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Abstract

The financial crisis of 2007-2009 demonstrated the need to understand the macro-

dynamics of interconnected financial systems. A fruitful approach to this problem

regards financial infrastructures as weighted directed networks, with banks as nodes

and loans as links. Using a simple banking model in which banks are linked through

interbank lending, with an exogenous shock applied to a single bank, we find a closed-

form analytical solution for the degree at which failures begin to propagate in the

network. This critical degree is expressed as a function of four financial parameters:

banking leverage; interbank exposure; return on the investment opportunity; and in-

terbank lending rate. While the transition to failure propagation is sharpest with

regular networks, we observe it numerically for random and scale-free networks as

well. We find that, if the expected number of failures is not strongly dependent on

the network topology and is well captured by the notion of critical degree, the fre-

quency of catastrophic cascades (with a single shock inducing all or most banks in the

network to fail) tends to be much larger on scale-free networks than on classical ran-

dom networks. We interpret this finding as a manifestation of the “robust-yet-fragile”

property of scale-free networks.

1 Introduction

1.1 Motivation and summary of results

The global turmoil precipitated by the collapse of Lehman Brothers in September 2008

demonstrated the need for a solid understanding of the dynamics of interconnected finan-

cial systems and their potential to generate systemic crises (May, 2008; Haldane, 2009;

Helbing, 2013). Before 2000, banking models explored motivations and behaviors of in-

dividual banks (Diamond and Dybvig, 1983; Santomero, 1984) rather than interbank

∗SFI Complex Systems Summer School 2013 project report
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relations (Allen, Babus, and Carletti, 2009). But studying banks in isolation misses the

systemic consequences emerging from non-linear interactions of the banks. And even in

network research, most theoretical and empirical methods are not suited to predicting

failure cascades in economic networks (Schweitzer, 2009).

It has become increasingly evident in the financial sector that shock propagation mech-

anisms are the very core of the systemic risk concept (DeBandt and Hartmann, 2000).

Since the last financial crisis, contagion has come to be seen as perhaps the most impor-

tant type of systemic failure (Allen, Babus, and Carletti, 2009). However, network models

traditionally have not been among the economic models used to understand systemic risk,

even though contagion can be created by complex network exposure (DeBandt and Hart-

man, 2000); only recently have network measures attracted increased attention among

researchers and central banks. Some are looking at network techniques to design better

banking sector regulations, because the network approach allows identification of conflicts

between banks’ individual incentives and systemic implications of actions generated by

those incentives. Network measures explore more specifically how systemic events unfold

(Bisias et al., 2012).

With this work, we try to shed light on the effects of network structure on contagion. We

analyze a directed network of interbank lending, with banks as nodes and interbank loans

as links. We develop a simple model to obtain a closed-form solution for the expression

of the critical degree at which contagion propagates through a network. We also perform

simulations to allow for heterogeneity of network structure. The main finding of this

study is that the critical degree—which depends on the leverage ratio, lending fraction and

interest rate, and can be estimated without detailed knowledge of the network structure—

correctly captures the expected number of failures in general networks. The frequency of

large deviations (such as catastrophic cascades taking out a large fraction of the network),

on the other hand, strongly depends on the network topology

1.2 Literature Review

A new strand of literature is exploring the effects of financial network structures on sys-

temic risk. While some scholars and regulators view interbank lending primarily as an

efficient way to cope with liquidity shocks (Freixas and Santomero, 2003), others recog-

nize that interbank lending potentially provides channels for contagion. Allen and Gale

(2000), using a simple network model of four banks, show that contagion depends on

the structure of banks’ interconnections. When there is aggregate shortage of liquidity,

complete structures are less prone to contagion than incomplete structures, because cross-

holdings better redistribute liquidity. However, Castiglionesi and Navarro (2007), using

the same simple four-bank model, showed that greater connectivity could increase con-

tagion risk because banks may make imprudent investments given the greater insurance

provided by the financial links. Other studies affirm that complete networks are the most

destabilizing because dense linkages facilitate the contagion of shocks (Vivier-Lirimont,

