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ABSTRACT 

Cancer is a highly prevalent disease that affects millions of people worldwide. In addition to the 
physiological effects of the disease, cancer patients are more likely to be diagnosed with Major 
Depressive Disorder (MDD). Unfortunately, prior research has shown that MDD can also decrease 
the efficacy of radiotherapy cancer treatments. Currently, there is no way to predict, prevent, or 
mitigate this comorbidity, preventing physicians from administering supplemental therapies. In 
this paper, we propose a low-cost and efficient computational tool that can be utilized to quantify 
a patient’s likelihood of developing depression. To do so, we used PET images and a ResNet34 
architecture to train a convolutional neural network to identify depression biomarkers in the brain. 
These brain PET images were taken from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) dataset and also provided information regarding the patient’s depression at the time of the 
scan. We were then able to label and classify images in our dataset based off of this data. Although 
our model only yielded an accuracy of 54.25%, sensitivity of 56.25% and a specificity of 53.64%, 
a visual evaluation of our results (GradCAM) confirmed that our algorithm was able to detect the 
correct regions of interest in the brain, where depression biomarkers were found. This leads us to 
believe that our deep learning model, with improvement, can be used to effectively help classify 
depression progression rates in radiotherapy patients.   



4 

Acknowledgements 

 This project was completed at Santa Clara University Department of Bioengineering with 

Dr. Yuling Yan and conducted in collaboration with the University of California, San Francisco 

School of Medicine with Dr. Dugyu Tosun. We would like to thank our two advisors, Dr. Yan 

and Dr. Tosun, for access to hardware, constant encouragement, and propitious instruction.  We 

would also like to thank Ryan Ellis for his guidance on our network architecture and the ADNI 

database for providing us with the necessary PET images and information to complete this 

project. Without these contributions, our project would not have yielded results within our given 

time frame. 

   



5 

TABLE OF CONTENTS 

 

CHAPTER 1 8 

INTRODUCTION 8 
1.1 Motivation 8 
1.2 Cancer and Depression 8 
1.2 Problem 10 
1.3 Contributions 10 

CHAPTER 2 11 

BACKGROUND AND SIGNIFICANCE 11 
2.1 Imaging Modality Background 11 
2.2 Relevant Work 12 
2.3 ResNet 13 
2.4 Significance 14 

CHAPTER 3 16 

SYSTEMS 16 
3.1 Image Preprocessing 16 
3.2 Deep Learning Architecture 16 
3.3 Evaluation 17 

CHAPTER 4 18 

SUBSYSTEMS 18 
4.1 Data Collection 18 
4.2 Subject Selection Criteria 18 
4.3 Data Labeling 19 
4.4 Data Augmentation 19 
4.5 Class Distribution 21 
4.6 Split 21 
4.7 Deep Convolutional Neural Network 22 
4.8 Statistical Evaluation 22 
4.9 Visual Evaluation 23 

CHAPTER 5 24 



6 

SYSTEMS-INTEGRATION, TESTS, AND RESULTS 24 
5.1 Training 24 
5.2 Statistical Evaluation 25 
5.3 Visual Evaluation 26 

CHAPTER 6 29 

PROFESSIONAL ISSUES & CONSTRAINTS 29 
6.1 Economics 29 
6.2 Health & Safety 29 
6.3 Ethics and Privacy 30 
6.4 Technology 30 
6.5 Usability 31 

CHAPTER 7 32 

CONCLUSION & FUTURE WORK 32 
7.1 Conclusion 32 
7.2 Future Work 33 

   



7 

LIST of FIGURES 

 

Figure 1: (Left) Original Image; (Right) Five degree rotation in the transverse plane.  18 
Figure 2: Cropped Image  19 
Figure 3: Loss  22 
Figure 4: Accuracy  23 
Figure 5: ROC Curve  24 
Figure 6: Positive case CAM  25 
Figure 7: Negative Case CAM  25 
Figure 8: Oversaturated Image  68 
Figure 9: Normal Image  68 
   



8 

LIST of TABLES 

 

Table 1: Confusion matrix representing the model's performance on unseen images.  23 
Table 2: Software  36 
Table 3: Hardware  36 

 

   



9 

Chapter 1 

Introduction 

1.1 Motivation 

In 2019 alone, 1.7 million new cases of cancer were diagnosed in the United States [1]. 

Additionally, cancer patients experiencing severe pain are 2-4 times more likely to develop and 

be diagnosed with Major Depressive Disorder (MDD) than other patients experiencing lesser 

degrees of pain [2]. MDD is a mental health disorder that can cause psychological and physical 

distress, detrimentally affecting a patient’s overall quality of life. In a recent meta-analysis, 

Pinquart et al. established a positive correlation between MDD and mortality rate [3]. Indeed, 

MDD increases the mortality rates of cancer patients by up to 39% [3]. Therefore, 

administering care for MDD alongside radiotherapy is paramount in increasing the 

efficacy of cancer treatment. 

1.2 Cancer and Depression  

Given the overall prevalence of depression, many studies have been conducted to correlate 

the incidence of depression with other medical illnesses, namely cancer. Among various primary 

cancer tumor sites, depression rates vary. For example, pancreatic cancer has been proven to 

alter CNS serotonin receptors, leading to higher risk for depression [4]. However, regardless of 

cancer site or diagnoses, all occurrences still correlate to a higher risk of developing depression 

compared to the general population.  
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It is important to recognize that many cancer-related stressors can also contribute to 

increased risk of developing depression. For example, the severity of one’s illness may affect 

individuals differently, depending on their pain tolerance or overall ability to overcome 

hardships [5]. Additionally, cancer patients may receive multiple and varying forms of treatment, 

such as radiotherapy, chemotherapy, or surgery. Thus, while the overall data still shows an 

increased risk of depression in cancer patients, it can be difficult to make direct correlations 

when there are typically many factors in play. 

1.2.1 Cancer Treatment and Efficacy  

Among all cancer patients, more than half receive radiotherapy as their primary form of 

treatment [4]. Given that certain cancers can be sensitive to radiation, radiotherapy offers an 

effective and less invasive way to shrink tumors. Depending on the type of cancer, chemotherapy 

or other drug-related treatments may also be combined with radiation therapy. In 2016, 

radiochemotherapy was shown to achieve around 80% tumor control [6]. Since the overall goal 

is to minimize cancerous growths while maintaining healthy normal cells, the practice of 

combining multiple cancer treatments is essential to increasing cancer survival rates. 

Within the past couple of decades, cancer research has dramatically increased the efficacy 

of cancer treatments and therefore survival rates. However, such treatments that are essential for 

recovery may have detrimental interactions with other drugs or conditions, namely depression. 

Those who are diagnosed with depression are typically prescribed SSRIs (Selective Serotonin 

Reuptake Inhibitor). Individually, anticancer drugs and SSRIs are effective. However, unwanted 

drug interactions may occur, causing potential toxicity and lowering of drug efficacy [4]. 
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1.2 Problem 

Although there is ample research to indicate the correlation between cancer diagnoses and 

MDD, current literature lacks a method for quantifying and standardizing this predisposition. 

Additionally, access to patient information can be limited based on publicly available data and 

therefore a streamlined process for testing this relationship is challenging. 

1.3 Contributions 

In this project, we aim to utilize publicly available PET images to classify depression 

progression rates for cancer patients. Before receiving radiotherapy as treatment, patients are 

required to complete a full-body PET scan. Since almost half of cancer patients receive 

radiotherapy, we propose using brain PET images to monitor depression progression. Our work 

specifically uses certain biomarkers found in PET images that have been proven to correlate to 

MDD. With our solution, healthcare professionals could better personalize treatment options for 

cancer patients who are more likely to be diagnosed with MDD, thus maximizing their recovery 

and overall well-being. 
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Chapter 2 

Background and Significance 

2.1 Imaging Modality Background 

Positron Emission Tomography (PET)  is a common imaging modality for cancer and 

depression detection, as it measures glucose metabolism. In order to perform a PET scan, the 

radiologist injects a radiotracer, a positron emitting radionuclide attached to a glucose molecule, 

into the patient’s bloodstream [6]. Tissues absorb these radiotracers as they metabolize glucose. 

As the radionuclides decay, they emit positrons, which annihilate with electrons and emit gamma 

rays. Sensors known as gamma cameras, surrounding the patient, detect these gamma rays, 

localize the source, and develop an image [6]. A tissue with a low concentration of radiotracer 

results in a low intensity in the image. Similarly, a tissue with a high concentration of radiotracer 

results in a high intensity in the image. Tissues that consume a lot of glucose consume a 

proportional amount of radiotracer. Therefore, these tissues appear as high intensity areas in the 

image. This quality is useful for cancerous tumor detection, as the tumors consume a lot of 

glucose. In addition, this quality is useful for depression biomarker detection, as it captures brain 

structure metabolism [7]. Because the PET imaging modality captures information through 

cancerous tumor metabolism and brain metabolism, it is possible to derive information about 

each disease with one scan. 

Radiologists already order a full body PET scan in order to plan radiotherapy. Because of 

the PET imaging properties previously discussed, these scans may capture information about 



13 

both cancer and depression biomarkers. Recent meta-analyses established a set of structural and 

functional changes on brain PET images characteristic of depression biomarkers [7,8,9] These 

studies isolated brain regions that showed consistent changes in untreated depressed patients, 

including: (1) consistent atrophy in the amygdala and (2) changes in glucose metabolism in the 

subgenual cingulate cortex (sACC) [9]. It may be possible, through these biomarkers, to identify 

patients at risk for developing depression, especially during radiotherapy treatment. 

