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Abstract. We present a look at Ookami, a project providing community access to a testbed
supercomputer with the ARM-based A64FX processors developed by a collaboration between
RIKEN and Fujitsu and deployed in the Japanese supercomputer Fugaku. We provide
an overview of the project and details of the hardware, and describe the user base and
education/training program. We present highlights from previous performance studies of two
astrophysical simulation codes and present a strong scaling study of a full 3D supernova
simulation as an example of the the machine’s capability.

1. Introduction
In this paper, we describe Ookami, a project providing access to a testbed computing system
featuring the ARM-based A64FX processor developed by a collaboration between RIKEN and
Fujitsu and deployed in Fugaku, what was, until June of 2022, the world’s fastest supercomputer
[1]. The project is run by Stony Brook University (SBU) in cooperation with the University
at Buffalo [2] and provides open access along with training and resources to effectively use
such hardware. Users have been able to port, analyze, and optimize the performance of many
applications [3]. Below, we describe the hardware, our user base and education program, and
provide highlights from previous performance studies of two astrophysical simulation codes,
the astrophysical radiation hydrodynamics code V2D [4] and multi-application package FLASH
[5, 6], here applied to thermonuclear supernovae. We also present a strong scaling study of a
production 3D supernova simulation that demonstrates the capability of the hardware.

2. Overview of Project
The primary goal of the Ookami project is to provide access to a platform with the
A64FX processors for testing and development. These processors offer an alternative to
graphical programming units (GPUs) that power many contemporary supercomputers but may
require considerable code development to make good use of. The expectation is that the
reduced instruction set A64FX processors will provide high performance and reliability for
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applications with common programming models, particularly memory-intensive applications,
while maintaining a good performance-to-power ratio similar to GPUs. Users with a variety
of applications are able to explore and evaluate this new hardware and its potential for use in
settings from a local cluster to the extreme scale of leadership-class supercomputing centers.

The Ookami project started in 2019 and will run for six years, providing researchers worldwide
with access to this cutting-edge computing technology. For the first few years, access to Ookami
was allocated via SBU. Researchers submitted allocation requests directly to the Ookami team,
who reviewed them. Approved projects were granted access to the cluster for testbed projects,
and once users could prove that their application performs well on this novel architecture, they
could advance their projects to production status. In October 2022 Ookami became an ACCESS
[7] resource provider, and now 90% of its resources are allocated via ACCESS. Users can submit
requests to ACCESS and, if approved, get credits, which they can then exchange for resources
(e.g. node hours, GPU hours, storage) on one or multiple of the ACCESS resource providers.

2.1. The A64FX Hardware
Ookami is an HPE (formerly Cray) Apollo 80 system with 174 + 2 debug Fujitsu A64FX-FX700
compute nodes, each of which has 48 cores divided into 4 core memory groups (NUMA regions),
each with 8 GB of high-bandwidth memory (HBM) for a total of 32 GB per node. Each core has
a 64 KB L1 cache, and an 8 MB L2 cache shared between the cores in each core memory group,
and runs at 1.8 GHz. These processors use the ARMv8.2–A Scalable Vector Extension (SVE)
SIMD instruction set with a 512-bit vector implementation, allowing for vector lengths from 128
to 2048 bits (in 128-bit increments) and enabling vector length agnostic programming [8].

The operating system for each processor resides on a node’s local 512 GB SSD and processors
communicate via an Infiniband HDR100 fat tree interconnect with 200 Gb/s switches. A high-
performance Lustre file system provides about 800 TB of storage. At present, Ookami is running
Rocky Linux 8.4, and compilers and toolchains from GNU, LLVM, ARM, HPE/Cray, NVIDIA,
LLVM, and Fujitsu are installed.

2.2. User Base
Since Ookami was opened to researchers, 358 users have been onboarded. Those users work on
125 projects, 31 of which have been allocated via ACCESS. The experience of the users is very
diverse as they range from undergrad students to professors and professionals with decades of
High Performance Computing (HPC) experience. Figure 1 illustrates the distribution of users.

Figure 1. Pie chart with the distribution
of users on Ookami, 358 as of November,
2023. SBU users are researchers from on-
campus. External users are from other
academic institutions. The core team is the
personnel working on the project, including
computational scientists, grad students,
and system administrators. ACCESS users
are the recent users added via the ACCESS
program.