2006; Blume et al., 2011; Battiston et al., 2012; Billio et al. 2012). Ladley (2013) con-

cluded that no inter-bank market structure maximizes stability under all conditions. Using

a two-period model with two symmetric network structures, Acemoglu et al. (2013) find

that when the shock is small enough, a complete network structure is more stable than

an incomplete one. But when a shock is large, completeness does not guarantee stability

and phase transition may occur.
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A common network topology in banking is the one with a small number of highly

connected financial hubs which seems to create a “robust-yet-fragile” structure, suscepti-

ble to rapid transmission of shocks (Haldane and May, 2011): robust because they may

withstand many external shocks; fragile because they may suddenly exhibit a cascade of

failures. This robust-yet-fragile property is seen in many other complex (scale-free) net-

works (Watts, 2002). Similarly, in finance, interbank networks act as mutual insurance

but, beyond a certain range of connectivity, links amplify shocks (Haldane 2009).

Other studies introduce more realistic balance sheets to study how changes in certain

components of balance sheets impact systemic stability. Gai and Kapadia (2010) explore

the effects of changes in network structure and asset market liquidity on the probability

of contagion derived from counterparty risk. They find that indistinguishable shocks to

the network can have vastly different consequences for contagion and identify two phase

transitions between which the probability of contagion peaks. In a study of the trade-off

between individual and systemic decisions, Beale et al. (2011) show that increasing asset

diversity across banks makes the system more stable, because it prevents herding behavior

that maximizes the probability of systemic collapse.

Several studies analyze the trade-offs between risk-sharing gains in interconnected sys-

tems and the costs of increased risk exposure. Allen, Babus, and Carletti (2012) build a

two-period model where the links of the banks are the exchange of their asset portfolio,

and find that a more clustered network structure is more prone to contagion. Cabrales,

Gottardi and Vega-Redondo (2013) analyze the capacity of the different network struc-

tures to absorb shocks in a model where the links come from interbank participation

on other banks’ investment. They find that when shocks follows a fat-tail distribution,

extreme segmentation is optimal because it minimizes contagion; while high density is

optimal for thin tail distributions, because it achieves the highest risk-sharing. Arinami-

nathy, Kapadia, and May (2012) add confidence shocks to their model and conclude that

the impacts of large, well-connected banks scale more than proportionately with their

size. The systemic impact not only depends on the connectivity but also on the level of

confidence. Glasserman and Young (2013) introduce bankruptcy costs into a system with

confidence loss, and find that the former increases the probability of contagion, while the

latter increases its costs. Finally, Elliott, Golub and Jackson (2013) also introduce failure

costs and distinguish between first failure, contagion, and propagation. They show that

the middle region of connection density is the most vulnerable to contagion. They also

find that cascades introduce a moral hazard problem. Firms have an incentive to bail out

a large failed bank in order to avoid failure costs to themselves, which then incentivizes

failing firms to increase these costs in order to be bailed out.

Most of the literature above uses simulations to study contagion in interbank networks,

for two reasons. First, finding analytical solutions on asymmetric network structures with

heterogeneous bank sizes, balance sheets, etc. is mathematically hard. Second, data

available for empirical studies are limited: nodes may not be easily identifiable, or links

may be limited to a particular day, or data sets may omit global exposures, etc.

Despite the data challenges, some studies use empirical data, which are useful for

establishing parameters in simulations. Soramaki et al. (2007) look at the US interbank

payment system and find that the network has both a low average path length and low

connectivity; the degree distribution is scale free over a substantial range; the clustering

coefficient of the network is 90 times greater than the clustering coefficient of a comparable

random network; and the distribution of link weights follows a power law when weighted by
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the volume of payments and a lognormal when weighted by the value of payments. Degryse

and Nguyen (2007) show that Belgium has shifted away from complete networks, which

has reduced the contagion risk in this country. Mistulli (2011), with data from the Italian

banking system, find that only a small fraction of banks can trigger contagion; which is the

classical too-big-to-fail argument. Motivated by the too-big-to-fail debate, Battiston et al.

