8-1-1975

Relativistic Scattered-Wave Theory

Cary Y. Yang
Santa Clara University, cyang@scu.edu

Sohrab Rabii

Follow this and additional works at: https://scholarcommons.scu.edu/elec

Part of the Electrical and Computer Engineering Commons

Recommended Citation

Copyright © 1975 American Physical Society. Reprinted with permission.

This Article is brought to you for free and open access by the School of Engineering at Scholar Commons. It has been accepted for inclusion in Electrical and Computer Engineering by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.
Relativistic scattered-wave theory

Cary Y. Yang and Sohrab Rabii
Moore School of Electrical Engineering and Laboratory for Research on the Structure of Matter,
University of Pennsylvania, Philadelphia, Pennsylvania 19174
(Received 31 March 1975)

A scattered-wave formalism based on the one-electron Dirac equation for a muffin-tin potential is presented. It is shown that the resulting relativistic secular equations reduce to their nonrelativistic counterparts in the infinite-rest-energy limit.

I. INTRODUCTION

The application of the multiple scattering or scattered-wave technique to determine the electronic structure of polyatomic molecules was originally proposed by Slater and subsequently developed by Johnson. This approach has been coupled with the Xα statistical approximation for the exchange correlation. The resulting self-consistent-field-Xα-scattered-wave (SCF-Xα-SW) method has been applied with considerable success to various organic and inorganic molecules. The formalism has also been adapted to the problem of localized states in solids. The SCF-Xα-SW method has proved unique in that it combines accuracy with practicality in terms of the necessary computational effort.

The first application of the method to a case where relativistic effects are important was reported by Pratt, in the calculation of the electronic states associated with vacancies in PbTe. The formalism was modified to include mass-velocity and Darwin corrections to the energy, neglecting the spin-orbit interaction in order to eliminate the need for the introduction of spin-angular functions in the description of the wave functions. Thus the modification does not lead to the splitting of the one-electron energy levels, which is significant in systems consisting of heavy atoms.

In this paper, we present a formulation of the scattered-wave method based on the solution of the one-electron Dirac equation for a muffin-tin potential. The resulting method furnishes us with a fully relativistic description of the wave functions and spin-orbit-split electronic energies, without the need of perturbation calculations. Section II outlines the development of the relativistic secular equations. The approach is parallel to Johnson’s nonrelativistic method, and similar to the relativistic Green’s-function methods for energy-band and electron diffraction calculations. In Sec. III, we demonstrate that the present formalism reduces to the nonrelativistic limit when the electronic energies are negligible compared to the rest energy. The expansions of the relativistic Green's function in the angular momentum representation are derived in Appendix A. Appendix B presents a proof of one of the symmetry properties of the “relativistic Gaunt integrals,” which is used in our formulation.

II. RELATIVISTIC SCATTERED-WAVE FORMALISM

We start with the one-electron Dirac equation

\[H \psi(\vec{r}) = (c \vec{\alpha} \cdot \vec{p} + \beta m c^2 + V(\vec{r}) I_N) \psi(\vec{r}) = \epsilon \psi(\vec{r}), \]

(2.1)

where the wave function \(\psi(\vec{r}) \) is a four-component column vector and \(\vec{p} \) is the momentum operator. \(I_N \) is the \(N \times N \) unit matrix, and \(\vec{\alpha} \) and \(\beta \) are given by

\[\vec{\alpha} = \begin{pmatrix} 0 & \sigma \\ \sigma & 0 \end{pmatrix}, \quad \beta = \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix}, \]

(2.2)

where \(\sigma \) are the Pauli spin matrices. Equation (2.1) can be transformed into the integral equation

\[\int_{v} G(\vec{r}, \vec{r}') V(\vec{r}') \psi(\vec{r}') d\tau' - i c \int_{v} G(\vec{r}, \vec{r}') \vec{\hat{n}}(\vec{r}') \cdot \vec{\hat{n}}(\vec{r}) \psi(\vec{r}) dS' = \psi(\vec{r}) \quad \text{for } \vec{r} \text{ inside } v, \]

\[= 0 \quad \text{for } \vec{r} \text{ outside } v, \]

(2.3)

where \(\hat{n} \) is the unit outward normal on the surface enclosing the volume \(v \), and \(G(\vec{r}, \vec{r}') \) is the Dirac free-electron Green's function satisfying the equation.

\[\int_{v} G(\vec{r}, \vec{r}') V(\vec{r}') G(\vec{r}', \vec{r}) d\tau' = \delta(\vec{r} - \vec{r}') \quad \text{for } \vec{r} \text{ inside } v, \]

\[= 0 \quad \text{for } \vec{r} \text{ outside } v, \]

(2.4)

where \(\delta(\vec{r} - \vec{r}') \) is the Dirac delta function, and \(V(\vec{r}') \) is the external potential acting on the scattered wave function. The integral over the volume \(v \) is performed, and \(G(\vec{r}, \vec{r}') \) is expanded in terms of the spherical component.

III. SECULAR EQUATIONS

The secular equation can be written in the form

\[(H - \epsilon I_N) \psi(\vec{r}) = 0, \]

(3.1)

where \(H \) is the Hamiltonian matrix and \(\psi(\vec{r}) \) is the wave function matrix.

The secular equation can be solved by diagonalizing the Hamiltonian matrix. The eigenvalues \(\epsilon \) and eigenvectors \(\psi(\vec{r}) \) are obtained, which represent the energy levels and wave functions of the system.

The cycle of calculations can be repeated for different values of the matrix elements, corresponding to different values of the external potential \(V(\vec{r}) \). The results obtained in this way can be used to study the electronic structure of the system under consideration.

