx ∈ [c, wI

x]
and rI ∈ [0, rMx ], the retailer prefers in-house factoring (i.e., Ωb(Q

∗
b , wx) ≤ ΩI(Q

∗
I , wx)); when

wx ∈ (wI
x, p], the retailer prefers bank financing (i.e., Ωb(Q

∗
b , wx) > ΩI(Q

∗
I , wx)). If č < c ≤ p,

then for any wx ∈ [c, p], the retailer prefers bank financing (i.e., Ωb(Q
∗
b , wx) > ΩI(Q

∗
I , wx)).

Lemma 9 with an identical wholesale price is comparable to Theorem 4 with non-identical

wholesale prices. This comparison is similar to that between Lemma 8 and Theorem 2 and the

underlying rationale is similar. Again, the retailer’s preference to in-house factoring is the same as

that in Theorem 4 when the production cost is big enough.

Based on Lemmas 8 and 9, the results of Theorem 8 are therefore straightforward. Q.E.D.

Proof of Lemma 8. We prove the two items sequently. 1. Firstly, from (2) and (3), when the

wholesale price in bank financing and early payment are the same at wx, we have Πb(Q,wx) =

E[wx min[D,Q] + v(Q − D)+ − c(1 + r∗b )Q]+, Πe(Q,wx) = E[wx min[D,Q] + v(Q −D)+ − cQ]+.

Because r∗b > 0, for any Q, there is c(1 + r∗b )Q > cQ, and then Πb(Q,wx) < Πe(Q,wx). Specially,

there is Πb(Q
∗
b , wx) < Πe(Q

∗
b , wx). Secondly, since Q

∗
e is the maximum point of Πe(Qe, wx), for any

Qe there is Πe(Qe, wx) ≤ Πe(Q
∗
e, wx). Specially, there is Πe(Q

∗
b , wx) ≤ Πe(Q

∗
e, wx). Therefore, we

have Πb(Q
∗
b , wx) < Πe(Q

∗
e, wx).

2. Firstly, we consider the properties of Ωb(Q
∗
b , wx). From (wx−v)F̄ (Q∗

b) = c−v, we have
dQ∗

b

dwx
=

1
(wx−v)2f(Q∗

b
)
≥ 0. Thus, with Ωb(Q

∗
b , wx) = (p − wx)S(Q

∗
b), we have

dΩb(Q
∗
b
,wx)

dwx
= p−wx

(wx−v)2h(Q∗
b
)
−

S(Q∗
b). Obviously, p− wx,

1
(wx−v)2

, 1
h(Q∗

b
) and −S(Q∗

b) are decreasing with wx. Thus,
dΩb(Q

∗
b
,wx)

dwx
is

decreasing with wx, and then Ωb(Q
∗
b , wx) is a unimodel function of wx. When wx = c, Q∗

b = 0, and

then S(Q∗
b) = 0 and Ωb(Q

∗
b , c) = (p−wx)S(Q

∗
b) = 0. When wx = p, Ωb(Q

∗
b , p) = (p−wx)S(Q

∗
b) = 0.

Secondly, we consider the relation of Ωe(Q
∗
e, wx) and Ωb(Q

∗
b , wx) at the point of wx = p. From

(5), when wx = p, Ωe(Q
∗
e, p) = −(c− v)Q∗

e +Emin[(p − v)min[D,Q∗
e], (c− v)Q∗

e] ≤ 0. We already

know the property of Ωb(Q
∗
b , p) = 0. Thus, at the point of wx = p, Ωe(Q

∗
e, p) ≤ Ωb(Q

∗
b , p).

Lastly, we analyze the threshold wE
x . There are three cases: c ∈ (v, ċe], c ∈ [ċe, č] and c ∈ [č, p].