2.3. Education and Training
To cover the complex needs of the user community, the Ookami project has established a multi-
modal support approach [9]. The extensive documentation, FAQ section, and getting-started
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guide on the project’s website [2] allow users to learn everything about the system and its efficient
use via self-study. However, because user support is especially important for novel technology,
Ookami also offers a Slack channel, to which all new users are automatically added. There they
can ask questions, get feedback, or just start an informal conversation with other users as well
as with the project team. The average response time is normally within a few minutes, making
this the perfect tool for quick help. Office hours, offered twice a week, enable users to ask more
detailed questions. These are virtual meetings open to all users, led by Ookami team members.
This is the perfect opportunity to do an interactive debugging or profiling session, or to just
show applications and get feedback. On average these calls are attended by six to seven persons.
Ookami also offers a traditional ticketing system, which is mainly used for installation requests,
new user or project requests, or used by users who prefer this approach over the Slack channel.

Regular webinars spanning various topics, e.g. profilers, debuggers, and programming
languages, are held to support the user community holistically and to provide updated input for
the usage of HPC tools. The Ookami team also reaches out to communities that have potential
interest in the cluster, e.g. Campus Champions [10], Science Gateways [11], and computational
researchers with suitable applications, and introduces them to A64FX and the opportunity to
use Ookami for their work. Other outreach activities include an introduction to HPC for high
school students, who come to the institute without prior experience, learn the basics of HPC,
get up and running on Ookami, and depart with a self-reported positive experience.

3. Performance Studies
Guided by the bountiful support of the Ookami team and user community, we were able to port
and evaluate the performance of two different astrophysical simulation codes on Ookami: V2D
and FLASH. Below, we report the results of our efforts including comparing the performance of
different available compilers and considering the capacity for full production runs.

3.1. V2D
The V2D code solves the Euler equations of inviscid hydrodynamics and multi-species flux-
limited diffusive radiation transport in two spatial dimensions via finite-difference methods. It
was originally designed for the core-collapse supernovae problem of astrophysics but may be
applied to other radiation-hydrodynamic problems. Details related to the underlying numerical
methods can be found in [4]. V2D is written in modern Fortran, employs MPI for communication,
and uses the the HDF5 library for parallel I/O.

The problem we chose for our study with V2D is a the propagation of a 2D Gaussian pulse
of radiation, a diffusive radiation transport problem. The computational effort is in the solution
of a large, sparse, memory-bandwidth-limited linear system that describes the time evolution of
the radiation distribution. The linear system consists of x1 × x2 × 2 coupled linear equations,
with x1 = 200, and x2 = 100 zones in the spatial dimensions, and there are two radiation
species. Each time step thus requires the solution of a unique x1 × x2 × 2 linear system, and
the solution is obtained via the BiCGSTAB algorithm. This is a relatively small test problem
chosen to explore the performance of SVE optimization. Also, we make only limited use of
the parallel capability of V2D when we vary the process topology to adjust the problem size
on/ each processor. The linear system is sparse, but it has a regular structure. The method is
matrix-free, but if the matrix corresponding to this system were stored with a dictionary-like
ordering it would form a banded matrix with five bands.

We tested combinations of compilers and MPI implementations. As a sample of results,
those presented below indicate test runs using the GNU (ver. 11.1.0), Fujitsu (ver. 4.5), and
HPE/Cray (ver. 21.03) compilers. We compared the CPU times of simulations compiled with
different compilers, both with and without SVE optimization. The Linux perf stat command
of the Linux kernel performance monitor, with the -e duration time flag, was used to measure
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the time of the simulations. This command measures the entire CPU time of the process. Each
configuration (of the total number of processors used and the process topology in the x1- and
x2- directions, determining how the linear system was partitioned) was run several times to
confirm the timing results. Also, each test problem was run for 100 time steps.

All compilers available on Ookami are able to make use of SVE capabilities. In our tests, the
SVE and optimization features were used, but we also turned off the SVE and other optimization
features on some of the HPE/Cray tests for comparison purposes. When using a single processor,
the executable compiled by GNU took the longest to complete the test run, around 363.91
seconds, while that compiled by the Fujitsu compiler, around 252.31 seconds, and the executable
compiled using the HPE/Cray compiler (with optimization), around 181.26 seconds. Using more
processors, however, with different domain decomposition to CPU core topologies, the executable
compiled by Fujitsu performed better than the one compiled by HPE/Cray.