The multiple scattering or scattered-wave method provides a powerful tool for the study of the electronic structure of complex systems. It is particularly useful for the investigation of the properties of polyatomic molecules, where the relativistic effects are important.
(c\vec{\alpha} \cdot \vec{p} + \beta m_0 c^2 - p_0 \lambda_4)\mathcal{G}(\vec{r}, \vec{r}') = -\delta(\vec{r} - \vec{r}')\lambda_4. \quad (2.4)

The Green's function \(\mathcal{G}(\vec{r}, \vec{r}') \) appears in the form of a 4 \times 4 matrix; thus unlike the nonrelativistic case, the quantities in the surface integral in (2.3) do not commute. The free-electron energy \(p_0 \) satisfies the classical relativistic energy-momentum relation

\[
p_0^2 = k^2 c^2 + m_0^2 c^4, \tag{2.5}
\]

where \(k \) stands for the magnitude of the free-electron momentum. The eigenfunctions of \(\vec{p} \) are the Dirac plane waves

\[
\Phi_{\alpha}(\vec{r}) = \left(\frac{p_0 + m_0 c^2}{2p_0} \right)^{1/2} \left(\frac{e^2 \beta}{p_0 + m_0 c^2} \right)^{1/2} \chi(s) e^{i \vec{F} \cdot \vec{r}},
\]

where \(\chi(s) \) are the two-component spin functions with \(s = \pm \frac{1}{2} \). Since, for a free particle, the energy and momentum operators commute, \(\Phi_{\alpha}(\vec{r}) \) is also an eigenfunction of the free-electron Dirac Hamiltonian with eigenvalue \(p_0 \). Solving the integral equation (2.3) requires a knowledge of the Green's function and the wave function outside some suitable volume \(v \). \(\mathcal{G}(\vec{r}, \vec{r}') \) in principle can be evaluated via an eigenfunction expansion in terms of \(\Phi_{\alpha}(\vec{r}) \). However, it can be verified by direct substitution into (2.4) that \(\mathcal{G}(\vec{r}, \vec{r}') \) of energy \(p_0 \) and corresponding \(k \) is obtainable by applying the Hermitian operator \(c\vec{\alpha} \cdot \vec{p} + \beta m_0 c^2 + p_0 \lambda_4 \) to the nonrelativistic Green's function \(G_0(\vec{r}, \vec{r}') \) of the same \(k \), where \(k^2 = 2m_0 E \). Since a Green's function is associated with a specific energy, it seems odd that \(\mathcal{G}(\vec{r}, \vec{r}') \) derives from \(G_0(\vec{r}, \vec{r}') \) of a different energy. This apparent discrepancy can be resolved by recognizing that as energies become small, (2.5) reduces to its nonrelativistic counterpart, that is,

\[
k^2 c^2 = E(E + 2m_0 c^2)_{k/m_0 c^2 \ll 1} \rightarrow 2m_0 c^2 E,
\]

where \(E = p_0 - m_0 c^2 \) is the relativistic free-electron kinetic energy. Besides its simplicity, the aforementioned relation between \(\mathcal{G}(\vec{r}, \vec{r}') \) and \(G_0(\vec{r}, \vec{r}') \) has the additional advantage, over the eigenfunction expansion, of preserving the boundary conditions of the Green's functions. Since \(G_0(\vec{r}, \vec{r}') \) is known from the nonrelativistic scattered-wave formalism, and since the same set of boundary conditions prevails in our formulation, the task of finding \(\mathcal{G}(\vec{r}, \vec{r}') \) is vastly simplified. In Appendix A, \(\mathcal{G}(\vec{r}, \vec{r}') \) is evaluated and expanded in the spin-orbit-coupled angular momentum representation. We are then left with the problem of choosing the suitable volume and creating a model potential which simplifies the calculation of the wave function outside this volume.

Our formulation of the scattered-wave cluster problem will be based on the muffin-tin potential approximation, although in principle it can be generalized to include non-muffin-tin corrections. In the muffin-tin model, the potential is spherically symmetric inside nonoverlapping atomic spheres and outside an outer sphere enclosing the entire system, and is constant elsewhere. The wave function within each atomic sphere and outside the outer sphere are given in the angular momentum or partial wave representation by

\[
\psi^\alpha(\vec{r}_a) = \sum_q A^\alpha_q \left(\langle \vec{r}_a | q \rangle \langle q | \psi^\alpha(\vec{r}_a) \rangle \right) \text{ for } \alpha = 0, 1, \ldots N,
\]

where \(\vec{r}_a = \vec{r} - \vec{R}_a \), and \(\vec{R}_a \) is the position of the center of the \(a \)th sphere. \(N \) is the total number of atoms and \(a = 0 \) denotes the outer sphere with \(\vec{R}_0 \) being the origin. The radial functions \(g^\alpha_q(\vec{r}_a) \) and \(f^\alpha_q(\vec{r}_a) \) satisfy the pair of coupled differential equations

\[
\begin{align*}
\frac{d}{dr} (c f^\alpha_q) &= \left(\frac{k-1}{r} \right) c f^\alpha_q - \left(E - V \right) g^\alpha_q, \\
\frac{d}{dr} (E - V c^2 + 1) g^\alpha_q &= \left(\frac{k+1}{r} \right) c f^\alpha_q,
\end{align*}
\]

where atomic units (\(\hbar = 1, m_0 = \frac{1}{2}, c^2 = 2 \)) are used and will be assumed hereafter. The spin-angular functions \(\chi_q(\vec{r}_a) \), where \(Q = (\kappa, \mu) \) and \(\bar{Q} = (\kappa, -\mu) \), are eigenfunctions of the operators \(L_z \), \(S_z \), \(J_z \), and \(\vec{S} \cdot \vec{L} + 1 \) (about the center \(\vec{R}_a \)) with eigenvalues \(l(l+1), s(s+1), j(j+1), \mu, \) and \(-\kappa\) respectively. They are given by

\[
\chi_q(\vec{r}_a) = \sum_{s=\pm \frac{1}{2}} \sum_{l=\kappa} C(l, s; \mu - s, s) Y_{s} \chi(s),
\]

where \(C(l, s; \mu - s, s) \) is a Clebsch-Gordan (or C) coefficient and \(Y_{l, \mu - s}(\vec{r}_a) \) is a spherical harmonic about the center \(\vec{R}_a \). The parameter \(\kappa \) takes on integer values except zero, and is related to \(l \) and \(j \) by

\[
\begin{align*}
l = \kappa \text{ for } \kappa > 0, \\
&-\kappa - 1 \text{ for } \kappa < 0, \\
j = |\kappa| - \frac{1}{2} \text{.}
\end{align*}
\]