Identification of these patients at risk may allow doctors to plan an inclusive cancer treatment 

that incorporates mental health care in order to increase the efficacy of radiotherapy treatment in 

this patient population. 

2.2 Relevant Work 

Several algorithms to diagnose depression exist; however, these algorithms do not predict 

predisposition for depression. Recently, the World Health Organization (WHO) adopted a plan to 

address mental health and encouraged members of the tech industry to develop technologies to 

detect and treat mental health disorders [10]. The Association for Computing Machinery 

responded with the 2017 AVEC “Real-life Depression and Affect Recognition Workshop and 

Challenge.” In response to this challenge, Chlasta et al. implemented a convolutional neural 

network to diagnose depression based on audio samples [11]. The network learned patterns in the 

audio samples, characteristic of depression. However, patterns only appear when a patient 

already has depression. In other words, the algorithm only detects the clinical symptoms, not the 

pathological features. Therefore, the model cannot predict whether a patient will develop 

depression or not. Alhanai et al. implemented an LSTM model to diagnose depression from 

audio samples, which, as before, limited the anticipatory ability of the network [12]. Therefore, 

audio-based diagnosis methods lack the anticipatory ability necessary to predict whether a 
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subject is predisposed to developing depression or not. 

Several algorithms to identify pathologies, such as Alzheimer’s Disease (AD), through 

MRI imaging exist; however, MRI is not an optimal imaging modality for depression biomarker 

detection. Approaches for identifying AD biomarkers in structural MRI images often use 

convolutional neural networks (CNN). Farooq et al. classified AD by passing structural MRI 

images through ResNet, which we will explain in the next section [13]. The study achieved as 

high as a 98% accuracy with a ResNet-18 architecture. PET images share a similar format with 

MRI images; therefore, it is possible that this architecture will work for PET images as well [13]. 

Structural MRI images effectively capture structural information, but lack functional 

information, such as tissue metabolism. On the other hand, PET images capture tissue 

metabolism, as explained previously. Therefore, we may adopt a similar architecture and analyze 

functional images, which contain depression biomarkers. 

2.3 ResNet 

ResNet allows researchers to build deeper neural networks with improved accuracy. He et 

al. developed ResNet in 2015 [14]. Their work gained notice after their network won first place 

in the ILSVRC 2015 classification task [14]. ResNet is attractive as a CNN because it is deep. 

Depth only increases accuracy to a certain point in ordinary CNN’s, known as the degradation 

problem [14]. ResNet overcomes this problem by implementing shortcut connections. The higher 

the number of layers of shortcut connections, the more accurate the network becomes and the 

less the amount of error rates. These shortcut connections allow the network to learn the residual, 

instead of a direct mapping between input and output. In theory, it is easier to optimize the 

residual mapping than the direct mapping [14]. These shortcut connections allow for deep 

architectures without the degradation problem. 
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2.4 Significance 

 As established in Chapter 1, MDD significantly decreases the efficacy of radiotherapy 

treatment and increases the mortality rate of cancer patients. It is necessary to anticipate 

depression development in order to plan mental health treatment as a part of overall cancer 

treatment. Supplementing radiotherapy with mental health treatment may increase efficacy and 

patient survival rate.  

In 2010 a study conducted through the American Society of Clinical Oncology observed 

the effects of the supplemental treatment of depression with the treatment of cancer in relation to 

survival rates. A total of 64 of the 101 women that had metastatic breast cancer and depression 

symptoms in the study received a year of depression therapy along with their cancer therapy. 

This depression therapy is called supportive-expressive group therapy. After the start of the 

study, 4, 8 and 12 months, the Center for Epidemiologic Studies-Depression Scale was taken 

across 101 participants. Over 1 year that this study was conducted, a decreased (CES-D) score 

was able to increase a patient's longer survival rate. For women with decreasing CES-D scores 

over 1 year, overall median survival time was 53.6 months (n = 48), compared with 25.1 months 

for women with increasing scores (n = 53) [15]. This study is an example of how supplementing 

cancer therapy with mental health treatment could increase the efficacy and patient survival rate.  
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Chapter 3 

Systems 

3.1 Image Preprocessing 

As mentioned in Chapter 2, PET images capture metabolic and volume changes in the 

brain. For this reason, we use brain PET images to identify depression biomarkers, established 

from prior research. Prior to training the algorithm on these images, we preprocessed, 

standardized, normalized, and labeled all of the images. Depending on the source of data, some 

PET images may be in a raw or processed form. Some processed images already standardize the 

image space, increase the resolution, and reduce noise. Thus, once obtaining the PET images, we 

must further standardize and normalize the images to improve our model’s numerical stability. 

Additionally, we must have a method of determining if a patient is depressed or not that directly 

correlates to the PET image. Once we have this metric, we can then label each image with their 

respective diagnosis. 

3.2 Deep Learning Architecture 

 After we acquired and preprocessed the images, we chose our algorithm architecture. As 

mentioned previously, we implemented a convolutional neural network, particularly a ResNet 

architecture. PET images contain three dimensions; therefore, we implemented deep 

convolutional layers that filtered across three dimensions. Next, we split our dataset into three 

portions: the training, validation, and test sets. The network only learned features from the 
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training set. The validation and test sets were reserved in order to evaluate the model’s 

performance on unseen data. 

3.3 Evaluation 

Once we trained the algorithm on the testing set, we utilized evaluation methods, both 

quantitative and qualitative, to validate our results. In order to calculate the performance of the 

model, we compared the model’s prediction to the actual outcome. Additionally, we 

continuously monitored the model’s performance by plotting the progression of both the 

validation and training loss after every epoch. Finally, we utilized visual evaluation methods, 

which helped us identify the features, such as metabolic increases or volumetric decreases, that 

the model used to differentiate between positive and negative cases. 
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Chapter 4 

Subsystems 

4.1 Data Collection 

We acquired brain PET images through the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI). The ADNI study monitors neurodegeneration due to dementia and Alzheimer’s disease 

[16]. Study subjects periodically receive medical scans, such as PET scans. In addition, subjects 

answer a depression survey, the Geriatric Depression Scale (GDS), and receive a depression 

score, during their visit [17]. It is important to note that the images and GDS scores are taken at 

the same time; therefore, one image corresponds to one GDS score. We used these PET scans 

and GDS scores to train and test the neural network. 

4.2 Subject Selection Criteria 

We selected subjects to study through a strict set of criteria. Firstly, the subject received three or 

more PET scans. Secondly, the subject started the study without depression. The ADNI study 

sets a GDS score of six as the threshold for depression [17]. According to this threshold, a 

subject with a GDS score below six is not depressed; a subject with a GDS score of six or above 

is depressed. Thirdly, if the subject develops depression, they do not resolve. In other words, if 

the subject’s GDS rises above the threshold, it does not fall back below the threshold. The code 

for subject selection appears in Appendix A1. 
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4.3 Data Labeling 

We assigned each patient a depression progression rate. The ADNI study provides GDS scores, 

magnitude of depression at a particular instant, not depression progression rates, rate of 

depression development over time. We obtained depression progression rates through a linear 

mixed-effects regression (LMER) model. The LMER model accounts for variance in the data 

due to random-effects, effects experienced in individual groups [18]. In this case, the subject is a 

random-effect. Therefore, there is variance in the data due to different subjects. We extracted the 

depression progression rates from the random-intercepts. A random-intercept of zero or below 

indicates that a subject does not develop depression over time; conversely, a random-intercept 

above zero indicates that a subject develops depression over time. As such, patients with a 

random-intercept of zero or below were labeled as nonprogressors, class 0, and patients with a 

random-intercept above zero were labeled as progressors, class 1. The code for generating labels 

appears in Appendix A2. 

4.4 Data Augmentation 

We standardized across all images. In addition, we normalized each image in order to 

prepare them for the neural network. Normalization limited the pixel values to a range between 

zero and one. In practice, normalization prevents pixel values from tending toward infinity as the 

image passes through the network. 

Only 1428 images in the ADNI database met the selection criteria; in order to double the 

sample size, we performed data augmentation. We copied each image and slightly rotated each 

copy by five degrees in the transverse plane, as in Figure 1, a common data augmentation 

technique [19,20]. This resulted in 2856 usable images. 
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Figure 1: (Left) Original Image; (Right) Five degree rotation in the transverse plane. 

Upon instantiation, we selected a specific subregion of the brain image. Recall from the 

background that the literature points to several specific brain structures as depression 

biomarkers, including the sACC and amygdala. The ADNI images contained null space around 

the brain. We removed the null space around the brain in order to reduce the image size from 96 

x 160  x 160 to 80 x 120 x 120. After removing the null space, we downsampled the image. 

Essentially, we reduced the image resolution by a factor of two, which halved the image 

dimensions. Down-sampling allowed us to increase the batch size from two to sixteen. An 

increase in batch size increases training speed and improves model generalizability [21]. The 

code for data augmentation appears in Appendix A3. 
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Figure 2: Cropped Image 

4.5 Class Distribution 

After subject selection and data augmentation, the dataset consisted of 2856 images; 63% of 

these images represented negative cases and 37% of these images represented positive cases. If 

we trained on this data distribution, we would achieve either a 63% accuracy or 37% by 

randomly guessing. In order to balance the class distribution and achieve a 50% accuracy by 

randomly guessing, we extracted a subset from the dataset. The subset included all positive cases 

and an equal number of negative cases. Therefore, the network would achieve a 50% accuracy 

through randomly guessing. Unfortunately, class balancing reduced the number of images 

available to train the network from 2856 to 2061 images. The code for subset generation appears 

in Appendix A4. 