The following chart presents these results. The values in the Np column refer to the total
number of processors used for the run, with the numbers in the “Direction” NX1 column
indicating the number of domain decomposition tiles in the x1 direction and similarly for the
numbers in the NX2 column. Thus the product of the two values equals the total number of
processors requested. The column labeled HPE/Cray (opt) indicates results obtained with an
executable compiled both with both -O3 optimization and SVE optimization enabled.

Np Direction Times by Compiler (seconds)
NX1 NX2 Fujitsu HPE/Cray (opt)

40 40 1 13.97 19.12
40 20 2 12.96 17.37
40 10 4 13.04 17.16
50 50 1 13.05 25.56
50 25 2 12.09 24.07
50 10 5 11.40 23.51

We note that the 50 core runs necessitated going to cores on a second node. The results varied
by compiler, but in the case of the Cray compiler the “plateau” in the performance may follow
from the overhead of communication across nodes. Further details may be found in [12].

3.2. FLASH
3.2.1. Overview and Initial Experiences FLASH is a simulation software package for addressing
multi-scale, multi-physics applications. Initially developed at the University of Chicago to
address thermonuclear flashes, stellar explosions powered by a thermonuclear runaway occurring
on the surface or in the interiors of compact stars, FLASH continues to be developed for
astrophysics [13] and high-energy-density physics [14], and a new code, FLASH-X, derived
from FLASH and with a completely new infrastructure, is under development and will allow
addressing more general problems [15].

At its heart, FLASH is a hydrodynamics plus additional physics (e.g. a stellar equation of
state) method. FLASH uses the PARAMESH library to implement adaptive mesh refinement
(AMR) to address problems with a wide range of physical scales on a block-structured
mesh [16, 17]. FLASH is written primarily in modern Fortran and is parallelized primarily
through MPI, although some solvers have been modified to take advantage of threaded
approaches to parallelization [18] and development continues toward a more general design for
better thread support [19–21].

PARAMESHmanages a block-structured adaptive mesh, with the data typically in 16×16×16
zone blocks (16 × 16 in 2D). Each block also includes four ghost zones in each direction
around the block, and communication between blocks occurs through exchange of data in
the ghost zones. Variables like density, temperature, internal energy, etc., are stored in
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a data container, unk, a Fortran array in the form unk(nvar, il bnd, iu bnd, jl bnd,

ju bnd, kl bnd, ku bnd, maxblocks), where nvar is the number variables, il bnd:iu bnd,

jl bnd:ju bnd, kl bnd:ku bnd are the x, y, and z zone limits, and maxblocks is the maximum
number of blocks allowed for a given processor element. Accordingly, block data is typically
accessed block-by-block with the result being that there is a stride in memory for addressing
variables in different zones or blocks.

As it was one of the marquee applications for the Ookami project, FLASH was ported as
soon as Ookami was up and available. Sorting out the compilers and their options, versions of
MPI, and requisite packages like the HDF5 library took some effort, but our initial experience
with FLASH and other applications was overwhelmingly positive [3]. FLASH ran “right out
of the box” with several compilers and MPI implementations, scaling reasonably well with
no tuning. Profiling with Linaro (née Arm) MAP [22] indicated that thermonuclear supernova
simulations, our problem of interest, spent considerable time in the hydrodynamics and equation
of state (EOS) routines so we decided to focus our analysis on those routines while running 2D
supernova simulations. We investigated use of SVE with the HPE/Cray, Fujitsu, and GNU
compilers, but vectorization proved difficult due to significant branching in the main loops of
the EOS routines. Details of our exploration with scaling results and our attempt to utilize the
A64FX’s SVE instructions and NUMA architecture may be found in [23].

To investigate other areas where we could improve performance, we instrumented the code
with the Performance Application Programming Interface (PAPI) [24], and found that the
number of data translation lookaside buffer (DTLB) misses were exceptionally high. The DTLB
is a special cache that manages the mapping of virtual to physical memory. Given the stride
in memory of the data layout of PARAMESH, a logical choice was to investigate memory
management to study the high number of DTLB misses and we chose the use of Huge Pages.

3.2.2. Huge Pages and Compiler Comparison Huge Pages (hp) are a Linux kernel feature that
allow blocks of memory larger than the default 64 KB page to be used when managing virtual
memory, reducing the number of pages managed by the operating system (OS). This is useful
for simulations with a large memory footprint. Hp come in two types, standard (explicitly
managed) and transparent (automatically managed by the OS). Transparent hp are by default
disabled on Ookami, so the results presented here use standard 2 MB hp.