(i) In the case c ∈ (v, ċe]. From the Proof of Theorem 1, for wx ≥ w∗
e , Ωe(Q

∗
e, wx) is decreas-

ing with wx. Furthermore, from Theorem 2, Ωe(Q
∗
e, w

∗
e) ≥ Ωb(Q

∗
b , w

∗
b ). Because Ωb(Q

∗
b , wx) is a

unimodel function of wx, for any wx, Ωb(Q
∗
b , w

∗
b ) ≥ Ωb(Q

∗
b , wx). Specially, there is Ωb(Q

∗
b , w

∗
b ) ≥

Ωb(Q
∗
b , w

∗
e). Therefore, at the point of wx = w∗

e , Ωe(Q
∗
e, w

∗
e) ≥ Ωb(Q

∗
b , w

∗
e). We already know

Ωe(Q
∗
e, p) ≤ Ωb(Q

∗
b , p). So, there must exist a unique wR

x ∈ (w∗
e , p] such that Ωb(Q

∗
b , w

R
x ) =

Ωe(Q
∗
e, w

R
x ). Thus, when wx ∈ [c, wR

x ], there is Ωb(Q
∗
b , wx) ≤ Ωe(Q

∗
e, wx), when wx ∈ (wE

x , p],

there is Ωb(Q
∗
b , wx) > Ωe(Q

∗
e, wx).
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(ii) In the case c ∈ (ċe, č]. We first consider the properties of Ωe(Q
∗
e, wx). From Lemma 3

and the proof of Theorem 1, when c ∈ (ċe, č] ∈ [c̄e, p], Ωe(Q
∗
e, wx) is decreasing in wx and the

maximum point is c. Furthermore, from Theorem 1, in the case of c ∈ (ċe, č], we have w∗
e = c and

Q∗
e = Le(Q

∗
e) = Q̃. Thus, from (4), Π∗

e = 0, and then Ωe(Q
∗
e, w

∗
e) = Γ(Q̃) = (p− v)S(Q̃)− (c− v)Q̃.

From the definition of č, if c ≤ č, then (p − v)S(Q̃) − (c − v)Q̃ > 0. Thus, at the point of

c ∈ (ċe, č], there is Ωe(Q
∗
e, c) ≥ 0. We already know Ωb(Q

∗
b , c) = 0. So, Ωe(Q

∗
e, c) ≥ Ωb(Q

∗
b , c).

We already know Ωe(Q
∗
e, p) ≤ Ωb(Q

∗
b , p). So, there must exist a unique wE

x ∈ (c, p] such that

Ωb(Q
∗
b , w

E
x ) = Ωe(Q

∗
e, w

E
x ). Thus, when wx ∈ [c, wE

x ], there is Ωb(Q
∗
b , wx) ≤ Ωe(Q

∗
e, wx), when

wx ∈ (wE
x , p], there is Ωb(Q

∗
b , wx) > Ωe(Q

∗
e, wx).

(iii) In the case of c ∈ (č, p]. From Theorem 1, when c ≥ č > c̄e, there is w∗
e = c and

Q∗
e = Le(Q

∗
e) = Q̃. Thus, from (4), Π∗

e = 0, and then Ωe(Q
∗
e, w

∗
e) = Γ(Q̃) = (p− v)S(Q̃)− (c− v)Q̃.

From the definition of č, if c > č, then (p − v)S(Q̃) − (c − v)Q̃ < 0. Thus, given a c ∈ (č, p]

there is Ωe(Q
∗
e, c) < 0. Since c is the maximum point of Ωe(Q

∗
e, wx). So for any wx, there is

Ωe(Q
∗
e, wx) ≤ Ωe(Q

∗
e, c) < 0. Furthermore, for any wx, Ωb(Q

∗
b , wx) ≥ 0. Thus, for any wx ∈ [c, p],

there is Ωb(Q
∗
b , wx) ≥ Ωe(Q

∗
e, wx). Q.E.D.

Proof of Lemma 9. We prove the three items sequently. 1. Obviously, when rI = 0, there

is Q∗
I = Q∗

e, and ΠI(Q
∗
I , wx, 0) = Πe(Q

∗
e, wx). Furthermore, from Lemma 8(1), Πb(Q

∗
b , wx) <

Πe(Q
∗
e, wx). So, Πb(Q

∗
b , wx) ≤ ΠI(Q

∗
I , wx, 0). Obviously, when rI → +∞, ΠI(Q

∗
I , wx, rI) → 0.

From (A-6), we have dΠI(Q
∗
I , wx, rI)/drI ≤ 0. Thus, there must exist an interest rate rMx , such that:

Πb(Q
∗
b , wx) = ΠI(Q

∗
I , wx, r

M
x ), when rI ∈ [0, rMx ), Πb(Q

∗
b , wx) < ΠI(Q

∗
I , wx, rI); when rI ≥ rMx ,

Πb(Q
∗
b , wx) ≥ ΠI(Q

∗
I , wx, rI).