If the interstitial region (IR) (where \(V = V' = \text{constant} \)) is taken to be the volume \(v \) in the integral equation (2.3), and energies are measured with respect to \(V \), then (2.3) is reduced to
\[
\psi(\vec{r}) = -ic \int \mathcal{G}(\vec{r}, \vec{r}') \mathcal{R} \cdot \hat{n} \psi(\vec{r}') dS' \quad \text{for } \vec{r} \in \mathbb{R},
\] (2.12)

where, by convention, \(\vec{r} \in \mathbb{R} \) means \(\vec{r} \) can lie within \(\mathbb{R} \) as well as on its surface. This surface consists of the \(\mathbb{R} \) outer sphere boundary \(S_0 \) and \(\mathbb{R} \) the atomic sphere boundary \(S_2 \). Since the scattered-wave theory requires continuity of the wave function everywhere, the interstitial wave functions on the surfaces \(S_0 \) and \(S_2 \) can be obtained by matching with the outer and atomic sphere wave functions. In particular, we have

\[
\begin{align*}
\psi(\vec{r})|_{r_0 = r_0^-} &= \psi_0(\vec{r}_0) |_{r_0^-} \quad \psi(\vec{r})|_{r_0 = r_0^+} &= \psi_0(\vec{r}_0) |_{r_0^+}, \\
\psi(\vec{r})|_{s_0} &= \psi_0(\vec{r}_0)|_{s_0} \quad \psi(\vec{r})|_{s_0} &= \psi_0(\vec{r}_0)|_{s_0}.
\end{align*}
\] (2.13)

where \(b_\alpha \) is the radius of sphere \(\alpha \) and the subscript \(+ \) denotes the outer and inner surfaces of the sphere, respectively. The secular equations can now be set up by substituting the boundary conditions (2.13) into (2.12). For the case \(\vec{r} \in S_1 \), using (2.13) and (2.12), we have

\[
\psi(\vec{r})|_{r_0 = r_0^-} = S_{0-0} + \sum_{\alpha \in S_0} S_{0-\alpha},
\] (2.14)

where, for example, \(S_{0-0} \) stands for the integral in (2.12) over the surface of the outer sphere with \(r_0 = r_0^- \) and \(r_0' = r_0^+ \). In effect, (2.14) means that the sum of the partial waves scattered off all muf-fin-tin spheres (including the outer sphere) via the propagator \(\mathcal{G}(\vec{r}, \vec{r}') \) are matched with the wave function at the inner surface of the sphere. For the other case, \(\vec{r} \in S_2 \), where waves scattered off all spheres are matched at the outer surface of the \(\alpha \)th sphere (\(\alpha \neq 0 \)), (2.13) and (2.12) lead to

\[
\psi(\vec{r})|_{r_0 = r_0^+} = S_{\alpha 0} + S_{\alpha \alpha} + \sum_{\alpha' \neq 0, \alpha} S_{\alpha \alpha'},
\] (2.15)

It should be kept in mind that the unit normal \(\hat{n} \) in (2.12) points outwards from \(\mathbb{R} \), thus on \(S_0 \), \(\hat{n} = \vec{r}_0 \), while on \(S_2 \), \(\hat{n} = -\vec{r}_0 \). Although (2.14) and (2.15) each consists of two sets of algebraic equations (from the upper and lower components of the wave function), they turn out to be identical. Thus, as in the nonrelativistic case, the secular equations consist of only two sets of algebraic equations. The procedure for the explicit generation of these equations is outlined below. The surface integrals are evaluated using the expansions for the Green’s functions given in Appendix A and those for the wave functions given by (2.8). Then we multiply (2.14) and (2.15) by the appropriate spin-angular functions and integrate over the sphere surface to eliminate the angular depen-

dence. The results can be simplified using the property of the spherical Bessel and Neumann functions,

\[
n_i(x) j_{i+1}(x) - n_{i+1}(x) j_i(x) = 1/x^2.
\] (2.16)

Canceling the nonzero common factor \((E/c^2 + 1)\) (since \(E > -c^2\)) and utilizing the symmetry property of the relativistic Caunt integrals proven in Appendix B, we finally arrive at the secular equations

\[
\begin{align*}
[T^\alpha_\beta]^0C^-\alpha_\beta &= \sum_{\alpha' \neq \alpha} \mathcal{G}^{\alpha'\alpha_\beta}(\vec{R}_\alpha)C^-\alpha_\beta', \\
&+ \sum_{\alpha' \neq \alpha} \mathcal{G}^{\alpha'\alpha_\beta}(\vec{R}_\alpha)C^-\alpha_\beta' = 0,
\end{align*}
\] (2.17)

where

\[
C^-\alpha_\beta = b_\alpha^2 k^{-1} [S_e E \mathcal{T}(kb_\alpha) g^\delta_\alpha - kc n_\mathcal{F}(kb_\alpha) f^\delta_\alpha]
\] for \(E > 0, \quad k = \imath y,
\]

\[
C^-\alpha_\beta = b_\alpha^2 k^{-1} [S_e \mathcal{J}(kb_\alpha) g^\delta_\alpha - kc n_\mathcal{F}(kb_\alpha) f^\delta_\alpha]
\] for \(E > 0, \quad k = \imath x,
\]

\[
T^\delta_\beta = S_e E \mathcal{J}(kb_\alpha) g^\delta_\alpha - kc n_\mathcal{F}(kb_\alpha) f^\delta_\alpha
\] for \(E > 0, \quad \delta = \imath y,
\]

\[
T^\delta_\beta = S_e E \mathcal{J}(kb_\alpha) g^\delta_\alpha - kc n_\mathcal{F}(kb_\alpha) f^\delta_\alpha
\] for \(E > 0, \quad \delta = \imath x,
\]