For our hp study, we ran 2D supernova simulations and 3D pure hydrodynamics simulations
of the Sedov explosion problem, one of the standard test problems provided with FLASH. We
dubbed these “EOS” and “3-d Hydro” because the equation of state and 3D hydrodynamics
routines were the parts of the code instrumented for performance testing. Details of the EOS
and the Sedov explosion problem may be found in the original FLASH paper [5]. For the hp
study, the EOS test ran a ∼ 1 GB 2D SN Ia simulation for 50 time steps and one refine ending
with 624 blocks and the 3D Hydro test ran a ∼ 9 GB Sedov explosion simulation for 2 time steps
and one refine ending with 3337 blocks. Both tests were run on 1 and 12 cores. FLASH Morton
orders the blocks to be spatially located together, so to spread the blocks as much as possible
the runs on 12 cores used the round robin distribution of processors. Details of the simulations,
science, and results may be found in [25].

We began our study of hp with the Fujitsu compiler because it readily made use of hp
(by default) and needed just a compiler flag to toggle between using hp or not. Subsequent
investigation allowed us to utilize hp with other compilers by linking to the Fujitsu library
libmpg. Using PAPI, we collected hardware counter data over the course of the run, and then
used it to calculate derived quantities such as bandwidths and latencies following the calculations
in the A64FX manual [26]. We refer to these counters and their derived metrics as “performance
measures”. The performance measures were then used to compare runs with hp, without hp, with
the Fujitsu compiler, and with the GCC compiler, to better understand how different settings
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and compilers took advantage of the architecture. Runs on 1 core and 12 cores exhibited similar
patterns in their performance measures, so we show results for only the 1 core runs below.

Figure 2 shows a comparison between simulations of the two test problems compiled with
the Fujitsu 4.5 and GCC 12.2.0 compilers. Shown are ratios with and without hp of runtime,
CPU cycles, DTLB misses, L1 and L2 DTLB misses, L1D and L2 cache misses, cycles waiting
for memory, Bandwidth between L1D and L2 caches and L2 and HBM, and Latency for L1D
cache misses and L2 cache misses.

Figure 2. Bar chart showing the ratios of performance measures with and without hp for
simulations of the two test problems with the Fujitsu and GNU compilers. Each bar is the ratio
of each metric for simulations with and without hp. The DTLB misses show a drastic decrease
when hp is enabled, regardless of compiler or test problem. For reasons unknown, the GNU
executable for the EOS problem had 2.53× higher latency with hp enabled than disabled. The
rest of the measures remain fairly close to 1.

Figure 3 presents the results of performance tests of FLASH for the two problems with and
without hp. Shown are the same performance measures as the compiler test of Figure 2, except
the ratios compare the compiler performance of the Fujitsu to the GNU compiler.

The results for the hp study may be summarized as follows. The use of hp decreased DTLB
misses as expected, but this decrease did not affect performance as we expected. We attribute
this finding to the performance of the translation table cache, but further research is needed to
fully understand this result. The difference in compilers, however, had a large effect on runtime
without making any changes to the code. FLASH performed faster with the Fujitsu compiler,
requiring half the runtime and half the number of CPU cycles as with the GNU compiler.
Fujitsu-compiled executables can access HBM 1.5 - 3× faster, so even though a similar number
of cache misses as with the GNU compiler were seen, misses are not as expensive. Using the
Fujitsu compiler, the code spends half as much time waiting for memory than when compiled
with the GNU compiler. But because we also found that memory access is only 20-40% of the
runtime (not illustrated in the plots), we conclude that the increased bandwidth can’t completely
account for the speedup. Complete results of our exploration of hp may be found in [27, 28].



15th International Conference on Numerical Modeling of Space Plasma Flows
Journal of Physics: Conference Series 2742 (2024) 012019

IOP Publishing
doi:10.1088/1742-6596/2742/1/012019

7

Figure 3. Bar chart showing the ratios of performance measures for Fujitsu and GNU compilers
for simulations of the two test problems with (Hp) and without (No hp) hp. Each bar is the
ratio of each metric for simulations compiled with the Fujitsu to the GNU compiler.