(2012) look at the debt exposure among institutions and estimate the systemic importance

of a bank using centrality measures. They suggest that the discussion be broadened to

institutions too-central-to-fail to account for the systemic importance of highly connected

nodes. Arinaminpathy et al. (2012) shows that the impact of large well-connected banks

on the systemic stability scales more than proportionately with their size, which is similar

to the findings in biology, where the role played by superspreaders of infectious diseases is

equivalent to the one of large banks in a banking network.

Other studies highlight similarities between networks in finance with networks in ecol-

ogy and epidemiology. In 1972, May showed that species exhibit a sharp transition from

overall stability to instability as the number and strength of interactions increase. Beale et

al. (2011) find that the tension found in the banking sector between the ideal distribution

of assets from an individual stability perspective and from systemic stability perspective

is similar to ecological systems, where natural selection leads them to adapt in a similar

way while protection of the whole system leads them to diversify. While research on the

trade-off between banks’ individually optimal behavior and systemic optimal behavior is

inconclusive, most studies show that it depends on the structure of the network. We take

an additional step towards understanding this trade-off and its implication for financial

systemic risk by showing that not only network parameters but also financial parameters

such as interbank lending rate, opportunity return rate and leverage are important in

assessing contagion risk, with financial parameters being the more important.

1.3 Organization of the paper

The rest of the paper is structured as follows. Section 2 describes the model used in this

paper. Section 3 presents the theoretical analysis of the critical degree. Section 4 shows

the results of the simulations; and the paper ends with a discussion of the main findings

in Section 5.

2 A model of interbank lending

We use a model of interbank payment flows similar to one introduced in (Eisenberg and

Noe, 2001), variants of which are commonly used in the recent literature on banking

networks, see e.g. (Gai and Kapadia, 2010) and (Acemoglu et al., 2013). Our formulation,

however, incorporates two new parameters: accounting leverage Λ and interbank exposure

f . As we will see, these allow us to come to grips with the effect of diversification, and in

particular of the mean degree of the network, on failures propagation.

We analyze a system of N risk-neutral financial institutions (“banks”) labelled i ∈
{1 · · · , N} operating in a simple two-period economy. Each bank has generic assets and

liabilities in addition to interbank loans. At t = 0, each bank has an investment opportu-

nity and uses its liabilities to fund the investment. At t = 1, the investment project yields

a return of R; and the interbank debts are repaid with a return of r, where R > r > 1.
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The senior liabilities do not bear any interest and must also be repayed at t = 1.

In our model, one bank, bank i, receives an exogenous shock on the return on investment

such that Ri = 0. If the total revenues of the shocked bank are less than the debt to be

repaid, the bank defaults. This individual default may create distress on its creditors since

the failed bank may be unable to repay its debt in full. Consequently, other banks may

be affected and a cascade of failures could occur. In this way an individual bank failure

may become a systemic banking failure. We study what factors determine this systemic

failure.

2.1 Balance sheets and financial ratios

The banking network consists of interbank loans, represented as lij , with lij > 0 when

there is a directed link from bank i to bank j in the network and lij = 0 otherwise.1

Each bank i is initialized with an asset portfolio consisting of these interbank loans,

li =
∑

j 6=i lij , as well as other liquid assets (cash, bonds, etc.) λi and illiquid assets

(buildings, etc.) ιi:

asseti = li + λi + ιi. (1)

Total Assets Total Liabilities

liquid assets λi senior liabilities σi

illiquid assets ιi interbank borrowings bi

interbank loans li capital Ki

Figure 1: Balance sheet of bank i.

We assume that the fractions of each type of asset are constant throughout the network.

These fractions are defined as

f = li/asseti

f (λ) = λi/asseti

f (ι) = ιi/asseti.

The liabilities of each bank i, in turn, consist of interbank borrowings bi =
∑

j 6=i lji and

senior liabilities σi:

liabi = bi + σi. (2)

The senior liabilities consist of debts which take priority for repayment, such as deposits.