\[
\Gamma^\delta_\beta = \lambda^\delta \Gamma^\gamma_\beta - \frac{E |\mathcal{J}(kb_\alpha) g^\delta_\alpha - kc n_\mathcal{F}(kb_\alpha) f^\delta_\alpha|}{|\mathcal{J}(kb_\alpha) g^\delta_\alpha - kc n_\mathcal{F}(kb_\alpha) f^\delta_\alpha|} \Gamma^\delta_\beta
\] for \(E < 0, \quad \delta = \imath y,
\]

\[
\Gamma^\delta_\beta = \lambda^\delta \Gamma^\gamma_\beta - \frac{E |\mathcal{J}(kb_\alpha) g^\delta_\alpha - kc n_\mathcal{F}(kb_\alpha) f^\delta_\alpha|}{|\mathcal{J}(kb_\alpha) g^\delta_\alpha - kc n_\mathcal{F}(kb_\alpha) f^\delta_\alpha|} \Gamma^\delta_\beta
\] for \(E < 0, \quad \delta = \imath x,
\]

and

\[
\mathcal{R}_{\alpha\alpha'} = \mathcal{R}_{\alpha'} - \mathcal{R}_{\alpha}, \quad g^\delta_\alpha = g^\delta_\alpha(b_\alpha), \quad \text{etc.}
\] (2.18)

The structure factors \(\mathcal{G}^{\alpha'\alpha_\beta}(\vec{R}_\alpha) \), \(\mathcal{G}^{\alpha'\alpha_\beta}(\vec{R}_\alpha) \), and \(\mathcal{G}^{\alpha'\alpha_\beta}(\vec{R}_\alpha) \), where \(0, \alpha, \alpha'\) denote the centers of the outer, the \(\alpha \), and the \(\alpha' \)th spheres, respectively, are potential independent, and are discussed at length in Appendix A. The only other type of quantities in the secular equations consists of the "\(t \) matrices" \(T^\delta_\beta \), which, unlike the structure factors, depend on the potential through
the radial functions. As in ordinary scattering theory, \(T^\alpha_\beta \) is essentially the tangent of the phase shift of the \(\alpha \)th partial wave scattered by the \(\beta \)th sphere. In these equations, the energy parameter \(E = p^2/2c^2 \) is measured with respect to the constant potential \(\bar{V} \). For a given \(E \), the corresponding \(h \) can be deduced from (2.5) to yield

\[
k = \sqrt{(E + E^*/c^2)}/2 \quad \text{for} \quad E > 0,\]

\[
i = i\sqrt{|E| - E^*/c^2} \quad \text{for} \quad -c^2 < E < 0.
\]

(2.19)

From (A21), it is apparent that the secular matrix

\[
\begin{pmatrix}
\delta_\alpha \alpha' & \delta_\beta \gamma' \\
\gamma_\alpha \gamma' \left(T^\alpha_\beta \right)^{-1} - \gamma_\alpha \gamma' \left(\bar{R}_\alpha \right) & \gamma_\alpha \gamma' \left(\bar{R}_\gamma \right)
\end{pmatrix}
\]

(2.20)

is Hermitian in the double set of subscripts \(\alpha, \beta \) and \(\gamma, \gamma' \). If \(M^{\beta \gamma'} \) is a general element, then

\[
M^{\beta \gamma'} = \left(M^{\gamma \gamma'} \right)^*.
\]

(2.21)

Hence the determinant of this matrix must be real. This is expected since the one-electron energies of the atomic cluster correspond to the zeros of this determinant.

As in the nonrelativistic case, the secular matrix (2.20) is contracted to the form

\[
\delta_\alpha \alpha' \left(T^\alpha_\beta \right)^{-1} - \gamma_\alpha \gamma' \left(\bar{R}_\alpha \right) \gamma_\alpha \gamma' \left(\bar{R}_\gamma \right),
\]

(2.22)

where \(\alpha, \alpha' \neq 0 \). The information concerning the outer sphere is lumped together in the "pseudo-structure-factor"

\[
Z^{\alpha \gamma'}_{\beta \gamma'} = \sum \gamma_\alpha \gamma' \left(\bar{R}_\alpha \right) \gamma_\alpha \gamma' \left(\bar{R}_\gamma \right),
\]

(2.23)

which can be interpreted to describe the propagation of partial waves that travel between spheres \(\alpha \) and \(\alpha' \) via an intermediate scattering off the outer sphere. Thus in the absence of an outer sphere in the model potential, \(Z^{\alpha \beta}_{\gamma \gamma'} \) must vanish since there is no outer surface for the partial waves to "bounce back" from. The secular matrix will then be reduced to

\[
\delta_\alpha \alpha' \left(T^\alpha_\beta \right)^{-1} - \gamma_\alpha \gamma' \left(\bar{R}_\alpha \right).
\]

(2.24)

In the free-atom limit \(\left(R_\alpha \rightarrow \infty \right) \), \(\gamma_\alpha \gamma' \left(\bar{R}_\alpha \right) \) in (2.24) vanishes, and we are left with the \(t \) matrices, the zeros of which determine the relativistic one-electron energies for isolated atoms.

III. THE NONRELATIVISTIC LIMIT

Our treatment of the relativistic scattered-wave method based on the Dirac equation has been entirely analogous to that based on the Schrödinger equation. However, the relativistic formulation requires only the continuity of the wave function, whereas in the nonrelativistic case, the first derivative of the wave function has to be continuous as well. Nevertheless, because of the two-component nature of the relativistic wave function in the partial wave representation, the number of quantities to be matched remains equal to two.