3.2.3. 3D Production Test As a way of testing the efficacy of Ookami for production runs, for
this work we performed a scaling study with a full 3D simulation of a thermonuclear supernova,
one of a suite of simulations from an ongoing science investigation. In this case, FLASH was
compiled for 16×16×16 zones per block and a maximum of 50 blocks per core. The simulations
included the full physics of the flame model, equation of state, and multipole Poisson solve, and
were run under production conditions in which the simulation was restarted from a checkpoint
file and the mesh adapted as dictated by the fluid flow, typically every two time steps. FLASH
was compiled with the GNU compiler v12.1.0 and were linked to the OpenMPI v4.1.4 MPI
library and parallel hdf5 v1.12.1.

The simulations for the scaling study were started “in medias res” at about 0.5 s into the
explosion when the flame is very active. The simulations consisted of approximately 33,000
blocks and ran for 20 time steps with 10 mesh refinements. The restart file was 30 GB, and
the simulation required a minimum of 220 GB to run. The simulations were run on 21, 32,
64, and 128 nodes 7 times each, removing the minimum and maximum runtimes and averaging
the remaining 5. The simulation ran on 36 of the 48 cores on each node, with 9 MPI ranks
per NUMA region. This choice follows from experimentation with running simulations to fill
much of the memory on a node. We discuss this issue in more detail below. The results of the
scaling study are illustrated in Figure 4 and demonstrate reasonable strong scaling through 128
nodes. Also, the figure presents curves for the the total run time and the evolution time. The
difference is the time required for initialization, reading the checkpoint file, and saving the final
output, about 9 - 33 % of the run time. Although the input file is the same size in all cases, this
percentage increases with the number of nodes as the amount of communication increases.

The choice of running on 36 of 48 possible cores follows from limitations of both FLASH and
the A64FX memory. The number of blocks allocated must fit within the effective 27 GB node
memory limit of Ookami. This is complicated by the adaptive mesh which needs more space
to store its tree structure as the number of blocks grows, and the memory used by MPI which
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Figure 4. Strong scaling study for a full 3D simulation of a thermonuclear supernova with
FLASH. The simulation had ∼ 33,000 blocks, and ran for 20 timesteps and 10 grid refinements.
Shown are the full runtime and the evolution runtime which excludes I/O and initialization.

increases with the number of nodes in use. This sets an upper limit on the number of blocks
that can be allocated to each processor. At the same time, for reasons we are still investigating,
FLASH has issues with its guard blocks if too few blocks are allocated per processor. These
opposing requirements meant that we needed to maximize the number of processors per node,
and minimize the number of blocks allocated per process. We found a balance by allocating 50
blocks per process using 36 of the 48 available cores, which uses 26 GB of memory per node.

Using this configuration, we would be able to allocate a maximum of ∼316,000 blocks, or
4.7 TB, if we used the full machine. This limit is reached quickly in 3D, especially when
we include the effects of a background turbulence field, a current work in progress, in our
simulation. However, knowledge of this machine can lead to success on its larger counterpart,
the supercomputer Fugaku, which has nearly 1000 times the number of nodes and memory than
Ookami, along with a custom interconnect and additional assistant cores. This makes testing
code on Ookami even more valuable, as understanding this testbed can lead to successful runs
on more powerful machines with the same architecture.

4. Summary and Conclusions
Judging from the machine’s use, the activity in Office Hours and the Slack channel, and the
attendance at webinars, we conclude that the project has been successful in that it has indeed
allowed many users with a variety of applications to meaningfully explore the Fujitsu A64FX
processor. Our education and outreach efforts have been effective and have created a community
of users that work well together.

Our performance studies for the two astrophysics codes produced mixed results. Both codes
were readily ported to Ookami and ran with minimal adjustment. The use of SVE improved
the performance of V2D but branching in the material EOS routines of FLASH prevented
meaningful vectorization and thus there was no performance improvement. The use of hp with
FLASH produced a dramatic decrease in DTLB misses but did not improve the performance
of FLASH. This result suggests that DTLB misses do not adversely affect the performance of
FLASH. We attribute this finding to the A64FX’s translation table cache, which decreases the
latency of virtual to physical address translation [26]. Finally, our results show that the best
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performance for V2D and FLASH applications on the A64FX architecture of Ookami occurs
with the use of the Fujitsu compiler.

While the relatively small available memory per node of Ookami presented some challenges,
our strong scaling study with FLASH under production conditions demonstrated reasonable
scaling. We conclude that with experimentation and tuning, the machine is able to perform
production simulations for multi-scale, multi-physics applications with a variety of solvers
and provide valuable experience for porting larger and more detailed simulations to the
supercomputer Fugaku.
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