2. Follow the same proof procedure in Lemma 3(2), we can prove that, for a fixed rI , the

retailer’s profit ΩI(Q
∗
I , wx) is a unimodal function on wx. So, with the same proof procedure in

Lemma 8(2), there must exist an rI ≥ 0, such that there exists a unique wI
x such that, when wx ∈

[c, wI
x], we have Ωb(Q

∗
b , wx) ≤ ΩI(Q

∗
I , wx); when wx ∈ (wI

x, p], we have Ωb(Q
∗
b , wx) > ΩI(Q

∗
I , wx).

Now, we need to prove that, when rI ∈ [0, rMx ], there is wI
x > wE

x .

From (8), we know,
dΩI(Q

∗
I , wx, rI)

drI
=

cwxQ
∗
I F̄ (Q∗

I)

(1 + rI)c− v
U(Q∗

I), (A-7)

where

U(Q∗
I) = 1− (1−M(Q∗

I))
(p − v)F̄ (Q∗

I)− (c− v)

(wx − v)F̄ (Q∗
I)

. (A-8)

From the definition of U(Q∗
e) in (A-3), when rI = 0, Q∗

e = Q∗
I , and then U(Q∗

I) = U(Q∗
e).

From (A-1), dQ∗
e

dwe
> 0. So, from Lemma 10, we know 1 − M(Q∗

e) decreases in we. Obviously,

(p−v)F̄ (Q∗
e)−(c−v)

F̄ (Q∗
e)

= (p − v) − c−v
F̄ (Q∗

e)
decreases in we. Also, 1

we−v decreases in we. Thus, (1 −
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M(Q∗
e))

(p−v)F̄ (Q∗
e)−(c−v)

(wx−v)F̄ (Q∗
e)

decreases in we. So, U(Q∗
e) must increase in we. Following this same

procedure, we know U(Q∗
I) is also increasing in we. From (A-5),

dQ∗
I

drI
< 0. So, from Lemma 10,

we know M(Q∗
I) decreases in rI . So, 1 −M(Q∗

I) increases in rI . Also F̄ (Q∗
I) increases in rI . So,

(p−v)F̄ (Q∗
I
)−(c−v)

F̄ (Q∗
I
)

= (p−v)− c−v
F̄ (Q∗

I
)
increases in rI . Thus, for a fixed wx, (1−M(Q∗

I))
(p−v)F̄ (Q∗

I
)−(c−v)

(wx−v)F̄ (Q∗
I
)

increases in rI . Then, for a fixed wx, U(Q∗
I) decreases in rI . So, for a fixed wx, U(Q∗

e) ≥ U(Q∗
I).

We then show wI
x > wE

x in two cases: c̃0 < c ≤ č and v < c ≤ c̃0 as the following, where c̃0

satisfies Q0 = Q̃.

(i) c̃0 < c ≤ č. From the definition of c̃0, when c̃0 < c, there is (p− v)F̄ (Q̃)− (c− v) < 0. Since

Q∗
I ≥ Q̃, then (p−v)F̄ (Q∗

I)−(c−v) < 0. So, from (A-8), U(Q∗
I) > 0. So, from (A-7),

dΩI (Q
∗
I
,wx,rI)

drI
>

0, which means, for fixed wx and rI , ΩI(Q
∗
I , wx, rI) is always greater than Ωe(Q

∗
e, wx). Furthermore,

with the definitions of wE
x , there is Ωb(Q

∗
b , w

E
x ) = Ωe(Q

∗
ew

E
x ) < ΩI(Q

∗
I , w

E
x ). From the definitions of

wI
x, we have Ωb(Q

∗
b , w

I
x) = ΩI(Q

∗
I , w

I
x). Since ΩI(Q

∗
I , wx) is decreasing in wx when wx ≥ w∗

I , then

there must have wE
x < wI

x.