4.6 Dataset Split 

After correcting the class distribution, we split the dataset into three subsets: training, validation, 

and testing. The training, validation, and testing subsets contained 70%, 10%, and 20% of 

images, respectively. This is a common heuristic in machine learning. We trained the neural 

network on the training dataset. Essentially, the neural network adjusted its weights, or learned 
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features, based on the training set. The neural  network did not adjust its weights based on the 

validation or testing set. After every epoch, the neural network evaluated its performance on the 

validation set, which contained unseen images. Essentially, the neural network evaluated the 

generalizability of learned features on the validation set after every update. The testing dataset 

was reserved until after training. We used the testing dataset to evaluate the final model’s 

performance on unseen images. 

4.7 Deep Convolutional Neural Network 

We implemented a deep convolutional neural network to filter the images for potential 

biomarkers. In particular, we implemented a ResNet34 with projection connections, which 

comprises thirty-four convolutional layers, three projection connections, one global average 

pooling layer, and one fully connected layer [14]. The original ResNet processes 2D images. In 

order to process 3D images, we replaced 2D convolutions with 3D convolutions. The ResNet 

architecture uses striding instead of pooling in order to reduce image resolution [14]. In addition, 

we did not stride at the first convolutional layer, as we did not want to prematurely downsize the 

already small input image. The fully connected layer comprises two neurons, which represent 

nonprogression and progression probabilities, respectively. 

4.8 Statistical Evaluation 

We quantitatively evaluated the model’s performance through standard statistical methods. 

Specifically, we looked at the confusion matrix, calculated the sensitivity and specificity, and 

analyzed the receiver operating characteristic (ROC) curve. 



23 

4.9 Visual Evaluation 

Additionally, we qualitatively evaluated the model through class activation mapping (CAM). 

Several CAM methods exist, particularly weight-based [22] and gradient-based [23,24]. We 

implemented a gradient-based CAM, GradCAM, because it is compatible with a wider variety of 

architectures than weight-based CAM [23,24]. GradCAM visually captures weight changes, 

particularly weight increases. Through GradCAM, we visually inspected which features 

contributed to a class prediction.   
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Chapter 5 

Systems-Integration, Tests, and 

Results 

5.1 Training 

We trained the neural network on the training set using stochastic gradient descent (SGD) with a 

learning rate of 0.001 and a momentum of 0.9, a common momentum value [21], for 140 epochs. 

As in Figure 3, the training loss decreased significantly until it plateaued at approximately 0.31. 

However, the validation loss diverged from the training loss at this time. This divergence 

suggested that the network overfit to the training set. In other words, the model did not 

generalize to unseen images. Figure 4 reaffirms this as the training accuracy increases to 100%, 

but the validation accuracy remains around or lower than 50% on average. 
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Figure 3: Loss 

 

Figure 4: Accuracy 

5.2 Statistical Evaluation 

We loaded the weights from epoch 130, into the model and evaluated its performance on the 

testing set. We calculated the sensitivity and specificity of the model using the values from the 

following confusion matrix. The model only achieved a sensitivity of 56.25% and a specificity of 
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53.64%. These values suggest that the model was unable to discriminate between positive and 

negative cases in new cases. The model still randomly predicted the class in unseen cases. The 

ROC curve, Figure 5, is close to a 45 degree line to the horizontal, which reaffirms that the 

model randomly predicted the class in new cases. 

Table 1: Confusion matrix representing the model's performance on unseen images. 

Predicted/Actual + - 

+ 108 102 

- 84 118 

 

 

Figure 5: ROC Curve 

5.3 Visual Evaluation 

We visually inspected features that the model identified through GradCAM. For example, we 

generated a CAM in Figure 6, which was taken from a positive case. The CAM highlighted 



27 

regions of interest, including the sACC and the basal ganglia, characterized by light regions in 

Figure 6. Recall from the introduction that the sACC and basal ganglia are depression 

biomarkers according to the literature. Therefore, the model identified the sACC and basal 

ganglia in the image and used them to predict positive cases. We compared the positive case 

CAM to a negative case CAM. The negative case CAM, depicted in Figure 7, did not highlight 

the sACC or the basal ganglia. Therefore, the model did not use the sACC or the basal ganglia to 

predict negative cases. 

 

Figure 6: Positive case CAM 

 

Figure 7: Negative Case CAM 

 Notice that the positive case CAM highlights the occipital region. Therefore, the occipital 

region contributed to a positive prediction. Indeed, the literature characterizes a phenomenon in 

the occipital lobe, known as occipital bending, as a MDD biomarker [25]. Occipital bending 

describes the phenomenon where one occipital lobe bends past the midline of the brain; a 
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decrease in functional connectivity may occur as well [26,27]. In rightward occipital bending, the 

left occipital lobe bends past the midline; in leftward occipital bending, the right lobe bends past 

the midline. The network may detect this occipital bending. However, the negative case CAM 

also highlights the occipital lobe. In their study, Fullard et al. observed that an equal number of 

MDD and normal subjects experienced right and left occipital bending [26]. Essentially, both 

MDD and normal subjects experience occipital bending. Therefore, it is present in both cases. 

The model focuses on occipital bending as a feature for identifying a positive case. However, the 

model may confuse negative cases as positive because they also contain occipital bending, 

contributing to false positives.   
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Chapter 6 

Professional Issues & Constraints 

6.1 Economics 

One PET scan costs thousands of dollars [28]. Cancer patients already receive a PET scan as a 

part of their cancer treatment. In the future, we plan to analyze the brains from these PET 

images, which will not require additional scans and will not place an extra economic burden on 

cancer patients. 

6.2 Health & Safety 

As discussed in the introduction, PET imaging is a radiation-based imaging modality. Therefore, 

the PET procedure delivers gamma radiation to the recipient. Like x-ray radiation, gamma 

radiation may produce deterministic or stochastic effects. A high radiation dosage over a short 

duration kills tissue, or produces deterministic effects. Continuous radiation exposure over an 

extended duration damages DNA and encourages cancerous growth, or produces stochastic 

effects [6]. As discussed, cancer patients already receive a full body PET scan prior to cancer 

treatment. We plan to analyze the brains from these PET images. Therefore, our project does not 

require additional PET scans and does not expose cancer patients to more radiation than the 

typical cancer treatment process. 
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6.3 Ethics and Privacy 

We analyze medical information. Because we analyze medical information, we must comply 

with the Health Insurance Portability and Accountability Act of 1996 (HIPAA). The HIPAA 

Privacy Rule mandates that covered entities protect individually identifiable health information, 

also called protected health information (PHI). PHI includes demographic data, physical health 

conditions, mental health conditions, medical treatments, medical expenses, name, address, 

birthdate, and social security number. The HIPAA Security Rule mandates that PHI is protected 

from unauthorized use or disclosure [29]. Electronically, this may take the form of encryption. 

However, we did not access PHI from ADNI. We only accessed de-identified health information 

(DHI). DHI removes all identifiers from the PHI [30]. We only used PET images, GDS scores, 

exam dates, and subject numbers, which do not individually identify the patient. Therefore, we 

did not use personal information and could not identify individuals in the real world. 

6.4 Technology 

Deep learning attracted attention as a method to detect features in and extract features from 

medical images in the medical imaging community. Recent deep learning models show promise 

as a diagnostic tool. However, these models are not entirely explainable. Model interpretability 

tools, such as GradCAM, are in development in order to increase the interpretability of deep 

learning models and explain their predictions [23].  

6.5 Usability 

The algorithm must be autonomous. The model must receive images from the PET scan, analyze 

them, and return a prediction autonomously. An image processing pipeline, such as this, provides 

several benefits. For example, clinicians do not need to learn how to use the machine learning 
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interface. In addition, the pipeline immediately analyzes and provides a prediction for the patient. 

Therefore, the clinician can immediately provide this information to the patient.   
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Chapter 7 

Conclusion & Future Work 

7.1 Conclusion 

We implemented a deep learning algorithm to identify depression biomarkers, such as metabolic 

increases, in PET brain images and deliver a diagnosis: not prone to depression development or 

prone to depression development. The network achieved a 100% accuracy on the training 

dataset; however, the validation accuracy decreased. Therefore, the model overfit to the training 

images. Essentially, the model learned discriminative features in the training  images. 

Unfortunately, those features did not generalize to new cases. We visually evaluated these 

features using gradient-based class activation mapping. Class activation maps revealed that the 

network identified and used depression biomarkers, the sACC in particular, to classify patients 

prone to depression development. From the literature, we anticipated that the network would 

identify the sACC as a depression biomarker. The class activation map also revealed that the 

network identified the occipital lobe as a depression biomarker. After review, we suspected that 

the network detected a phenomenon known as occipital bending in depressed subjects. Although 

rightward occipital bending is more frequent in depressed subjects, normal subjects still 

experience occipital bending, just at a lower frequency. We suspected that occipital bending may 

have contributed to false positives, as the occipital lobe appeared in several false positive class 

activation maps. Therefore, we will take this into consideration in future research. Overall, the 
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model identified key depression biomarkers in the PET brain images; however, these features did 

not generalize to unseen images. 