The four-component Dirac equation can be reduced to a two-component equation via the Foldy-Wouthuysen transformation, which in turn reduces to the Schrödinger equation when \(c \) is taken to be infinite. Thus it is natural to conclude that the secular matrix (2.20) must also reduce to its nonrelativistic counterpart in the corresponding limit. Since the two secular matrices have identical forms, we can compare the structure factors and \(t \) matrices separately. The relations between the relativistic and nonrelativistic structure factors are given by (A15), the first of which can be rewritten as

\[
\gamma_\alpha \gamma' \left(\bar{R}_\alpha \right) = \sum_{\mu = \pi, \pi'} C \left(\frac{l + 1}{2} j; m, \mu = m' + i \frac{1}{2} \right) \gamma_\alpha \gamma' \left(\bar{R}_\alpha \right)
\]

(3.1)

In the nonrelativistic limit, the total angular momentum is simply the orbital angular momentum, that is, \(j = l \) and \(Q = (l, m) = L \). Thus in this limit,

\[
\gamma_\alpha \gamma' \left(\bar{R}_\alpha \right) \rightarrow \gamma_\alpha \gamma' \left(\bar{R}_\alpha \right).
\]

(3.2)

The potential-dependent \(t \) matrices \(T^\alpha_\beta \) given by (2.18) also reduces to its nonrelativistic counterpart

\[
t^\alpha_\beta = \frac{1}{\gamma_\alpha \gamma' \left(\bar{R}_\alpha \right)} \gamma_\alpha \gamma' \left(\bar{R}_\alpha \right) R^\alpha_\beta \left(\theta, \phi \right) - \gamma_\alpha \gamma' \left(\bar{R}_\alpha \right) R^\alpha_\beta \left(\theta, \phi \right) \Gamma^\beta_\gamma \left(k \right),
\]

(3.3)

where \(w_\ell \), \(u_\ell \) stand for appropriate spherical functions \(\ell, n, \ell_1 \), or \(k^{\ell 1} \). \(R^\alpha_\beta \) is the Schrödinger radial function within sphere \(\alpha \), and the "prime" denotes the first derivative with respect to the entire argument. To show this, we make use of the second of the Dirac radial equations (2.3), and the recurrence relations

\[
w'_\ell \left(x \right) = a_\ell w_\ell \left(x \right) - \left(\ell + 1 \right)/x w_\ell \left(x \right),
\]

where

\[
a_\ell = S_\ell \quad \text{for} \quad w_\ell = \frac{\hat{t} \ell}{\gamma_\alpha \gamma' \left(\bar{R}_\alpha \right)} = \frac{1}{\gamma_\alpha \gamma' \left(\bar{R}_\alpha \right)} \frac{\hat{t} \ell}{\gamma_\alpha \gamma' \left(\bar{R}_\alpha \right)} \Gamma^\beta_\gamma \left(k \right),
\]

(3.4)

For example, the nonrelativistic limit of the numerator of a \(t \) matrix is given by
where (2.7) is used. Recognizing that the larger component \(g^\alpha_k \) simply becomes the nonrelativistic radial function \(R^k \) in the nonrelativistic limit, one can easily verify that

\[
\mathcal{T}^k \left. \right|_{E \to \infty} = t^k
\]

for both the outer and atomic spheres and for positive and negative \(E \).

Acknowledgments

The authors would like to extend special thanks to Professor P. Soven for his continuous interest and helpful advice. Thanks are also due to Dr. J. W. Connolly, Dr. D. E. Ellis, Dr. K. H. Johnson, Dr. F. Herman, Dr. G. W. Pratt, Jr., and S. W. Liu for their helpful comments.

Appendix A: Green's Functions and Their Expansions

The Schrödinger free-particle Green's function is given by

\[
G_0(\tilde{T}, \tilde{T}') = \frac{-\cos(k_0 \tilde{r} - \tilde{r}'_0)}{4\pi |\tilde{r} - \tilde{r}'|} \text{ for } k_0^2 > 0 ,
\]

\[
= -e^{-\gamma(\tilde{r} - \tilde{r}')} \frac{4\pi}{|\tilde{r} - \tilde{r}'|} \text{ for } k_0^2 < 0 , \quad k = i\gamma . \quad (A1)
\]

The single-center (\(\tilde{T} \) and \(\tilde{T}' \) originate from the same point) expansion of \(G_0(\tilde{T}, \tilde{T}') \) in orbital angular momentum space \(L = (l, m) \) can be written as

\[
G_0(\tilde{T}, \tilde{T}') = \sum_L H_L(k\tilde{T}_r)J_L(k\tilde{T}_c) , \quad (A2)
\]

where \(H_L(k\tilde{T}_r) \) and \(J_L(k\tilde{T}_c) \) are each products of the spherical harmonics with suitable spherical functions (depending on the sign of \(k^2 \)), and \(r_s \) and \(r_c \) denote, respectively, the larger and smaller of \(r \) and \(r' \). In particular, we have

\[
H_L(k\tilde{T}_r) = k^{l+1}Y_L(\tilde{T}_r)l_1(\tilde{r}_r) \text{ for } k^2 > 0 ,
\]

\[
= (-\gamma)^{l+1}Y_L(\tilde{T}_r)k_{l+1}(\tilde{r}_c) \text{ for } k^2 < 0 ,
\]

\[
J_L(k\tilde{T}_c) = k^{-l}Y_L(\tilde{T}_c)j_l(\tilde{r}_c) \text{ for } k^2 > 0 ,
\]

\[
= \gamma^{-l}Y_L(\tilde{T}_c)i_l(\tilde{r}_c) \text{ for } k^2 < 0 , \quad (A3)
\]

where the modified spherical functions \(k_{l+1}(\gamma r) \)

\[
= -i^{l+1}k_{l+1}(i\gamma r) \text{ and } i_l(\gamma r) = i^{l-1}j_l(\gamma r)
\]

are real for real arguments.

We now wish to transform this one-center expansion of \(G_0 \) into spin-orbit-coupled angular momenta space \(Q = (l, m, \mu) = (k, \mu) \). To do this, we first use the definition of the spin-angular function

\[
\chi_Q(\tilde{T}) = \sum_{s = \pm 1} C(l_1; \mu, s)Y_{l_1}(\tilde{T})\chi(s) , \quad (A4)
\]

and the orthonormality of the Clebsch-Gordan coefficients \(C(l_1; \mu, s, t) \) to show that

\[
\sum_{j, \mu} \chi_Q(\tilde{T})\chi_{Q'}(\tilde{T}')^* = \sum_{s, m} \chi(s)\chi(s')Y_L(\tilde{T})Y_L(\tilde{T}')^* = I_2 \sum_{m} Y_{l_1}(\tilde{T})Y_{l_1}(\tilde{T}')^* , \quad (A5)
\]

where \(\chi(s) \) is the spin function with \(s = \pm \frac{1}{2} \) and \(I_2 \) is the \(2 \times 2 \) unit matrix. We note that the sums in (A5) are real and they are invariant under inter-change of \(\tilde{T} \) and \(\tilde{T}' \). Substituting (A5) into (A2), bearing in mind the equivalence of the summations \(\sum_{ij, \mu} \) and \(\sum_{s, m} \), we obtain

\[
G_0(\tilde{T}, \tilde{T}') = I_2 \sum_{Q} H_Q(k\tilde{T}_r)J_Q(k\tilde{T}_c)^* , \quad (A6)
\]

where \(H_Q \) and \(J_Q \) are the spin-orbit analogs of \(H_L \) and \(J_L \) obtained by replacing \(Y_L \) by \(\chi_Q \).