(ii) Case v < c ≤ c̃0. From the proof of Theorem 1, K(Q∗
e) = −V (Q∗

e)U(Q∗
e) − (Y (Q∗

e) −

Y (L(Q∗
e))). And, when wx = w∗

e , there is K(Q∗
e) = 0. Furthermore, we have Y (Q∗

e)−Y (L(Q∗
e)) > 0

and V (Q∗
e) > 0. So, when wx = w∗

e , there is U(Q∗
e) < 0. We already know, for a fixed wx,

U(Q∗
e) ≥ U(Q∗

I). Thus, when wx = w∗
e , there is U(Q∗

I) < 0. Now, consider the point we = p. Since

0 ≤ 1 − M(Q∗
I) ≤ 1/2 and

(p−v)F̄ (Q∗
I
)−(c−v)

(p−v)F̄ (Q∗
I
)

< 1, then (1 − M(Q∗
I))

(p−v)F̄ (Q∗
I
)−(c−v)

(p−v)F̄ (Q∗
I
)

≤ 1/2, and

then U(Q∗
I) > 1/2. We already know U(Q∗

I) is increasing in we. Thus, there must exist one point

ẁx ∈ (w∗
e , p), such that: when we ∈ (v, ẁx), U(Q∗

I) ≤ 0; when we ∈ (ẁx, p], U(Q∗
I) > 0. Then, from

(A-7), when we ∈ (v, ẁx),
dΩI (Q

∗
I
,wx,rI)

drI
< 0; when we ∈ (ẁx, p],

dΩI (Q
∗
I
,wx,rI)

drI
> 0. With the same

prove procedure, there must have wE
x < wI

x.

3. When c ≥ c̃0, Q∗
I ≥ Q̃ ≥ Q0. Thus, č > c̃0. So, when č < c ≤ p, ΩI(Q

∗
I , wx) is increasing

in rI . When rI equals the maximum value w/c− 1, Q∗
I = Q̃, and then ΩI(Q

∗
I , wx) = ΓI(Q

∗
I , wx)−

ΠI(Q
∗
I , wx) = pS(Q̃) − c ≤ 0. So, for any rI , ΩI(Q

∗
I , wx) ≤ Ωb(Q

∗
b , wx). Thus, for any wx ∈ [c, p],

we have Ωb(Q
∗
b , wx) > ΩI(Q

∗
I , wx). Q.E.D.

Proof of Lemma 7. From Lemma 1, obviously, Q∗
b decreases in c. Then, if c ≤ c̄b, we have

Q∗
b ≥ Q̃; otherwise, Q∗

b < Q̃. From Theorem 1, we have Q∗
e decreases in c ∈ (v, c̄e) and Q∗

e = Q̃ if

c ≥ c̄e. Thus, with the above results, we know, when c̄b ≤ c̄e and c ∈ (c̄b, p], we have Q∗
e > Q∗

b .

We next prove that Q∗
e > Q∗

b if c < c̄e. We use the contradiction approach. Suppose Q∗
e < Q∗

b

in c ∈ (v, c̄e). As we know Q∗
e = Q∗

b if c = v, and Q∗
e > Q∗

b if c = c̄e. Since both Q∗
e and Q∗

b decrease

in c, there exists a c < c̄e such that Q∗
b = Q∗

e. According to Lemma 1 and Lemma 2, given c > v,

we have Q∗
b 6= Q∗

e. It is contradictory. Then we obtain that Q∗
e > Q∗

b in c ∈ (v, c̄e).
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Similarly, we can prove that, when c̄b > c̄e, Q
∗
e ≤ Q∗

b if c < c̄b; and Q∗
e > Q∗

b when c ∈ (c̄b, p].

Q.E.D.

Proof of Theorem 9. Firstly, we have Γ(Q) = (p−v)S(Q)−(c−v)Q, and dΓ(Q)
dc = ((p−v)F̄ (Q)−

(c− v))dQdc −Q.

(1) In the case of J(Q̃) ≥ 1 + 2F̄ (Q̃), from Lemma 7, we have c̄b ≤ c̄e. We consider three

scenarios of c as follows.

(i) Case c ∈ (v, c̄b]. From Theorem 1, we know dQ∗
e/dc < 0. Since c < c̄e, we know, (p −

v)F̄ (Q∗
e)− (c− v) > 0. Then, we have Q∗

e < Q0 and dΓ∗
e(c)/dc = ((p− v)F̄ (Q∗

e)− (c− v))dQ∗
e/dc−

Q∗
e < 0. When c → v, Γ∗

e(c) = Γ∗
b(c). When c = c̄b, we know Q∗

b = Q̃, and then Γ∗
b(c) = Γ(Q̃).