7.2 Future Work 

We plan to improve network generalizability and performance through several 

techniques. Firstly, we will increase the sample size through additional data augmentation 

techniques, such as Gaussian blur, sheering, five degree rotation in the counterclockwise, not just 

clockwise, direction, and so on. Secondly, we will preprocess over saturated images in our data 

set. These oversaturated images, as in Appendix C, bias the network filters during training. In 

order to reduce the number of oversaturated images in the dataset, we may use histogram 

truncation, where we trim the tails of the image histogram, the extreme pixel values, from the 

image. We may remove these oversaturated images from the dataset altogether, as well. Lastly, 

we plan to increase the GradCAM resolution. The current GradCAM produces low resolution 

heat maps, which makes it more difficult to detect the regions of interest with the naked eye. In 

the future, we will implement high resolution GradCAM methods, such as Res-3D-Grad-CAM-

Shallow, which will crisply reveal regions of interest. Through these techniques, we hope to 

improve the generalizability, performance, and interpretability of the deep learning algorithm 

and provide an effective diagnostic tool to inform cancer treatment options for subjects prone to 

depression development. 
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Appendix A: Materials and Cost 

We used the software and hardware listed in tables 1 and 2, respectively. The software was open-

source and readily accessible. 

Table 2: Software 

Product Cost 

Python 3 N/A 

Pip N/A 

NumPy N/A 

Scikit-Learn N/A 

Scikit-Image N/A 

PyTorch N/A 

 

Table 3: Hardware 

Product Cost 

2 x NVIDIA GeForce GTX Titan X $2000 
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Appendix B1: Subject Selection Code 
import os 
import sys 
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
import json 
 
root = os.getcwd() 
fname = "GDSCALE.csv" 
fpath = os.path.join(root, fname) 
 
# Read into Pandas DataFrame, denoted as df 
df = pd.read_csv(fpath, na_values = "-4") 
 
# Cleaning 
df.drop(labels = ["ID", "SITEID", "VISCODE", "VISCODE2", "USERDATE2", 
"EXAMDATE", "GDUNABL", "GDUNABSP", "update_stamp"], axis = 1, inplace = True) 
df.dropna(axis = 0, inplace = True) 
df.reset_index(drop = True, inplace = True) 
 
def to_years(date, delimiter = '/'): 
    month, day, year = date.split(delimiter) 
    m = float(month)*(1.0/12.0) 
    d = float(day)*(1.0/365.0) 
    y = float(year) + (2000.0) 
    return (m + d + y) 
 
class subject(): 
    def __init__(self, rid): 
         
        self.rid = rid 
        self.startdate = 0.0 
        self.num_samples = 0 
        self.meets_criteria = False 
         
        # Exam dates and corresponding exam scores 
        self.examdates = [] 
        self.examscores = [] 
         
    def append(self, date, score): 
        self.examdates.append(date) 
        self.examscores.append(score) 
        self.num_samples += 1 
         
    # Sort in chronological order 
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    def sort(self): 
        # Insertion Sort 
        i = 1 
        while(i < len(self.examdates)): 
            j = i 
            while(j >= 1): 
                if(self.examdates[j] < self.examdates[j-1]): 
                    # Examdates 
                    temp = self.examdates[j] 
                    self.examdates[j] = self.examdates[j-1] 
                    self.examdates[j-1] = temp 
                    # Scores 
                    temp = self.examscores[j] 
                    self.examscores[j] = self.examscores[j-1] 
                    self.examscores[j-1] = temp 
                j -= 1 
            i += 1 
        if(0 < len(self.examdates)): 
            self.startdate = self.examdates[0] 
     
    # Normalize by the first year 
    # Use after sorting 
    def normalize(self): 
        if(0 < len(self.examdates)): 
            for i in range(len(self.examdates)): 
                self.examdates[i] -= self.startdate 
     
    def get_years(self): 
        return np.asarray(self.examdates) 
     
    def get_scores(self): 
        return np.asarray(self.examscores) 
     
    def get_num_samples(self): 
        return self.num_samples 
     
    def get_startdate(self): 
        return self.startdate 
     
    def check_criteria(self, thresh = 6): 
        meets_thresh = False 
        rise_and_fall = False 
        for i in range(len(self.examscores)): 
            if(thresh <= self.examscores[i]): 
                meets_thresh = True 
            if(True == meets_thresh and thresh > self.examscores[i]): 
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                rise_and_fall = True 
        # Includes both cases, where one stays under the threshold or continuously increases 
        if(not meets_thresh and not rise_and_fall): 
            self.meets_criteria = True 
        if(meets_thresh and not rise_and_fall): 
            self.meets_criteria = True 
        return self.meets_criteria 
 
# Hash table of subjects 
subjects = [subject(i) for i in range(np.nanmax(np.asarray(df["RID"], dtype = np.int32)) + 1)] 
 
for i in range(len(df)): 
    subjects[np.int32(df["RID"][i])].append(np.float32(to_years(df["USERDATE"][i])), 
np.float32(df["GDTOTAL"][i])) 
 
for i in range(len(subjects)): 
    subjects[i].sort() 
 
for i in range(len(subjects)): 
    subjects[i].normalize() 
 
# Remove subjects with less than three data points 
subset = [] 
for i in range(len(subjects)): 
    if(3 > subjects[i].num_samples): 
        for j in range(len(df)): 
            if(i == df["RID"][j]): 
                subset.append(j) 
 
df.drop(axis = 0, index = subset, inplace = True) 
df.reset_index(drop = True, inplace = True) 
 
# Remove subjects that do not meet the criteria 
subset = [] 
for i in range(len(subjects)): 
    if(not subjects[i].check_criteria()): 
        for j in range(len(df)): 
            if(i == df["RID"][j]): # If the RID matches 
                subset.append(j) # Append the row index 
 
df.drop(axis = 0, index = subset, inplace = True) 
df.reset_index(drop = True, inplace = True) 
 
# Get start dates 
startdates = [0.0 for i in range(len(subjects))] 
for i in range(len(subjects)): 
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    if(0 < len(subjects[i].get_years())): 
        startdates[i] = subjects[i].get_startdate() 
 
# Convert dates to years in df 
df["Years"] = df["USERDATE"] 
for i in range(len(df)): 
    df["Years"][i] = to_years(df["USERDATE"][i]) - startdates[np.int32(df["RID"][i])] 
 
for i in range(len(df)): 
    if(0 > df["Years"][i]): 
        df["Years"][i] = 0 
 
# Write to csv file 
df.to_csv("patients_that_meet_criteria.csv") 
 
#### 
# Transfer to R to make lmer model 
# After modeling in R, transfer back 
 
#### 
# Create Labels 
fname = "rates.csv" 
fpath = os.path.join(root, fname) 
df1 = pd.read_csv(fpath) 
 
df1.head() 
 
rids = [] 
rates = [] 
lbls = [] 
for i in range(len(df1)): 
    rids.append(str(df1["Unnamed: 0"][i])) 
    rates.append(df1["Years"][i]) 
    if(0 > df1["Years"][i]): 
        lbls.append(0) 
    else: 
        lbls.append(1) 
 
# Reformat rids 
for i in range(len(rids)): 
    while(4 > len(rids[i])): 
        rids[i] = '0' + rids[i] 
 
lbls_dict = dict(zip(rids, lbls)) 
 
fname = "revised_labels.json" 
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with open(fname, 'w') as fp: 
    json.dump(lbls_dict, fp)   
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Appendix B2: Labeling Code in R 
# Depression rates for patients who develop depression only 
 
library('lme4') 
library('ggplot2') 
 
# Load data 
fname <- '~/Documents/SCU/SeniorDesign/patients_that_meet_criteria.csv' 
fd <- read.csv(fname) 
summary(fd) 
 
# Initialize model 
model <- lmer(GDTOTAL ~ Years + (Years|RID), fd) 
summary(model) 
 
# Extract individual slopes 
slopes <- ranef(model)$RID 
 
# Save output 
fname <- "~/Documents/SCU/SeniorDesign/rates.csv" 
write.csv(slopes, file = fname) 
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Appendix B3: Dataset Augmentation Code 
import os 
import numpy as np 
from glob import glob 
import nibabel as nib 
from imgaug import augmenters as iaa 
import imgaug as ia 
 
cwd = os.getcwd() 
contents = list(glob("norm_classes/*/*")) 
output = "norm_classes-aug" 
 
seq = iaa.Sequential([ 
    iaa.Affine(rotate=(5)) 
]) 
 
for i in range(len(contents)): 
    img = np.load(contents[i]) 
    pat_id = contents[i].split('/')[-2] 
    date = contents[i].split('/')[-1].split('.')[-2] + '_aug' 
    path = os.path.join(output, pat_id) 
    path2 = os.path.join(path, date) + '.npy' 
    if os.path.exists(path) == 0: 
        os.makedirs(path) 
    if os.path.exists(path2) == 0: 
        try: 
            augd = seq(images=img) 
            np.save(path2, augd) 
        except: 
            print('error adding:') 
            print(pat_id, date)   
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Appendix B4: Dataset Code 
import os 
import sys 
import json 
import numpy as np 
from sklearn import preprocessing 
import skimage 
from skimage.transform import downscale_local_mean 
import torch 
from torch.utils.data import Dataset 
 
class v3(Dataset): 
    def __init__(self, root_fpath, json_fpath, generate_subset = False, add_noise = False): 
        super(v3, self).__init__() 
 
        self.root = root_fpath 
        self.children = os.listdir(self.root) 
        self.generate_subset = generate_subset 
        self.add_noise = add_noise 
 
        self.imgs = [] # Individual image filepaths 
        self.labels = [] # Labels per each image 
        self.subjects = [] # Subject rid 
 
        self.subset_imgs = [] 
        self.subset_labels = [] 
        self.subset_subjects = [] 
 
        self.progressors = 0 
        self.nonprogressors = 0 
 
        self.progressor_imgs = 0 
        self.nonprogressor_imgs = 0 
 
        self.subset_progressors = 0 
        self.subset_nonprogressors = 0 
 
        self.subset_progressor_imgs = 0 
        self.subset_nonprogressor_imgs = 0 
 
        with open(json_fpath, 'r') as fp: 
            self.lbls_dict = json.load(fp) 
 