We assume that the leverage Λ is fixed, and is defined according to the capital Ki as

Λ ≡ assetsi/Ki (3)

Ki ≡ asseti − liabi, (4)

implying that the senior liabilities σi can be expressed in terms of constants and each

bank’s lending and borrowing li and bi as

σi =
Λ− 1

Λf
li − bi. (5)

1A notational note: hereafter the first (resp. second) index always denotes the source (resp. target) of

a money flow.
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2.2 Investment opportunities

Next, each bank uses the entirety of its liabilities to invest in an external market, obtaining

in return on its investment2

ρi = (Ri − 1) liabi = (Ri − 1)
Λ− 1

Λ
asseti. (6)

Here Ri is an interest rate, which may be larger than one for a succesful investment or

smaller than one for an unsuccessful investment, or “shock”.

2.3 Repayment equation

Third, after the investments are made and their returns collected, all banks repay first

their senior liabilities σi then their junior (interbank) liabilities with an interest rate r.

Repayments are made using their return on investments ρi, liquid assets λi and incoming

repayments xji, as follows:

• Full repayment : if ρi +λi−σi +
∑

j 6=j xji ≥ rbi, bank i repays its junior debt in full,

hence for each j 6= i

xij = rlji,

• Partial default : if 0 < ρi + λi− σi +
∑

j 6=j xji < rbi, bank i repays only a fraction of

its junior liabilities on a pro rata basis, hence for each j 6= i

xij =
lji
bi

ρi + λi − σi +
∑
j 6=i

xji


• Complete default : if ρi + λi− σi +

∑
j 6=j xji ≤ 0, bank i repays nothing at all, hence

xij = 0 for each j 6= i.

These rules are summarized by the equation

xij =
lji
bi

max

min
{
ρi + λi − σi +

∑
j 6=i

xji, rbi

}
, 0

 . (7)

Defining xi ≡
∑

j 6=i xij , we say that bank i is in partial default when 0 < xi < rbi and in

complete default when xi = 0; when a bank i can just repay its interbank borrowings, i.e.

when

ρi + λi − σi +
∑
j

lij
bj
xj = rbi, (8)

we say that i is critical.

After all repayments are made, bank i has a new capital

K ′i = ρi + λi + ιi − σi +
∑
j 6=i

(xji − xij). (9)

We call “safe” the banks i such that K ′i ≥ 0, and “failed” the ones such that K ′i < 0. The

remainder of this manuscript is dedicated to the study of the number F of failed banks

as a function of the financial parameters (interbank exposure f , accounting leverage Λ,

interest rates R and r) and of the network topology. For simplicity we will neglect the

effect of illiquid assets, i.e. we will take ιi = 0 so that f (λ) = 1− f .

2If σi < 0, we take ρi = (Ri − 1)bi; equivalently, the return is defined by ρi = (Ri − 1) max{liabi, bi}.
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Figure 2: The critical degree (15) as a function of the interbank exposure f and of the

leverage factor Λ, for R = 1.05, r = 1.01 (left) and as function of R and r for f = 70%

and Λ = 20 (right).

3 Critical diversification and expected number of failures

In this section we study the relationship between failures contagion and degree in the

network (aka diversification). Specifically, we provide an explicit formula (in terms of the

financial ratios f and Λ and of the interest rates R and r) for the critical degree k∗, such

that failures extend to non-shocked banks only if k ≤ k∗. To this aim, let us begin by

considering the special case of regular networks.

3.1 Regular networks

A regular network is a network where the in-degrees ~ki and out-degrees ~ki of all banks i

are equal to the same value k. It follows from this assumption that li = bi = k, hence the

repayment equation

xi =

min
{
ρi + λi − σi +

∑
j←i

xj
bj
, rbi

}+

(10)

becomes

xi =

min
{
ηik +

∑
j←i

xj
k
, rk
}+

(11)

where ηi = (2− Λ)/Λf if i is the shocked bank and ηi = [(R− 1)Λ + (2−R)]/Λf else.