Thus, when c = c̄b, Γ
∗
e(c) > Γ(Q̃) = Γ∗

b(c). Since Γ∗
e(c) and Γ∗

b(c) decrease in c when c ∈ (v, c̄b],

then Γ∗
e(c) > Γ∗

b(c).

(ii) Case c ∈ (c̄b, c̄e). From Lemma 7, we know Q∗
e > Q∗

b . We already know (p− v)F̄ (Q∗
e)− (c−

v) > 0. Then, we have Q0 > Q∗
e > Q∗

b , and then Γ∗
e(c) ≥ Γ∗

b(c).

(iii) Case c ∈ (c̄e, p]. From Theorem 1, Q∗
e = Q̃. We already know Q∗

b < Q̃. Thus Q∗
e > Q∗

b .

Also, we have dΓ∗
e(c)/dc = ((p− v)F̄ (Q∗

e)− (c− v))dQ∗
e/dc−Q∗

e = −Q∗
e < 0.

As we already know, when c = c̄e, we have Γ∗
e(c) > Γ∗

b(c). Obviously, when c = p, Q∗
b = 0 and

Q∗
e = Q̃, then we have Γ∗

b(c) = 0 and Γ∗
e(c) < 0. Consequently, there exists a unique point c = c̈e

solving Γ∗
e(c) = Γ∗

b(c). Thus, we have: if c ∈ (c̄e, c̈e], then Γ∗
e(c) ≥ Γ∗

b(c); if c ∈ (c̈e, p], Γ
∗
e(c) < Γ∗

b(c).

Combining the above results, we have: if c ∈ (v, c̈e], then Γ∗
e(c) ≥ Γ∗

b(c); if c ∈ (c̈e, p], Γ
∗
e(c) <

Γ∗
b(c).

(2) In the case of J(Q̃) < 1 + 2F̄ (Q̃), from Lemma 7, there is c̄b > c̄e. We also inspect three

scenarios of c as follows.

(i) Case c ∈ (v, c̄e]. As in (1)-(i), we know dQ∗
e/dc < 0 and (p − v)F̄ (Q∗

e)− (c− v) > 0. Then,

we have dΓ∗
e(c)/dc < 0. When c → v, Γ∗

e(c) = Γ∗
b(c). When c = c̄e, Γ

∗
e(c) < Γ∗

b(c). Since Γ∗
e(c) and

Γ∗
b(c) decrease in c when c ∈ (v, c̄e], then Γ∗

e(c) < Γ∗
b(c).

(ii) Case c ∈ (c̄e, c̄b]. From Lemma 7, we know Q∗
e(c) ≤ Q∗

b(c). Obviously, Q∗
b(c) < Q0(c). So,

Γ∗
e(c) ≤ Γ∗

b(c). At the point c = c̄b, we know Q∗
b(c) = Q̃ = Q∗

e(c), and then Γ∗
e(c) = Γ∗

b(c).

(iii) Case c ∈ (c̄b, p]. As the same as (1)-(iii), we have Q∗
e(c) > Q∗

b(c), dΓ
∗
e(c)/dc < 0. So, there

exists a unique c = c̈e solving Γ∗
e(c) = Γ∗

b(c) and we have: if c ∈ (c̄b, c̈e], then Γ∗
e(c) ≥ Γ∗

b(c); if

c ∈ (c̈e, p], then Γ∗
e(c) < Γ∗

b(c).

Combining the above results, we have: if c ∈ (v, c̄b), then Γ∗
e < Γ∗

b ; if c ∈ [c̄b, c̈e], then Γ∗
e ≥ Γ∗

b ;

if c ∈ (c̈e, p], Γ
∗
e < Γ∗

b .

At last, we prove ċe > c̈e by contradiction. Suppose ċe ≤ c̈e, we get Γ∗
e(ċe) ≥ Γ∗

b(ċe). Then, we
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have, Ω∗
e(ċe) + Π∗

e(ċe) ≥ Ω∗
b(ċe) + Π∗

b(ċe). Since Ω∗
e(ċe) = Ω∗

b(ċe), we have Π∗
e(ċe) ≥ Π∗

b(ċe).

Since ċe ≥ max{c̄e, c̄b}, Π
∗
e(ċe) = 0 and ċe < p, we have Π∗

b(ċe) > 0. Then, we have Π∗
e(ċe) <

Π∗
b(ċe). This contradicts the above result. Therefore, we have ċe > c̈e. Q.E.D.