        # As of v3, the root directory must contain a subdirectory for each patient 
        # Ex: 0003, 0005, 0008, and so on 
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        for i in range(len(self.children)): 
            lbl = self.lbls_dict[self.children[i]] 
            # On the subject level 
            if(1 == lbl): 
                self.progressors += 1 
            else: 
                self.nonprogressors += 1 
            child = os.path.join(self.root, self.children[i]) 
            files = os.listdir(child) 
            for j in range(len(os.listdir(child))): 
                # On the sample level 
                if(1 == lbl): 
                    self.progressor_imgs += 1 
                else: 
                    self.nonprogressor_imgs += 1 
                file = os.path.join(child, files[j]) 
                self.imgs.append(file) 
                self.labels.append(lbl) 
                self.subjects.append(self.children[i]) 
 
        if(self.generate_subset): 
            max_ = np.max(np.asarray(self.children, dtype = np.int32)) 
            represented = np.zeros(max_+1) # Hash table for represented subjects using subject rids 
            switch = 1 # Switch between positive and negative cases, starting with positive cases 
            np.random.seed(0) 
            while(self.progressor_imgs > self.subset_progressor_imgs 
                and self.progressor_imgs > self.subset_nonprogressor_imgs): 
                idx = np.random.choice(len(self.children)) # Randomly select subject 
                lbl = self.lbls_dict[self.children[idx]] # Grab label for subject 
                if(switch): 
                    if(1 == lbl and 0 == represented[int(self.children[idx])]): 
                        self.subset_progressors += 1 
                        child = os.path.join(self.root, self.children[idx]) 
                        files = os.listdir(child) 
                        for j in range(len(os.listdir(child))): 
                            # On the sample level 
                            self.subset_progressor_imgs += 1 
                            file = os.path.join(child, files[j]) 
                            self.subset_imgs.append(file) 
                            self.subset_labels.append(lbl) 
                            self.subset_subjects.append(self.children[idx]) 
                        represented[int(self.children[idx])] += 1 
                        switch = 0 
                else: 
                    if(0 == lbl and 0 == represented[int(self.children[idx])]): 
                        self.subset_nonprogressors += 1 
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                        child = os.path.join(self.root, self.children[idx]) 
                        files = os.listdir(child) 
                        for j in range(len(os.listdir(child))): 
                            # On the sample level 
                            self.subset_nonprogressor_imgs += 1 
                            file = os.path.join(child, files[j]) 
                            self.subset_imgs.append(file) 
                            self.subset_labels.append(lbl) 
                            self.subset_subjects.append(self.children[idx]) 
                        represented[int(self.children[idx])] += 1 
                        switch = 1 
 
    def __len__(self): 
        if(False == self.generate_subset): 
            return self.progressor_imgs + self.nonprogressor_imgs 
        else: 
            return self.subset_progressor_imgs + self.subset_nonprogressor_imgs 
 
    def __getitem__(self, idx): 
        # Note : Normalize and standardize images before saving in order to expedite loading 
        if(False == self.generate_subset): 
            img = np.load(self.imgs[int(idx)]).astype(np.float32) 
            if(self.add_noise): 
                img = skimage.util.random_noise(img, mode = "gaussian", seed = None) 
            cube_shape = (80, 120, 120) 
            img_cube = self._get_cube(img, cube_shape) 
 
            label = torch.Tensor([self.labels[int(idx)]]).long() # Compatible with CrossEntropyLoss() 
            subject = self.subjects[int(idx)] 
        else: 
            img = np.load(self.subset_imgs[int(idx)]).astype(np.float32) 
            if(self.add_noise): 
                img = skimage.util.random_noise(img, mode = "gaussian", seed = None) 
            cube_shape = (80, 120, 120) 
            img_cube = self._get_cube(img, cube_shape) 
 
            label = torch.Tensor([self.subset_labels[int(idx)]]).long() 
            subject = self.subset_subjects[int(idx)] 
 
        # Downsample image resolution in order to increase batch size 
        img_cube = downscale_local_mean(img_cube, (2,2,2)) 
 
        img_cube = torch.Tensor(img_cube).float() # Convert to torch.float32 
 
        img_cube = torch.unsqueeze(img_cube, dim = 0) # Insert channel dimension 
        img_cube.requires_grad = True 
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        return (img_cube, label) 
 
    def _get_cube(self, img, cube_shape): 
        depth_offset = (img.shape[0] - cube_shape[0])//2 
        width_offset = img.shape[1]//8 
        height_offset = img.shape[2]//8 
        img_cube = np.zeros(cube_shape) 
        for i in range(cube_shape[0]): 
            for j in range(cube_shape[1]): 
                for k in range(cube_shape[2]): 
                    img_cube[i][j][k] = img[depth_offset + i][width_offset+j][height_offset+k] 
        return img_cube 
 
    def __repr__(self): 
        if(False == self.generate_subset): 
            print("Progressors : Nonprogressors") 
            print("%d : %d" % (self.progressors, self.nonprogressors)) 
            print("Progressor_imgs : Nonprogressor_imgs") 
            print("%d : %d" % (self.progressor_imgs, self.nonprogressor_imgs)) 
        else: 
            print("Progressors : Nonprogressors") 
            print("%d : %d" % (self.subset_progressors, self.subset_nonprogressors)) 
            print("Progressor_imgs : Nonprogressor_imgs") 
            print("%d : %d" % (self.subset_progressor_imgs, self.subset_nonprogressor_imgs)) 
        return str(self.__class__) 
 
# For splitting indices 
# Split indices and load into PyTorch Sampler 
# Load PyTorch Sampler into dataloader 
def split(length, val_prct, test_prct): 
    train_sampler = np.random.permutation(int(length - (length*val_prct) - (length*test_prct))) 
    val_sampler = np.random.permutation(int(length*val_prct)) 
    test_sampler = np.random.permutation(int(length*test_prct)) 
    # Make sure subjects do not appear in more than one subset 
    for i in range(len(val_sampler)): 
        val_sampler[i] += len(train_sampler) 
    for i in range(len(test_sampler)): 
        test_sampler[i] += len(train_sampler) + len(val_sampler) 
    return train_sampler, val_sampler, test_sampler 
 
def check_distro(dataLoader): 
    class0 = 0 
    class1 = 0 
    for i, data in enumerate(dataLoader): 
        imgs, lbls = data 
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        for j in range(len(lbls)): 
            if(0 == lbls[j]): 
                class0 += 1 
            else: 
                class1 += 1 
    return class0, class1 
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Appendix B5: Deep Learning Algorithm 
#### 
import os 
 
#### 
# PyTorch modules 
import torch 
import torch.nn as nn 
from torch.nn import Conv3d 
from torch.nn import BatchNorm3d 
from torch.nn import ReLU 
from torch.nn import AdaptiveAvgPool3d 
from torch.nn import Linear 
import torch.nn.functional as F 
 
#### 
# Metrics modules 
import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.metrics import accuracy_score 
from sklearn.metrics import confusion_matrix 
from sklearn.metrics import roc_curve 
from sklearn.metrics import roc_auc_score 
 
#### 
# Image modules 
import skimage 
import skimage.transform 
 
#### 
# Medical Image Formatting 
import nibabel as nib 
 
#### 
# ResNet34-Based Architecture with adjustments for 3D images and CAM compatability 
 
class v2(nn.Module): 
 
    def __init__(self): 
        super(v2, self).__init__() 
 
        # Width parameter in Deep Double Descent by Nakkiran et al. 
        k = 64 
 
        # Skip the first convolution, which reduces img size 
        # self.conv11 = Conv3d(1, 64, 3, 2, 0) # double filter dimension, halve img dimensions 
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        # TODO : Split into feature extractor and classifier 
 
        self.conv11 = Conv3d(1, k, 3, 1, 1) # Increase filter dimension 
 
        self.block11 = self._basic(k, 3, 1, 1) 
        self.block12 = self._basic(k, 3, 1, 1) 
        self.block13 = self._basic(k, 3, 1, 1) 
 
        self.conv21 = Conv3d(k, 2*k, 3, 2, 0) # increase filter dimension, halve img dimensions 
        self.conv22 = Conv3d(2*k, 2*k, 3, 1, 1) 
 
        self.proj21 = Conv3d(k, 2*k, 3, 2, 0) # increase upstream img dimensionality to match 
downstream img dimensionality 
 
        self.block21 = self._basic(2*k, 3, 1, 1) 
        self.block22 = self._basic(2*k, 3, 1, 1) 
        self.block23 = self._basic(2*k, 3, 1, 1) 
 
        self.conv31 = Conv3d(2*k, 4*k, 3, 2, 0) # increase filter dimension, halve img dimensions 
        self.conv32 = Conv3d(4*k, 4*k, 3, 1, 1) 
 
        self.proj31 = Conv3d(2*k, 4*k, 3, 2, 0) 
 
        self.block31 = self._basic(4*k, 3, 1, 1) 
        self.block32 = self._basic(4*k, 3, 1, 1) 
        self.block33 = self._basic(4*k, 3, 1, 1) 
        self.block34 = self._basic(4*k, 3, 1, 1) 
        self.block35 = self._basic(4*k, 3, 1, 1) 
 
        self.conv41 = Conv3d(4*k, 8*k, 3, 2, 0) # increase filter dimension, halve img dimensions 
        self.conv42 = Conv3d(8*k, 8*k, 3, 1, 1) 
 
        self.proj41 = Conv3d(4*k, 8*k, 3, 2, 0) 
 
        self.block41 = self._basic(8*k, 3, 1, 1) 
        self.block42 = self._basic(8*k, 3, 1, 1) 
        self.block43 = self._basic(8*k, 3, 1, 1) 
 
        self.pool = AdaptiveAvgPool3d(1) # Output : (D, H, W) : (1, 1, 1) 
 