To proceed, we now make the further assumption that all banks at a given distance d

from the shocked bank repay the same amount xd. This allows us to write

• for the shocked bank:

x0 =
[ 2− Λ

Λf
k + x1

]+
, (12)

• for the first neighbors of the shocked bank:

x1 =

[
min

{(R− 1)Λ + (2−R)

Λf
k +

x0 + c0(k − 1)x1 + (1− c0)(k − 1)x2
k

, rk
}]+

,

(13)

where c0 is the local clustering coefficient of the shocked bank.
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The critical degree k∗ is defined by the condition that only the shocked bank defaults,

and all its first neighbors are critical. This means that x1 = x2 = rk∗ and

ηk∗ +
x0 + c0(k

∗ − 1)rk∗ + (1− c0)(k∗ − 1)rk∗

k∗
= rk∗. (14)

Equations (12) and (14) can be solved for k∗, giving

k∗ =

(
r − [r − (Λ− 2)/(Λf)]+

(R− 1)Λ + (2−R)

)
Λf. (15)

We can distinguish two cases.

• If the shocked bank is in complete default (f < (Λ − 2)/Λr), the critical degree

depends on the interbank interest rate r, reading

k∗ =
rfΛ

(R− 1)Λ + (2−R)
.

• If the shocked bank is only in partial default (f ≥ (Λ − 2)/Λr), the critical degree

depends neither on the interbank interest rate r nor on the loan fraction f , reading

k∗ =
Λ− 2

(R− 1)Λ + (2−R)
.

Observe that, in the limit of large leverage (Λ � 1) and large interbank exposure

(f → 1), the expression (15) reduces to

k∗ ' 1

R− 1
. (16)

Thus, in this limit, the critical degree is just the inverse return on investment, and can

therefore take large values, of the order of one hundred. The general dependence of k∗ on

the interbank exposure f and the leverage factor Λ is plotted in Fig. 2.

In a regular network, we therefore predict that F = 1 for k ≥ k∗ (only the shocked

bank fails), F = 1 + k for k < k∗ but k not too small (all first neighbors fail, and no other

bank fails), and F > 1 + k for k very small (all first neighbors and some higher neighbors

fail). This is confirmed in Fig. 3, where the number of failures in regular networks with

N = 20 was computed numerically.

3.2 More general networks

The case of regular networks forms the basis of a mean-field-type approximation of the

expected number of failures 〈F 〉 for more general random networks, including scale-free

ones. This approximation is based on the following assumptions:

• In any directed random network, the average in-degree 〈~ki〉 and the average out-

degree 〈 ~ki〉 are equal to the mean degree k. Here, we shall assume that ~ki = ~ki ≡ ki
for each bank i, even though ki may depend on i.

• On average, each bank i with degree ki reacts to the shock of another bank as if all

banks had degree ki; in particular, the first neighbors of the shocked bank will fail

if ki < k∗, and else they will remain safe.
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Figure 3: Failures in a regular network. Center: number of failures in a regular network

with N = 20 banks (with R = 1.05, r = 1.01, f = .7, Λ = 20) as a function of the degree

k; the vertical line corresponds to the critical degree k∗ obtained in (15). Note the second

maximum at k = 2, corresponding to the extension of failures to second neighbors of the

shocked bank. Sides: sample regular networks with k = 5 (left) and k = 10 (right); the

shocked bank is represented in black, the failing banks in red and the safe banks in green.

Denoting f(k) the cumulative degree distribution (the probability that a given bank has

an in-degree and out-degree ≤ k), z the mean degree and z2 the mean number of second

neighbors, we are thus led to the expression

〈F 〉 ' 1 + kf(k∗) (17)

where k is the mean degree of the network.3 We test the validity of this—admittedly

rough—approximation in the next section.

4 Comparison of different network topologies

4.1 Models of random graphs

In order to assess the impact of the network topology on the number of failures, we

generated various directed and undirected random networks and ran numerical simulations

of the repayment equation.

• Undirected networks.