Lemma 10 We denote M(Q∗
e) = H(Q∗

e)−1
H(Q∗

e)−H(Le(Q∗
e))

, where Q∗
e satisfies (we − v)F̄ (Q∗

e) = (c −

v)F̄ (Le(Q
∗
e)). The properties of M(Q∗

e) are as follows,
1. M(Q∗

e) increases with we in (c, p];
2. 1/2 ≤ M(Q∗

e) ≤ 1, and M(Q∗
e) = 1/2 when we = c.

Proof of Lemma 10. We prove the two items sequentially. (1) From the Proof of Lemma 2, in

the region of c < we ≤ p, we have Le(Q
∗
e) < Q̃ < Q∗

e. With the h(Q) increasing property stated in

the Model section, we can prove that H(Q) is also increasing in Q and, thus, H(Le(Q
∗
e)) ≤ H(Q̃) ≤

H(Q∗
e). From the definition of Q̃, we have H(Q̃) = 1. Then, H(Le(Q

∗
e)) ≤ 1 ≤ H(Q∗

e). Thus, for

all c < we ≤ p, from the definition of M(Q∗
e) in Lemma 10, we have M(Q∗

e) ≤ 1. Then,

∂M(Q∗
e)

∂Qe
=

H ′(Q∗
e)(1−H(Le(Q

∗
e))) +H ′(Le(Q

∗
e))(H(Q∗

e)− 1) c−v
we−v

(H(Q∗
e)−H(Le(Q∗

e)))
2

> 0. (A-9)

Because Q∗
e(we) is a function of we, we can rewrite Le(Q

∗
e) =

c−v
we−vQ

∗
e(we). So,

∂Le(Q∗
e)

∂we
= −Le(Q∗

e)
we−v

and
dLe(Q

∗
e)

dwe
= (c− v)

(we − v)dQ∗
e/dwe −Q∗

e

(we − v)2
= −

(c− v)Q∗
eM(Q∗

e)

(we − v)2
. (A-10)

Then,
dM(Q∗

e)

dwe
=

∂M(Q∗
e)

∂Qe
·
dQ∗

e

dwe
+

∂M(Q∗
e)

∂we

=
H ′(Q∗

e)(1 −H(Le(Q
∗
e))) +H ′(Le(Q

∗
e))(H(Q∗

e)− 1) c−v
we−v

(H(Q∗
e)−H(Le(Q∗

e)))
2

·
Q∗

e(1−M(Q∗
e))

we − v

−
H ′(Le(Q

∗
e))(H(Q∗

e)− 1)Le(Q∗
e)

we−v

(H(Q∗
e)−H(Le(Q∗

e)))
2

=
Q∗

e(1−H(Le(Q
∗
e)))

2Θ(we)

(we − v)(H(Q∗
e)−H(Le(Q∗

e)))
3
, (A-11)

where Θ(we) = H ′(Q∗
e)−H ′(Le(Q

∗
e))Υ(we), and Υ(we) =

Le(Q∗
e)

Q∗
e

· (H(Q∗
e)−1)2

(1−H(Le(Q∗
e)))

2 .

Taking derivative of Υ(we) with respect to we, we have,
dΥ(we)

dwe
=

1

Q∗
e(1−H(Le(Q∗

e)))
2

[

dLe(Q
∗
e)

dwe
(H(Q∗

e)− 1)2 + 2Le(Q
∗
e)(H(Q∗

e)− 1)H ′(Q∗
e)
dQ∗

e

dwe

]

−
Le(Q

∗
e)(H(Q∗

e)− 1)2

(Q∗
e)

2(1−H(Le(Q∗
e)))

4

[

dQ∗
e

dwe
(1−H(Le(Q

∗
e)))

2 − 2Q∗
e(1−H(Le(Q

∗
e)))H

′(Le(Q
∗
e))

dLe(Q
∗
e)

dwe

]

=
Le(Q

∗
e)(H(Q∗

e)− 1) [−(H(Q∗
e)− 1) + 2Q∗

e(1−M(Q∗
e))Θ(we)]

(we − v)Q∗
e(1−H(Le(Q∗

e)))
2

. (A-12)