To begin the derivation of the two-center expansions of \(G_Q(\tilde{T}, \tilde{T}') \), we let \(\tilde{T} \) (or \(\tilde{T}' \)) be \(\tilde{p} + \overline{R} \), where \(\tilde{p} \) (or \(\tilde{p}' \)) and \(\overline{R} \) have the same origin 0, but \(\tilde{p} \) is measured from the point specified by \(\overline{R} \). From the plane-wave expansion

\[
e^{i\tilde{p} \cdot \tilde{T}} = 4\pi \sum_{L} (ik)^LY_L(\tilde{p})J_L(k\tilde{T}) , \quad (A7)
\]

we derive the useful expansion

\[
J_L = \frac{1}{4\pi} \sum_{LL'} i^{l-l'}k^{l+l'}I(LL') \times J_L(k\tilde{T})J_{L'}(k\tilde{T}')^* , \quad (A8)
\]

where \(I(LL') \) are the Gaunt integrals

\[
I(LL'LL") = 4\pi \int d\Omega Y_L(\Omega)^* Y_{L'}(\Omega)Y_{L"}(\Omega) , \quad (A9)
\]

which are always real, and nonvanishing only if the conditions

\[
m = m' + m" , \quad l + l' + l" = \text{even integer},
\]

and

\[
|l - l'| < l" < l + l' \text{ or } \Delta(l"l"
\]

are satisfied. Using (A2) and (A8), we obtain two-center expansions of \(G_Q(\tilde{T}, \tilde{T}') \) in \(L \) space for the following cases of interest:

(a) \(\tilde{T}' = \tilde{p} + \overline{R} , \quad R > |\tilde{T} - \tilde{p}| \)
\[G_0(\mathbf{r}, \mathbf{r} + \mathbf{R}) = \sum_{LL'} J_L(kR) G_{LL'}^0(\mathbf{r}) J_{L'}(k\mathbf{R})^*, \quad (A11a) \]

(b) \[\mathbf{r}' = \mathbf{r} + \mathbf{R}, \quad r' > |\mathbf{r} + \mathbf{R}| \]

\[G_0(\mathbf{r}, \mathbf{r} + \mathbf{R}) = \sum_{LL'} H_{LL'}(kR) G_{LL'}^0(\mathbf{r}) J_{L'}(k\mathbf{R})^*, \quad (A11b) \]

(c) \[\mathbf{r} = \mathbf{r} + \mathbf{R}, \quad r' = |\mathbf{r} + \mathbf{R}| \]

\[G_0(\mathbf{r} + \mathbf{R}, \mathbf{r}') = \sum_{LL'} J_L(k\mathbf{r}) G_{LL'}^0(\mathbf{R}) H_{L'}(k\mathbf{r}')^*, \quad (A11c) \]

where

\[G_{LL'}^0(\mathbf{r}) = \sum_{L''} i^{l'+l''-l} k^{l'-l''} I_{LL'L''} H_{L''}(k\mathbf{r})^*, \quad (A12a) \]

\[\overline{G}_{LL'}^0(\mathbf{r}) = \overline{G}_{LL'}(\mathbf{r}) \quad \text{for} \quad O \neq P, \]

\[G_{LL'}^0(\mathbf{R}) = \sum_{L''} i^{l'+l''-l} k^{l'-l''} l_{LL'L''} J_{L''}(k\mathbf{R})^*, \quad (A12b) \]

\[G_{LL'}^0(\mathbf{R}) = \sum_{L''} i^{l'+l''-l} k^{l'-l''} l_{LL'L''} J_{L''}(k(\mathbf{R})^*)^*, \quad (A12c) \]

\[\overline{G}_{LL'}^0(\mathbf{R}) = 0, \quad \text{and} \quad \overline{G}_{LL'} = \overline{b}_{LL'}. \quad (A12d) \]

The double superscript \(OP \) is chosen to mean that the "structure factor" \(G_{LL'}^0(\mathbf{r}) \) is "measured" from point \(O \) to point \(P \) as demonstrated by comparing (A12b) and (A12c).

To obtain the \(Q \)-space two-center expansions of \(G_0(\mathbf{r}, \mathbf{r}') \), we multiply (A4) by \(C(l; \mu - m; \mathbf{r}, \mu') \) and sum over \(j \). From the orthonormality of the \(C \) coefficients, we get

\[Y_L(\mathbf{r}) = \sum_{j} C(l; \mu - m; \mathbf{r}, \mu') \chi_j(\mathbf{r}). \quad (A13) \]