Undirected networks correspond to the case where, whenever bank i lends money to

bank j, bank j also lends money to bank i. Although unrealistic, this situation is

the simplest one to investigate, both analytically and numerically. Furthermore, it

allows us to use familiar models of random networks, such as the Erdös-Rényi model

(Erdös and Rényi, 1959) and the Barabási-Albert model (Barabási and Albert, 1999).

– Erdös-Rényi networks. Starting from N initially unconnected nodes, each

pair of nodes is connected by an undirected link with probability p. The result-

ing network has a Poissonian degree distribution with mean k = p(N − 1). See

Fig. 4a.

3This formula could in principle be refined as 〈F 〉 ' 1 + k2f(k∗2) + · · · , where k2 is the mean number

of second neighbors and k∗2 the “second critical degree”, corresponding to the defined as the maximum

degree such that failures extend beyond the first neighbors of the shocked bank (see the second maximum

in Fig. 3).
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– Barabási-Albert networks. Given m0 initial nodes, we attach at each time

step a new node to m ≤ m0 existing nodes, according to the rule of prefer-

ential attachment, meaning that a new node is attached to an old one i with

probability ki/
∑

j kj . For sufficiently large N , this yields a power-law degree

distribution with exponent −3. See Fig. 4b.
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(b) Barabási-Albert network

Figure 4: Sample undirected networks with N = 50 and k = 4 (left) and the histograms

of their vertex degrees (right).

• Directed networks.

Directed networks correspond to the general case where bank i may lend to bank j

even though bank j does not lend to bank i. While it is easy to modify the Erdös-

Rényi model to incorporate directedness, there is no obvious directed generalization

of the Barabási-Albert model. Scale-free directed networks, however, can easily be

generated using the so-called “static” model (Goh et al., 2001).

– Erdös-Rényi directed networks. Starting from N initially unconnected

nodes, each ordered pair of nodes is connected by an directed link with proba-

bility p. The resulting network has Poissonian in-degree and out-degree distri-

butions with mean k = p(N − 1). See Fig. 5a.

– Goh-Kahng-Kim “static” directed networks. Starting from N initial

nodes i, define two probability distributions pin(i) = i−αin/
∑N

j=1 j
−αin and

pout(i) = i−αout/
∑N

j=1 j
−αout , where 0 ≤ αin, αout < 1. Then draw a node i at

random from the distribution pin and a node i′ at random from the distribution

pout; if i 6= i′, assign a directed link from i to i′; else do nothing. Repeat this

10



operation Nk times, dropping multiple edges when they occur. The resulting

network has power-law in-degree and out-degree distributions, with respective

exponents (αin + 1)/αin and (αout + 1)/αout. See Fig. 5b.
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(a) Directed Erdös-Rényi network
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(b) Directed static scale-free (with αin = αout = .9) network

Figure 5: Sample undirected networks with N = 50 and k = 4 (left) and the histograms

of their vertex degrees (right).

4.2 Distribution of failures: numerical results

For each (undirected and directed) random networks models, we simulated the model

of interbank payment flows of sec. 2 using Mathematica and Matlab, and plotted the

number of failures F as a function of the mean degree k for various values of the financial

parameters R, r, f and Λ. We also developed a graphical tool to visualize the propagation

of failures across the network, which proved very useful in guiding our intuition (see Fig.

6).

Our results, presented in Fig. 7 - 9, can be summarized as follows:

• Existence of a transition. In all cases, we observed a (smooth) transition between

a no-contagion regime for k � k∗ to a contagion regime for k - k∗. At low degree

(k ' 0), the isolation of the shocked bank ensures that failures do not propagate (in

the Erös-Rényi case, k = 1 is the percolation threshold).

• Validity of the mean-field approximation. In spite of its simplicity, we found that our

mean-field approximation is in qualitative agreement with the numerical results for
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Figure 6: Visualization of failure propagation in various types of networks of N = 50 with

mean (in-)degree k = 4 (from top left to bottom right: Erdös-Rényi, Barabási-Albert,

directed Erdös-Rényi, directed static scale free). The black node indicates the shocked

bank, the red nodes the failed banks, the green nodes the safe banks. Here R = 1.05,

r = 1.01, f = 70% and Λ = 20.

the mean number of failures, see. Fig. 7 and Fig. 8. In the Barabási-Albert case, for-

mula (17) slightly overestimates the mean number of failures in the contagion regime;

in the directed static scale-free case, on the contrary, (17) is an underestimation.