        # self.linear1 = Linear(512, 256, bias = False) # Arbitrary decision for hidden neurons 
        # self.linear2 = Linear(256, 128, bias = False) 
        # self.linear3 = Linear(128, 2, bias = False) 
        self.linear3 = Linear(8*k, 2, bias = False) 
        # self.linear3 = Linear(128, 2, bias = False) # 1*1*1*num_channels 
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        # Input shape is the number of channels of the output 
 
        # Variable to store the gradients from the previous convolution 
        self.gradients = None 
         
        # Variable to store activation maps from the previous convolution 
        self.activations = None 
 
    def forward(self, img): 
 
        img = self.conv11(img) 
 
        # Begin solid skip connections 
        img = F.relu(self.block11(img) + img) 
        img = F.relu(self.block12(img) + img) 
        img = F.relu(self.block13(img) + img) 
        # End solid skip connections 
 
        # ---- # 
 
        # Begin dotted skip connection 
        temp = F.relu(self.conv21(img)) 
        temp = F.relu(self.conv22(temp)) 
        img = self.proj21(img) 
        img = img + temp 
        # End dotted skip connection 
 
        # Begin solid skip connections 
        img = F.relu(self.block21(img) + img) 
        img = F.relu(self.block22(img) + img) 
        img = F.relu(self.block23(img) + img) 
        # End solid skip connections 
 
        # ---- # 
 
        # Begin dotted skip connection 
        temp = F.relu(self.conv31(img)) 
        temp = F.relu(self.conv32(temp)) 
        img = self.proj31(img) 
        img = img + temp 
        # End dotted skip connection 
 
        # Begin solid skip connections 
        img = F.relu(self.block31(img) + img) 
        img = F.relu(self.block32(img) + img) 
        img = F.relu(self.block33(img) + img) 
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        img = F.relu(self.block34(img) + img) 
        img = F.relu(self.block35(img) + img) 
        # End solid skip connections 
 
        # ---- # 
 
        # Begin dotted skip connection 
        temp = F.relu(self.conv41(img)) 
        temp = F.relu(self.conv42(temp)) 
        img = self.proj41(img) 
        img = img + temp 
        # End dotted skip connection 
 
        # Begin solid skip connections 
        img = F.relu(self.block41(img) + img) 
        img = F.relu(self.block42(img) + img) 
        img = F.relu(self.block43(img) + img) 
        # End solid skip connections 
 
        # For GradCAM 
        if((not self.training) and img.requires_grad): 
            # Grab the activation maps 
            self.activations = img 
         
            # Hook the gradients after the last convolutional layer 
            handle = img.register_hook(self._hook) 
            # register_hook is a tensor method 
            # register_hook takes a function as an argument to grab the gradients 
            # register_hook returns a handle? 
 
        # Pooling 
        pool = self.pool(img) 
        pool = pool.view(img.shape[0], -1) # Flatten 
        # N x C 
 
        # logits = self.linear1(pool) 
        # logits = self.linear2(logits) 
        # logits = self.linear3(logits) 
        logits = self.linear3(pool) 
        probs = F.softmax(logits, dim = 1) # Softmax applied across columns 
        return probs 
 
    #### 
    # from Kaiming He's initial publication on residual networks 
    def _basic(self, channels, kernel_size = 3, stride = 1, padding = 0): 
        # If you want to maintain the input image dimensions, set padding = (kernel_size - 1)//2 
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        return nn.Sequential(Conv3d(channels, channels, kernel_size, stride, padding), # 
Conv3d(in_channels, out_channels, kernel_size, stride, padding) 
                             ReLU(), # Do I need this ReLU? 
                             Conv3d(channels, channels, kernel_size, stride, padding)) # maintain image 
dimensions via padding = (kernel_size-1)//2 
 
    def _bottleneck(self, io_channels, intermediary_channels, kernel_size = 1, stride = 1, padding 
= 0): 
        # If you want to maintain the input image dimensions, set padding = (kernel_size - 1)//2 
        return nn.Sequential(Conv3d(io_channels, intermediary_channels, kernel_size, stride, 
padding), 
                             ReLU(), 
                             Conv3d(intermediary_channels, intermediary_channels, kernel_size, stride, 
padding), 
                             ReLU(), 
                             Conv3d(intermediary_channels, io_channels, kernel_size, stride, padding)) 
 
    #### 
    # Implemented with batch normalization 
    def _basic_bn(self, channels, kernel_size = 1, stride = 1, padding = 0): 
        # If you want to maintain the input image dimensions, set padding = (kernel_size - 1)//2 
        return nn.Sequential(Conv3d(channels, channels, kernel_size, stride, padding), 
                             BatchNorm3d(channels), 
                             ReLU(), 
                             Conv3d(channels, channels, kernel_size, stride, padding), 
                             BatchNorm3d(channels)) 
 
    #### 
    # Hook to grab gradients during GradCAM 
    def _hook(self, grad): 
        self.gradients = grad 
 
    #### 
    # Network information 
    def __repr__(self): 
 
        state_dict = self.state_dict() 
        layers = list(state_dict.keys()) 
        params = list(state_dict.values()) 
 
        num_params = 0 
 
        for i in range(0, len(params)): 
            count = 1 
            for j in range(0, len(params[i].shape)): 
                count *= params[i].shape[j] 



57 

            num_params += count 
            # print(str(layers[i]) + " : " + str(params[i].shape)) 
 
        print("Number of Parameters : %d\n" % num_params) 
 
        return str(self.__class__) 
 
#### 
# These functions must accept the model as an argument in order to be compatible with 
nn.DataParallel 
# It is assumed that the model is wrapped in nn.DataParallel prior to using these functions 
 
#### 
# Save current model 
def save_DataParallel(model, path): 
    # Save DataParallel model generically, so I can load to any device desired 
    torch.save(model.module.state_dict(), path) 
 
#### 
# Load previous model 
def load(model, path): 
    model.load_state_dict(torch.load(path)) 
 
#### 
# Single prediction / set of predictions 
def predict(model, sample, device): 
    probs = model(sample.to(device)) 
    preds = torch.argmax(probs, dim = 1) 
    return probs, preds 
 
def _train_step(model, train_loader, device, loss_func, optimizer): 
    running_train_loss = 0.0 
    ground_list = [] 
    pred_list = [] 
 
    for i, data in enumerate(train_loader, 0): 
        imgs, labels = data # Split images and labels 
        imgs = imgs.to(device) 
        labels = labels.to(device) 
        labels = torch.squeeze(labels, dim = 1) 
 
        optimizer.zero_grad() # Zero the gradients for the next pass 
 
        probs = model(imgs) 
        preds = torch.argmax(probs, dim = 1) 
        # max_probs, preds = torch.max(probs, dim = 1) 
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        loss = loss_func(probs, labels) # Calculate loss 
        loss.backward() # Calculate gradients 
        optimizer.step() # Perform back pass/update weights 
        running_train_loss += loss.cpu().detach().numpy() 
 
        # Is it a problem that the tensors are on the gpu at this point? 
        for j in range(len(preds)): 
            ground_list.append(labels[j].cpu().detach().numpy()) 
            pred_list.append(preds[j].cpu().detach().numpy()) 
 
    running_train_loss = running_train_loss/len(train_loader) 
    accuracy = accuracy_score(ground_list, pred_list) 
 
    return running_train_loss, accuracy 
 
def _val_step(model, val_loader, device, loss_func): 
 
    running_val_loss = 0.0 
    ground_list = [] 
    pred_list = [] 
 
    for i, data in enumerate(val_loader, 0): 
        imgs, labels = data 
        imgs = imgs.to(device) 
        labels = labels.to(device) 
        labels = torch.squeeze(labels, dim = 1) 
 
        probs = model(imgs) 
        preds = torch.argmax(probs, dim = 1) 
         
        loss = loss_func(probs, labels) 
        running_val_loss += loss.cpu().detach().numpy() 
 
        for j in range(len(preds)): 
            ground_list.append(labels[j].cpu().detach().numpy()) 
            pred_list.append(preds[j].cpu().detach().numpy()) 
 
    running_val_loss = running_val_loss/len(val_loader) 
    accuracy = accuracy_score(ground_list, pred_list) 
 
    return running_val_loss, accuracy 
 
#### 
# Training 
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def fit(model, train_loader, val_loader, device, epochs, loss_func, optimizer, writer, save, 
save_path): 
 
    model.train() # set to training mode 
 
    path1 = "train_loss.txt" 
    path2 = "val_loss.txt" 
    path3 = "train_acc.txt" 
    path4 = "val_acc.txt" 
 