Substituting for \(Y_L \) and \(Y_{L'} \) in (A11) with (A13) and changing the indices of summation from \(mm' \) to \(\mu \mu' (\mu - m = \mu' - m') = s \), we arrive at the following expansions of \(G_0(\mathbf{r}, \mathbf{r}') \) corresponding to cases (a), (b) and (c):

\[G_0(\mathbf{r}, \mathbf{r} + \mathbf{R}) = \sum_{QQ'} \sum_{l} J_{l}(k\mathbf{r}) G_{QQ'}^0(\mathbf{r}) J_{l'}(k\mathbf{R})^*, \quad (A14a) \]

\[G_0(\mathbf{r} + \mathbf{R}, \mathbf{r}') = \sum_{QQ'} \sum_{l} J_{l}(k\mathbf{r}) G_{QQ'}^0(\mathbf{R}) J_{l'}(k\mathbf{r}')^*, \quad (A14b) \]

\[G_0(\mathbf{r} + \mathbf{R}, \mathbf{r}') = \sum_{QQ'} \sum_{l} J_{l}(k\mathbf{r}) G_{QQ'}^0(\mathbf{R}) H_{l'}(k\mathbf{r}')^*, \quad (A14c) \]

where

\[F_0(k\mathbf{r}) \quad \text{stands for either} \quad H_0(k\mathbf{r}) \quad \text{or} \quad J_{l}(k\mathbf{r}), \]

\[S_\kappa = \text{sign of} \quad \kappa, \quad \text{and} \quad \mathbf{Q} = (\mathbf{r}, \mathbf{r}, \mu) = (-\kappa, \mu), \] we can expand \(G(\mathbf{r}, \mathbf{r}') \) to yield the one-center expansion.
\[G(\mathbf{r}, \mathbf{r}') = \sum_q \left[\begin{array}{c} (E/c^2 + 1)H_q(kr)J^q(kr') \\ iS_q(k/c)H_q(kr)J^q(kr') \\ (E/c^2)H_q(kr)J^q(kr') \end{array} \right] \]

and the two-center expansions

(a) \(\mathbf{r} = \mathbf{p} + \mathbf{R}, \ r > |\mathbf{p} - \mathbf{R}| \)

\[G(\mathbf{r}, \mathbf{p} + \mathbf{R}) = \sum_{q,p} \langle \mathbf{p} | \hat{G}_{qq'}(\mathbf{R}) \mathbf{p} \rangle \left[\begin{array}{c} (E/c^2 + 1)H_q(kr)J^q(kr') \\ iS_q(k/c)H_q(kr)J^q(kr') \\ (E/c^2)H_q(kr)J^q(kr') \end{array} \right] , \]

(b) \(\mathbf{r}' = \mathbf{p} + \mathbf{R}, \ r' > |\mathbf{p} + \mathbf{R}| \)

\[G(\mathbf{r}', \mathbf{p} + \mathbf{R}) = \sum_{q,p} \langle \mathbf{p} | \hat{G}_{qq'}(\mathbf{R}) \mathbf{p} \rangle \left[\begin{array}{c} (E/c^2 + 1)H_q(kr)J^q(kr') \\ iS_q(k/c)H_q(kr)J^q(kr') \\ (E/c^2)H_q(kr)J^q(kr') \end{array} \right] , \]

(c) \(\mathbf{r} = \mathbf{p} + \mathbf{R}, \ r'' > |\mathbf{p} + \mathbf{R}| \)

\[G(\mathbf{r} + \mathbf{R}, \mathbf{r}') = \sum_{q,p} \langle \mathbf{p} | \hat{G}_{qq'}(\mathbf{R}) \mathbf{p} \rangle \left[\begin{array}{c} (E/c^2 + 1)H_q(kr)J^q(kr') \\ iS_q(k/c)H_q(kr)J^q(kr') \\ (E/c^2)H_q(kr)J^q(kr') \end{array} \right] , \]

where \(E = E_0 - m_0 c^2 \) and atomic units are assumed.

We have also assumed that \(\mathbf{R} \) is a constant vector so that \(\nabla_{r} \cdot \mathbf{R} = \nabla_{r'} \cdot \mathbf{R} \).

The structure factors \(\hat{G}_{qq'}(\mathbf{R}), \hat{G}_{qq'}^*(\mathbf{R}), \hat{G}_{qq'}^P(\mathbf{R}) \), and \(\hat{G}_{qq'}^P(\mathbf{R}) \) possess the symmetry

\[\hat{G}_{Pqq'}(\mathbf{R}) = \hat{G}_{Pqq'}^*(\mathbf{R}) \right)^* \]

This property can be easily verified for each structure factor using the conditions (A.10) for nonvanishing Gaunt integrals. This symmetry is to be expected in view of the Hermiticity of both \(G_q(\mathbf{r}, \mathbf{r}') \) and \(\hat{G}(\mathbf{r}, \mathbf{r}') \) in \(\mathbf{r} \) and \(\mathbf{r}' \).

APPENDIX B: PROOF OF \(S_xB(Q\bar{Q}L') = S_xB(Q\bar{Q}'L'') \)

In arriving at the secular equations (2.17), we have made use of the following property of the relativistic Gaunt integrals:

\[S_xB(Q\bar{Q}'L'') = S_xB(Q\bar{Q}'L'') \]

where \(B(Q\bar{Q}'L'') \) is given by (A.16). Defining \(B' = i^\mu - i' \bar{\mu}' \bar{l}B(Q\bar{Q}'L'') \) and \(B'' = i^\mu - i' \bar{\mu}' \bar{l}B(Q\bar{Q}'L'') \), and using the identity \(\bar{l} - l = \bar{s}_x - s_x \), we see that

\[i^\mu - i' \bar{\mu}' = i\bar{s}_x - s_x = S_x/S_x \]

Hence we need only to show that \(B'' = B' \). The Gaunt integral can be expressed as a product of Clebsch-Gordan coefficients,\(^1\) that is,

\[I(l_1, l_2, l_3) = \left(\frac{4\pi(2l_1+1)(2l_2+1)}{2l_3+1} \right)^{1/2} C(l_1, l_2, l_3; m, m_1 m_2 m_3) C(l_1, l_2, l_3; l, m_0, 000) . \]