• Large deviations and catastrophic failures. The mean number of failures by itself

gives us little information about the probability of catastrophic cascades—failures

taking out a significant fraction of the network. We found that, while the mean

number of failures is slightly smaller in the scale-free (Barabási-Albert and directed

static) cases, the probability of catastrophic cascades is much larger than in the

Poissonian case (Erdös-Rényi models), see Fig. 9. This is an illustration of the

“robust-yet-fragile” nature of scale-free networks, which can be traced back to the

presence of many low-degree, low-threat banks (robustness) as well as a few high-

degree, high-threat banks (fragility).

All in all, our results illustrate that, in spite of their “complexity” and their “robust-

yet-fragile” character (observed in Fig. 9), the expected behavior of scale-free interbank

networks vis-à-vis financial shocks can be understood analytically through a single function

12



Figure 7: Expected number of failures in undirected Erdös-Rényi (left) and Barabási-

Albert (right) networks with N = 50 banks, for R = 1.05, r = 1.01, f = 70% and Λ = 20.

of the financial parameters, namely k∗(f,Λ, R, r). This finding is the main contribution

of this work.

5 Conclusion

This research attempts to understand the effects of network structure and financial pa-

rameters on the propagation of contagion in financial networks. We explored this problem

using a mean-field type approximation, which allowed us to obtain a closed-form analytical

solution for the degree at which failures begin to propagate in the network. This critical

degree depends on the financial parameters of the model; that is, leverage Λ; interbank

exposure f ; return on the investment opportunity R; and interbank lending rate r. Our

computer simulations tested the robustness of our results on various types of networks.

While failure propagation shows a sharp transition at critical degree for regular networks,

the transition is more gradual for general random networks because of the non-uniformity

of the degree distribution. We provide a rough but qualitatively correct estimate of the

expected number of failures in such more general cases.

It has often been stressed that real-world networks, owing to their scale-free nature,

exhibit a robust-yet-fragile character. (In such networks, most shocks affect low-degree
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Figure 8: Expected number of failures in directed Erdös-Rényi (left) and directed static

scale-free (right) networks with N = 50 banks, for R = 1.05, r = 1.01, f = 70% and

Λ = 20.
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Figure 9: Distribution of failures for undirected Erdös-Rényi and Barabási-Albert networks

(left), and directed Erdös-Rényi and directed static scale-free networks (right) of N = 50

banks with mean (in- and out-)degree k = 4, for R = 1.05, r = 1.01, f = 70% and Λ = 20.

nodes and are effectively absorbed, but shocks to high-degree hubs can lead to catastrophic

cascades.) We observed these large fluctuations in our model as well, confirming the strong

connection between degree and failure distributions.

Besides refining our mean-field approximation to put this connection between degree

and failures distribution on stronger mathematical footings, future work could include

various extensions of the model itself. Indeed, while this research considers a simplified

situation where an exogenous shock affects a single bank, one may wish to consider consec-

utive shocks to multiple banks. Further, variability in interest rates may be incorporated

in the model by drawing investment rate R from a probability distribution, capturing the

heterogeneity in the investments of each bank. Other extensions could include the effects

of out-degree on the loan sizes, which appear to take the form of a power law (Soromäki

et al. 2007). Assets classes and multiple time periods could be introduced to make the

study more comprehensive and realistic.

Nonetheless, establishing a critical degree for the spread of financial contagion in a

banking network is significant. Determining and regulating interbank loan networks in real

time is a challenge, due to confidentiality concerns and rapidly evolving loan portfolios. As

critical degree seems to depend on financial variables in a definite way, regulators should

pay particular attention to the monitoring and control of these variables to minimize the

probability of systemic failures in the banking system.
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