    # Clear files if they already exist 
    fp1 = open(path1, 'w') 
    fp2 = open(path2, 'w') 
    fp3 = open(path3, 'w') 
    fp4 = open(path4, 'w') 
 
    fp1.close() 
    fp2.close() 
    fp3.close() 
    fp4.close() 
 
    for epoch in range(epochs): 
 
        epoch_train_loss, epoch_train_acc = _train_step(model, train_loader, device, loss_func, 
optimizer) 
        epoch_val_loss, epoch_val_acc = _val_step(model, val_loader, device, loss_func) 
 
        # Write to TensorBoard 
        writer.add_scalar("Train/Loss", epoch_train_loss) 
        writer.add_scalar("Val/Loss", epoch_val_loss) 
        writer.add_scalar("Train/Acc", epoch_train_acc) 
        writer.add_scalar("Val/Acc", epoch_val_acc) 
 
        fp1 = open(path1, 'a') 
        fp2 = open(path2, 'a') 
        fp3 = open(path3, 'a') 
        fp4 = open(path4, 'a') 
 
        # Save to csv files 
        fp1.write(str(epoch_train_loss) + ',') 
        fp2.write(str(epoch_val_loss) + ',') 
        fp3.write(str(epoch_train_acc) + ',') 
        fp4.write(str(epoch_val_acc) + ',') 
 
        fp1.close() 
        fp2.close() 
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        fp3.close() 
        fp4.close() 
 
        if(True == save): 
            # Saves a DataParallel model 
            save_DataParallel(model, os.path.join(save_path, str(epoch) + ".pth")) 
 
        print("Epoch : %d" % (epoch)) 
        print("Train Loss : %f\tValidation Loss : %f" % (epoch_train_loss, epoch_val_loss)) 
        print("Train Acc : %f\tValidation Acc : %f\n" % (epoch_train_acc, epoch_val_acc)) 
 
    fp1 = open(path1, 'r') 
    fp2 = open(path2, 'r') 
    fp3 = open(path3, 'r') 
    fp4 = open(path4, 'r') 
 
    train_loss = fp1.read() 
    val_loss = fp2.read() 
    train_acc = fp3.read() 
    val_acc = fp4.read() 
 
    fp1.close() 
    fp2.close() 
    fp3.close() 
    fp4.close() 
 
    train_loss = train_loss.split(',') 
    val_loss = val_loss.split(',') 
    train_acc = train_acc.split(',') 
    val_acc = val_acc.split(',') 
 
    train_loss.pop() 
    val_loss.pop() 
    train_acc.pop() 
    val_acc.pop() 
 
    train_loss = np.asarray(train_loss, dtype = np.float32) 
    val_loss = np.asarray(val_loss, dtype = np.float32) 
    train_acc = np.asarray(train_acc, dtype = np.float32) 
    val_acc = np.asarray(val_acc, dtype = np.float32) 
 
    plt.figure() 
    plt.plot(np.arange(epochs), train_loss, np.arange(epochs), val_loss) 
    plt.xlabel("Epochs") 
    plt.ylabel("Loss") 
    plt.legend(["Train Loss", "Val Loss"]) 
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    plt.savefig("Losses.png") 
 
    plt.figure() 
    plt.plot(np.arange(epochs), train_acc, np.arange(epochs), val_acc) 
    plt.xlabel("Epochs") 
    plt.ylabel("Accuracy") 
    plt.legend(["Train Acc", "Val Acc"]) 
    plt.savefig("Accuracy.png") 
 
#### 
# Testing 
def evaluate(model, test_loader, device): 
 
    model.eval() # set to eval mode 
 
    # For sklearn roc curve generation 
    path1 = "grounds.txt" 
    path2 = "predictions.txt" 
    path3 = "probabilities.txt" 
 
    fp1 = open(path1, 'w') 
    fp2 = open(path2, 'w') 
    fp3 = open(path3, 'w') 
 
    fp1.close() 
    fp2.close() 
    fp3.close() 
 
    fp1 = open(path1, 'a') 
    fp2 = open(path2, 'a') 
    fp3 = open(path3, 'a') 
     
    with torch.no_grad(): 
        for i, data in enumerate(test_loader, 0): 
            imgs, labels = data 
            imgs = imgs.to(device) 
            labels = labels.to(device) 
            labels = torch.squeeze(labels, dim = 1) 
 
            probs = model(imgs) 
            # preds = torch.argmax(probs, dim = 1) 
            corresponding_probs, preds = torch.max(probs, dim = 1) 
 
            # Write necessary data to csv files 
            for j in range(len(preds)): 
                fp1.write(str(labels[j].cpu().detach().numpy()) + ',') 
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                fp2.write(str(preds[j].cpu().detach().numpy()) + ',') 
                fp3.write(str(corresponding_probs[j].cpu().detach().numpy()) + ',') 
 
    fp1.close() 
    fp2.close() 
    fp3.close() 
 
    # Reload 
    fp1 = open(path1, 'r') 
    fp2 = open(path2, 'r') 
    fp3 = open(path3, 'r') 
 
    # Loads string 
    grounds = fp1.read() 
    preds = fp2.read() 
    probs = fp3.read() 
 
    fp1.close() 
    fp2.close() 
    fp3.close() 
 
    # Converts to list 
    grounds = grounds.split(',') 
    preds = preds.split(',') 
    probs = probs.split(',') 
 
    # Pop off empty element 
    grounds.pop() 
    preds.pop() 
    probs.pop() 
 
    # Convert to numpy array 
    grounds = np.asarray(grounds, dtype = np.int8) # Just zeros and ones 
    preds = np.asarray(preds, dtype = np.int8) # Just zeros and ones 
    probs = np.asarray(probs, dtype = np.float32) 
 
    # Metrics 
    tn, fp, fn, tp = confusion_matrix(grounds, preds).ravel() # ravel flattens the array 
    cm = np.array([[tp, fp], 
                   [fn, tn]]) 
    print(cm) 
 
    fpr, tpr, thresholds = roc_curve(grounds, probs, pos_label = 1) 
 
    plt.figure() 
    plt.plot(fpr, tpr) 
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    plt.title("ROC") 
    plt.ylabel("TPR") 
    plt.xlabel("FPR") 
    plt.savefig("figures/figure1.png") 
 
    accuracy = accuracy_score(grounds, preds) 
    print("Accuracy : %f" % accuracy) 
 
    # To view tensorboard run this command on the command line: tensorboard --logdir=runs 
 
#### GradCAM 
def GradCAM(model, imgs, device, name, save = False, root = '.'): 
 
    imgs = imgs.to(device) 
 
    # Enables gradient calculation for the tensor 
    if(not imgs.requires_grad): 
        imgs.requires_grad = True 
     
    # Predict 
    probs, preds = predict(model, imgs, device) # Make a prediction 
    # Note : tc.argmax() is a nondifferentiable function and sets requires_grad to False 
    prob = probs[:,preds] # Isolate the predicted class 
 
    # Get the gradients of the predicted class w.r.t. the parameters of the model 
    prob.backward() # Computes the gradient of current tensor w.r.t. graph leaves. 
    # Note : backward() throws an error with multidimensional tensors 
    # The tensor must be a zero rank tensor / a scalar 
 
    # Extract gradients from the model 
    gradients = model.gradients 
 
    # Pool the gradients 
    pooled_gradients = torch.mean(gradients, dim = (2, 3, 4)) 
 
    # Extract feature maps 
    activations = model.activations.detach() 
 
    # Extract number of channels 
    ch_dim = 1 # ch_dim is 1 in PyTorch 
    num_channels = activations.shape[ch_dim] 
 
    # For each channel 
    for i in range(num_channels): 
        activations[:,i,:,:,:] *= pooled_gradients[:,i] 
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    # Take the average across the channels 
    heatmap = torch.mean(activations, dim = ch_dim) 
 
    # Apply ReLU. Only positive contributions pass. 
    rectified_heatmap = torch.nn.functional.relu(heatmap) 
 
    # Normalize the heatmap for each sample in the batch 
    for i in range(imgs.shape[0]): 
        rectified_heatmap[i] /= torch.max(rectified_heatmap[i]) 
 
    # Resize each heatmap 
    resized_heatmap = np.zeros((imgs.shape[0], imgs.shape[2], imgs.shape[3], imgs.shape[4])) 
    for i in range(imgs.shape[0]): 
        resized_heatmap[i] = skimage.transform.resize(rectified_heatmap[i].cpu().numpy(), 
(imgs.shape[2], imgs.shape[3], imgs.shape[4])) 
 
    # Overlay the heatmaps on the original images 
    # super_imposed = np.zeros((imgs.shape[0], imgs.shape[2], imgs.shape[3])) 
    # for i in range(imgs.shape[0]): 
    #     super_imposed[i] = resized_heatmap[i] + imgs[i][0].detach().numpy() 
 
    # Save CAM in nifti format 
    # Can read in MRIcron 
    if(save): 
        nifti = nib.Nifti1Image(resized_heatmap[0], np.eye(4)) 
        nib.save(nifti, os.path.join(root, name + '.nii.gz')) 
 
    return resized_heatmap 
 
# Check to see if GPU is available 
def get_device(): 
    if(torch.cuda.is_available()): 
        return torch.device("cuda:0") 
    else: 
        return torch.device("cpu") 
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Appendix B6: Training Code 
import os 
 
import numpy as np 
import torch as tc 
import torchvision as viz 
from torchvision.transforms import Normalize 
from torch.utils.data import SubsetRandomSampler 
from torch.utils.data import DataLoader 
from torch.utils.tensorboard import SummaryWriter # available as of PyTorch version 1.2 
 
import json 
 
# Custom Modules 
import datasets 
import models2 
from models2 import get_device 
 
def main(): 
 