Substituting (B.3) into \(B' \), with \(L_3 = (l, \mu - s) \), \(L_2 = (l', \mu' - s) \), \(L_1 = L'' \), we obtain

\[B' = \left(\frac{4\pi(2l'+1)(2l'+1)}{2l'+1} \right)^{1/2} C(l'^\mu l''\mu' \bar{\mu}' \bar{l}' \bar{l}' \bar{l}'' \bar{l}; 00 \bar{s}_x \bar{s}_x \bar{s}_x) C(0 l'^\mu l' \bar{l}'' \bar{l}; \mu - \bar{s}_x, s) C(\bar{l}' \bar{l}' \bar{l}' \bar{l}; \mu' - s, s) \]

where the selection rule \(m_3 = m_3 + m_1 \) has been used in rewriting the \(C \) coefficients. The summation over \(s \) can be simplified using a single Racah recombination\(^2\)

\[\sum_{m_2} C(j_1 j_2 j''; \mu_1, \mu_2) C(j_3 j_4 j''; \mu_1 + \mu_2, \mu_3) C(j_5 j_6 j''; \mu_2, \mu_3) \]

\[= [(2j''+1)(2j''+1)]^{1/2} W(j_1 j_2 j_3 j_4 j_5 j_6; j'' j'' j'' j') C(j_7 j''; \mu_1, \mu_2) , \]

APPENDIX B: PROOF OF \(S_xB(Q\bar{Q}L') = S_xB(Q\bar{Q}'L'') \)

In arriving at the secular equations (2.17), we have made use of the following property of the relativistic Gaunt integrals:

\[S_xB(Q\bar{Q}'L'') = S_xB(Q\bar{Q}'L'') \]

where \(B(Q\bar{Q}'L'') \) is given by (A.16). Defining \(B' = i^\mu - i' \bar{\mu}' \bar{l}B(Q\bar{Q}'L'') \) and \(B'' = i^\mu - i' \bar{\mu}' \bar{l}B(Q\bar{Q}'L'') \), and using the identity \(\bar{l} - l = \bar{s}_x - s_x \), we see that

\[i^\mu - i' \bar{\mu}' = i\bar{s}_x - s_x = S_x/S_x \]

Hence we need only to show that \(B'' = B' \). The Gaunt integral can be expressed as a product of Clebsch-Gordan coefficients,\(^1\) that is,
where $W(j_1 j_2 j_3; j'_1 j'_2)$ are the Racah coefficients for
the coupling of three angular momenta j_1, j_2, j_3, with intermediate angular momenta $j' = j_1 + j_2, j'' = j_3 + j_3$. Substituting (B5) into (B4) using the correspondence of $(j_1 j_2 j_3 j'_1 j'_2)$ to $(l'' l' j j')$ and changing the index of summation from $s = \frac{1}{2}$ to
$m' = \mu + \frac{1}{2}$, we find that

$$B' = \frac{4 \pi (2l' + 1)(2l'' + 1)(2j' + 1)}{12} C(l'' l'; 0) \times W(l'' l' j j'; \mu = \mu', \mu'),$$

(B6)

The product \[4\pi (2l'' + 1)(2j' + 1)\] is independent of both l and l', so to prove $B = B'$,

$$C(abe; 00) = (-)^{(a+b+c)/2}(2e + 1)^{1/2} \Delta_R(abe) \left[\frac{1}{2}(a + b + e) \right] \left[\frac{1}{2}(a - b + e) \right] \left[\frac{1}{2}(-a + b + e) \right] \left[\frac{1}{2}(a + b + e) \right]$$

(B9)

$$W(abcd; ef) = \Delta_R(abe) \Delta_R(cde) \Delta_R(ace) \Delta_R(bdf) \sum_n \frac{(-)^{a+b+c+e}(n+1)}{(n-a-b+c)(n-c-d+e)(n-a-c-f)(n-b-d-f)} \times \frac{1}{(a+b+c+d-n)(a+d+e+f-n)(b+c+e+f-n)}.$$

(B10)

where

$$\Delta_R(abe) = \frac{(a+b+e)!}{(a+b+e+1)!},$$

(B11)

and the index of summation assumes all integral values as long as none of the factorial arguments are negative. $C(abe; 00)$ vanishes unless the conditions $a+b+e = \text{even integer}$ and $\Delta(abe)$ [see (A10)] are satisfied, while $W(abcd; ef)$ vanishes unless we have $\Delta(abe), \Delta(ace), \Delta(bdf),$ and $\Delta(aef)$. The

the index of summation assumes all integral values as long as none of the factorial arguments are negative. $C(abe; 00)$ vanishes unless the conditions $a+b+e = \text{even integer}$ and $\Delta(abe)$ [see (A10)] are satisfied, while $W(abcd; ef)$ vanishes unless we have $\Delta(abe), \Delta(ace), \Delta(bdf),$ and $\Delta(aef)$. The

it is sufficient to show the invariance of

$$\Theta(S_x, S_x') = (2l'' + 1)^{1/2} C(l'' l'; 0) W(l'' l' j j'; \mu = \mu', \mu'),$$

under simultaneous changing of signs of κ and κ'. In other words, all that is left to be done is to verify the relations

$$\Theta(\kappa, \kappa') / \Theta(-\kappa, -\kappa') = 1.$$

(B8)

To achieve this, we simplify the notation by the replacement of $(l'' l' j j')$ by $(abcdef)$ in the expressions13,14

$$\text{relation } l = j + \frac{1}{2} S_x \text{ is used to substitute } b = f + \frac{1}{2} S_x' \text{ into } \Theta \text{ making its dependence on } (S_x, S_x') \text{ exclusively explicit. The summation in } (B10) \text{ looks forbidding, but upon closer examination, it can be reduced to only one term for } d = \frac{1}{2}. \text{ This is true for all combinations of } (S_x, S_x'), \text{ namely, } + +, --, - +, --. \text{ The combination } (+ +) \text{ consists of the term specified by } n = a + f + c + 1, \text{ while for the remaining three, } n = a + f + c. \text{ Then substituting the simplified } (B9) \text{ and } (B10) \text{ into } (B7) \text{ for each of the four combinations, we verify } (B8).$$

*Supported by ARPA Order 2380, DOD Grant DAHC15-73-G14, and by NSF Grant DMR-72-02025.

1Based in part on this author’s Ph.D. dissertation to be submitted to the Department of Electrical Engineering and Science, University of Pennsylvania.

1G. W. Pratt, Jr., J. Nonmet. 1, 103 (1973).

2The explicit notation for energy dependence in all quantities is suppressed throughout this paper.

11Reference 11, p. 47.

11Reference 11, p. 110.