Because Q∗
e satisfies (we − v)F̄ (Q∗

e) = (c− v)F̄ (Le(Q
∗
e)), then given Le(Q

∗
e) =

c−v
we−vQ

∗
e(we) and

V (Q) = QF̄ (Q), we have V (Q∗
e) = V (Le(Q

∗
e)). Obviously, when we = c, we have Q∗

e = Le(Q
∗
e) = Q̃,

and then we have Υ(we) = 1 and Θ(we) = 0.
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To prove dM(Q∗
e)

dwe
> 0 in (c, p], according to (A-11) and H(Q∗

e) > H(Le(Q
∗
e)), we need to show

Θ(we) > 0, which is related to Υ(we). Because the region (c, p] can be separated into intervals that

have a value of either dΥ(we)
dwe

≥ 0 or dΥ(we)
dwe

< 0, we consider the following two scenarios of dΥ(we)
dwe

in any interval (ẃ1
e , ẃ

2
e ], which is a subdomain inside (c, p] having a value of either dΥ(we)

dwe
≥ 0 or

dΥ(we)
dwe

< 0 but not both.

Scenario 1: SupposedΥ(we)
dwe

≥ 0 in (ẃ1
e , ẃ

2
e ]. From the above assumption and (A-12), we obtain

dΥ(we)

dwe
=

Le(Q
∗
e)(H(Q∗

e)− 1) [−(H(Q∗
e)− 1) + 2Q∗

e(1−M(Q∗
e))Θ(we)]

(we − v)Q∗
e(1−H(Le(Q∗

e)))
2

≥ 0.

Because H(Q∗
e) > 1, there must be −(H(Q∗

e)−1)+2Q∗
e(1−M(Q∗

e))Θ(we) ≥ 0. So, from H(Q∗
e) > 1

and M(Q∗
e) < 1, we have Θ(we) ≥

H(Q∗
e)−1

2Q∗
e(1−M(Q∗

e))
> 0.

Scenario 2: Suppose dΥ(we)
dwe

< 0 in (ẃ1
e , ẃ

2
e ]. Given that h(Q) is increasing and convex in

Q, we know h′(Q) > 0 and h′′(Q) > 0. Then H ′(Q) = h(Q) + Qh′(Q) > 0 and H ′′(Q) =

2h′(Q) + Qh′′(Q) > 0 (i.e., both H(Q) and H ′(Q) are increasing in Q). So, based on that Q∗
e is

increasing in we (from (A-1)) and Le(Q
∗
e) is decreasing in we (from (A-10)), we know H ′(Q∗

e) is

increasing and H ′(Le(Q
∗
e)) is decreasing in we. Thus, with the condition dΥ(we)

dwe
< 0 in this scenario,

the function Θ(we) = H ′(Q∗
e)−H ′(Le(Q

∗
e))Υ(we) must increase with we. Therefore, we prove that

Θ(we) ≥ 0 in the scenario of dΥ(we)
dwe

< 0 in (ẃ1
e , ẃ

2
e ].

Given that the interval (ẃ1
e , ẃ

2
e ] is any subdomain inside the feasible domain of (c, p], we therefore

prove that for all we in (c, p], there is Θ(we) > 0. Then, from (A-11), with the results of Θ(we) > 0

and H(Q∗
e) > H(Le(Q

∗
e)), we have dM(Q∗

e)
dwe

> 0 (i.e., M(Q∗
e) increases with we).

(2) Denote M̄ = limwe→cM(Q∗
e). Since limwe→cQ

∗
e = Q̃ and limwe→c Le(Q

∗
e) = Q̃, the fol-

lowing relations hold: limwe→c
dQ∗

e

dwe
= Q̃

c−v (1 − M̄), limwe→c
dLe(Q∗

e)
dwe

= − Q̃M̄
c−v , limwe→cH

′(Q∗
e) =

limwe→cH
′(Le(Q

∗
e)) = H ′(Q̃). Then, with L Hospital rule, we have

M̄ = lim
we→c

H ′(Q∗
e)dQ

∗
e/dwe

H ′(Q∗
e)dQ

∗
e/dwe −H ′(Le(Q∗

e))dLe(Q∗
e)/dwe

=

Q̃
c−v (1− M̄)

Q̃
c−v (1− M̄) + Q̃

c−vM̄
= 1− M̄.

Thus, M̄ = 1/2, i.e., M(Q∗
e) = 1/2, when we = c. Q.E.D.
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