    # Get current working directory 
    root = os.getcwd() 
    # Set data directory and label file 
    parent_dir = os.path.join(root, "norm_classes") 
    lbl_file = os.path.join(root, "revised_labels.json") 
 
    # Load dataset 
    ds = datasets.v3(parent_dir, lbl_file) 
 
    path1 = "train_sampler.npy" 
    path2 = "val_sampler.npy" 
    path3 = "test_sampler.npy" 
 
    if(os.path.exists(path1) and os.path.exists(path2) and os.path.exists(path3)): 
        train_sampler = np.loadtxt(path1) 
        val_sampler = np.loadtxt(path2) 
        test_sampler = np.loadtxt(path3) 
    else: 
        # Split indices for training, validation, and testing 
        train_sampler, val_sampler, test_sampler = datasets.split(len(ds), 0.10, 0.20) 
        # Only run for new permutations 
        np.savetxt(path1, train_sampler) 
        np.savetxt(path2, val_sampler) 
        np.savetxt(path3, test_sampler) 
 
    # Load into PyTorch Sampler 
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    trainSampler = tc.utils.data.SubsetRandomSampler(train_sampler) 
    valSampler = tc.utils.data.SubsetRandomSampler(val_sampler) 
    testSampler = tc.utils.data.SubsetRandomSampler(test_sampler) 
    # Load data into PyTorch DataLoader using respective sampler 
    batch_size = 16 
    train_loader = tc.utils.data.DataLoader(ds, batch_size, False, trainSampler) 
    val_loader = tc.utils.data.DataLoader(ds, batch_size, False, valSampler) 
    test_loader = tc.utils.data.DataLoader(ds, batch_size, False, testSampler) 
 
    # Creates new SummaryWriter 
    # Writes to runs 
    # If a runs directory does not exist, it will create one 
    writer = SummaryWriter() 
 
    # Get GPU if available 
    device = get_device() 
 
    # Load model 
    model = models2.v2() 
    # Check number of GPU's available 
    # If > 1, split training 
    if(tc.cuda.device_count()): 
        model = tc.nn.DataParallel(model) 
        print("Using %d GPU's." % tc.cuda.device_count()) 
    model = model.to(device) # Send model to GPU if available 
 
    loss_func = tc.nn.CrossEntropyLoss() 
 
    lr = 0.001 
    momentum = 0.9 
    optimizer = tc.optim.SGD(model.parameters(), lr, momentum) 
 
    epochs = 200 
    save = True 
    save_path = os.path.join(root, "session5") 
    models2.fit(model, train_loader, val_loader, device, epochs, loss_func, optimizer, writer, save, 
save_path) 
    return 0 
 
if(__name__ == "__main__"): 
    status = main() 
    print(status) 
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Appendix B7: Statistical Evaluation Code 
import os 
 
import numpy as np 
import torch as tc 
import torchvision as viz 
from torchvision.transforms import Normalize 
from torch.utils.data import SubsetRandomSampler 
from torch.utils.data import DataLoader 
from torch.utils.tensorboard import SummaryWriter # available as of PyTorch version 1.2 
 
import json 
 
# Custom Modules 
import datasets 
import models2 
from models2 import get_device 
 
def main(): 
    # Get current working directory 
    root = os.getcwd() 
    # Set data directory and label file 
    parent_dir = os.path.join(root, "norm_classes-aug") 
    lbl_file = os.path.join(root, "revised_labels.json") 
 
    # Load dataset 
    ds = datasets.v3(parent_dir, lbl_file, True) 
 
    path3 = "test_sampler.npy" 
 
    if(os.path.exists(path3)): 
        test_sampler = np.loadtxt(path3) 
    else: 
        print("No test_sampler provided.") 
 
    # Load into PyTorch Sampler 
    testSampler = tc.utils.data.SubsetRandomSampler(test_sampler) 
    # Load data into PyTorch DataLoader using respective sampler 
    batch_size = 16 
    test_loader = tc.utils.data.DataLoader(ds, batch_size, False, testSampler) 
 
    # Check to see if GPU is available 
    device = get_device() 
 
    # Load model 
    model = models2.v2() 
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    models2.load(model, "session5/130.pth") 
    # Check number of GPU's available 
    # If > 1, split training 
    if(tc.cuda.device_count()): 
        model = tc.nn.DataParallel(model) 
        print("Using %d GPU's." % tc.cuda.device_count()) 
    model = model.to(device) # Send model to GPU if available 
    # model.eval() 
 
    # Evaluate the model 
    models2.evaluate(model, test_loader, device) 
    return 0 
 
if(__name__ == "__main__"): 
    status = main() 
    print(status) 
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Appendix B8: Graphical Evaluation Code 
#### 
import os 
import sys 
 
#### 
# PyTorch modules 
import numpy as np 
import torch 
import models2 
 
#### 
# Medical Image Formatting 
import nibabel as nib 
 
def get_device(): 
    if(torch.cuda.is_available()): 
        return torch.device("cuda:0") 
    else: 
        return torch.device("cpu") 
 
def get_cube(img, cube_shape): 
    depth_offset = (img.shape[0] - cube_shape[0])//2 # Take the difference and center it 
    width_offset = img.shape[1]//8 
    height_offset = img.shape[2]//8 
    img_cube = np.zeros(cube_shape) 
    for i in range(cube_shape[0]): 
        for j in range(cube_shape[1]): 
            for k in range(cube_shape[2]): 
                img_cube[i][j][k] = img[depth_offset + i][width_offset+j][height_offset+k] 
    return img_cube 
 
def main(argc, argv): 
 
    if(3 > argc): 
        print("Usage: python3 script.py image.nii.gz name") 
        return -1 
 
    cwd = os.getcwd() 
    # nifti = nib.load(os.path.join(cwd, argv[1])) 
    # img = nifti.dataobj 
    img = np.asarray(np.load(os.path.join(cwd, argv[1])), dtype = np.float32) 
 
    # Assuming that we use the original size (96 x 160 x 160) 
    cube_shape = (80, 120, 120) 
    # Should I downsample like I do when training? 
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    img_cube = get_cube(img, cube_shape) 
    nifti_cube = nib.Nifti1Image(img_cube, np.eye(4)) 
    nib.save(nifti_cube, os.path.join(cwd, argv[2] + '_cuboid.nii.gz')) 
 
    img_cube = torch.Tensor(img_cube) 
    img_cube = torch.unsqueeze(torch.unsqueeze(img_cube, dim = 0), dim = 0) 
    img_cube.requires_grad = True 
 
    device = get_device() 
    # device = "cpu" 
    model = models2.v2() 
    model.eval() 
    model.to(device) 
    models2.load(model, "session5/130.pth") 
    _ = models2.GradCAM(model, img_cube, device, argv[2] + '_GradCAM.nii.gz', save = True) 
    print("GradCAM saved.") 
 
    return 0 
 
if(__name__ == "__main__"): 
    status = main(len(sys.argv), sys.argv) 
    print(status)   
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Appendix C: Oversaturated Versus Saturated Image 

 

Figure 8: Oversaturated Image 

 

Figure 9: Normal Image 
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Appendix D: Patent Search 
 

We performed a patent search for machine learning algorithms similar to ours. 

Specifically, we searched for patents that were representative of machine learning algorithms 

that performed classification tasks. The following are the machine learning systems that are 

representatives by the few patents that we found:  

1. Medical Imaging System Providing Disease Prognosis 

2. Method and System for Automated Brain Tumor Diagnosis Using Image Classification 

3. Systems and methods for brain hemorrhage classification in medical images using an 

artificial intelligence network. 

The Medical Imaging System Providing Disease Prognosis patent portrays a machine 

learning system that can input medical imaging data of a few samples of high dimensionality to 

perform a classification task. This system is very generalizable. The algorithm of the medical 

imaging system can perform classification tasks to aid in diagnosing and monitoring cognitive 

diseases like Alziehmer and dementia. Unlike in our deep learning algorithm, this algorithm 

system uses an autoencoder as its neural network rather than a ResNet [30]. 

The Method and System for Automated Brain Tumor Diagnosis Using Image 

Classification patent portrays a machine learning method and system that uses learned features of 

a brain tumor to make classification decisions. This classification is done on confocal laser 

endomicroscopy (CLE) images of the brain. CLE is a medical imaging technique that provides 

microscopic information of tissue in real-time on cellular and subcellular levels. The classes used 

are malignant or benign tissues. Any specific classifier and any type of machine learning based 

classifier may be used: Support Vector Machine (SVM) or random forest classifier [31]. 
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The Systems and Methods for Brain Hemorrhage Classification in Medical Images Using 

an Artificial Intelligence Network to help characterize and classify brain hemorrhaging.  An 

image from an x-ray computed tomography ("CT") imaging system is fed into the machine 

learning algorithm of a convolutional neural network. The output of the system is a class 

activation map that indicates at least one type of brain hemorrhage and a confidence value of 

each labeled region of where the hemorrhaging may be occurring representing a corresponding at 

least one brain hemorrhage condition [32].  

Based on the patents above, creating a patent for our machine learning algorithm is 

promising. Sometimes algorithms are considered as computational and therefore non patentable. 

However, since we are applying our algorithm as a part of a technical solvency, our project will 

be patentable. Lastly, our system and method around our algorithm solves a unique classification 

problem with regards to identifying a predisposition rather than identifying a sign of diagnosis.  
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