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Abstract 

Soft robotics is an emerging industry, largely dominated by companies which hand mold 

their actuators. Our team set out to design an entirely 3D printed soft robotic hand, powered by a 

pneumatic control system which will prove both the capabilities of soft robots and those of 3D 

printing. Through research, computer aided design, finite element analysis, and experimental 

testing, a functioning actuator was created capable of a deflection of 2.17” at a maximum 

pressure input of 15 psi. The single actuator was expanded into a 4 finger gripper and the design 

was printed and assembled. The created prototype was ultimately able to lift both a 100-gram 

apple and a 4-gram pill, proving its functionality in two prominent industries: pharmaceutical 

and food packing. 

 

Keywords:  Soft Robot, Soft Robotics, Mechatronics, 3D Printing, Pneumatic, Actuators, 

Human Robot Interaction, Safety, Hand, Robotic Hand, Gripper, Control System, Arduino 
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Chapter 1 - Introduction 

Soft robotics is an emerging sector of robotics, gaining momentum through its use of soft, 

flexible materials in replacement of currently deployed hard, rigid metals. Soft robotics aims at 

eliminating a number of issues related to the use of current robotics in industry. First and 

foremost, soft robots are much safer than current robots due to their lighter weight and softer 

materials. Soft robots allow for greater human-robot interaction and eliminate the need for robots 

to be contained inside of safety cages. Additionally, soft robots are substantially cheaper than 

current rigid bots. Current robot arms generally cost upwards of $50,000 for the arm alone and 

often finish in the $100,000 range once tools and programs have been created [1]. Soft robots are 

substantially cheaper, with the company Soft Robotics typically selling their starter kit for 

$12,999 [2]. Finally, soft robots are ideal for their scalability. Any alteration in the size or shape 

of a soft robot can be accomplished much more rapidly and cheaply in comparison to rigid 

robots. Rigid robots require the outsourcing of materials and require the purchase of expensive 

metals which may create large lead times. Soft robots require the creation of a simple cast 

molding and the purchase of cheaper materials such as silicone. 

Soft robotics is a young industry and because it is so new, only one major university has a 

laboratory to study soft robotics (Harvard University) and only two companies exist that focus on 

creating soft robots for industrial settings (Soft Robotics, Pneubotics). Examples of current soft 

robotic designs can be found in Figures 1a and 1b. The images highlight a gripper design, with 

the fingers possessing pockets for pressurized air to be stored to create actuation. These robots 

largely function in the food packaging industries, utilizing anywhere from 2 to 6 fingers to pick 

and place objects such as tomatoes, donuts, and even retail products. 
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Figure 1a and 1b: Images of currently utilized soft robotic grippers in the industry [Soft Robotics; Shen, Helen] 

Both the university laboratories and companies studying soft robotics have accomplished 

groundbreaking work (most of which can be attributed to Dr. Whiteside and his collaborators at 

Harvard University). The primary issue facing soft robotics is the great deal of limitations 

created by the current materials being deployed. Most functional robots are primarily silicone 

molded, with only a single published paper highlighting a 3D printed soft robot [3]. Utilizing 

silicone molding techniques, a number of limitations are created in the design of many soft 

robots. Hand molding creates limitations in the potential geometry, is often time consuming, and 

can lead to inconsistent manufacturing quality. As our team researched the issues with hand 

molding, we noticed the potential for 3D printing in the soft robotics industry. 

Silicone is primarily the material used in soft robotics namely due to the material 

properties that it is capable of providing. Silicone is strong, but offers great flexibility required of 

a material that is required to bend from a pressurized input. Many 3D printing materials are 

unable to match the properties of silicone, mostly eliminating the potential for 3D printing of soft 

robots. With our established goal of 3D printing our own soft robot, it was evident that we would 

need to find a material capable of being 3D printed and rivaling the properties of silicone. This 

goal was largely accomplished due to our partnership with Molecule Corp., a startup based in 

Concord, CA. Molecule has agreed to supply us with all the needed resins to 3D print soft robots 
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along with access to their lab and 3D printers. These materials have not been released on market 

yet and are the only materials that we could find with cured properties strong and flexible enough 

to fully print robots for an industrial setting.  
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Chapter 2 - Literature Review 

Soft Robotics toolkit [4] 

Soft robotics toolkit is an open sourced website that releases information on all aspects of 

soft robotics. Most of the information on the website is from research labs at Harvard and MIT. 

This site has a number of control system designs that are used for a number of applications. The 

design shown below illustrates the control system that utilizes pressure sensors, valves, a 

microcontroller as well as other components to power a soft robotic actuator. The pressure in the 

system is controlled by pulse width modulation (PMW) and these modulations control the 

opening and closing of the valves. This board and the modulations are controlled by an Arduino 

microcontroller. 

This system allowed us to design and begin simulation of a control system. Although our 

system is a bit more complex, it gave us a great basis, and a good idea of how soft robotic 

actuators are being controlled today. 

 

Figure 2: Open sourced pneumatic control system used for soft robotic actuators [4] 
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U.S. Patent WO2012148472A2: Soft Robotic Actuators [5] 

This patent was one of the first filed patents pertaining to soft robotics and is perhaps the 

most relevant to our patent claim. The main claim of this patent is a soft robotic actuator 

containing a molded body and pressurized inlet which when pressurized will cause a bending 

motion (claim 1). This is important to our patent claim (3D printed soft robotic actuators) since 

this patent is specific to molded bodies. The patent also discusses the process of using a single 

strain limiting surface on the bottom of the actuator and an expanding top layer on the top in 

order to cause the desired bending motion. This is the same process by which our soft robots 

actuate, however the patent continually refers that the soft robot must be molded in order to 

classify as a “soft robotic actuator” (claims 1-35). Since our major difference is through the 3D 

printing process by which we create our actuators this prior art does not conflict with the 

patentability of our product. 

 

Figures 3a and 3b: Images of patented soft robotic actuators [5] 
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U.S. Patent US20160114482A1: Soft robotic actuators utilizing asymmetric surfaces [6] 

 

The main claim of this patent is that a soft robotic actuator be composed of two major 

sections, a bottom portion of constant profile and an upper section of varying profile. This is 

referred to as an asymmetrical geometry and is what allows for the bending motion of the soft 

robotic actuators to occur. This asymmetric geometry as well as pressurizing the upper section is 

the same method by which our product actuates. However, this patent cites and refers to U.S. 

Patent WO2012148472A2 discussed above which claims that soft robotic actuators are once 

again composed of two separate molded components. Although our product may have both a 

section that is of constant profile and another that is asymmetric, the 3D printing process (our 

main patentable claim) separates us from the claim that soft robots must be molded and also 

allows for seamless transition between these two sections unlike in the molded counterparts.  

 

U.S. Patent WO2013110086A1: Flexible Robotic Actuators [7] 

 

This patent claims intellectual property over flexible robotic actuators where bending is 

achieved using a stiffer base layer adhered to an inflatable upper portion. This uses the same 

property mentioned in the above two patents where this stiffer base layer constricts motion as the 

top inflates and thus finger-like bending is achieved. However, as seen in claims 1-3 of this 

patent the flexible robotic actuator described is composed of laminated films which are adhered 

together using various adhesives. Although the achieved motion is similar to our product, the 3D 

printing process we hope to patent is drastically different than anything used in this patent, 

setting our intellectual property apart.  
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U.S. Patent WO2012150551A1: Robot Having Soft Arms for Locomotion and Grip 

Purposes [8] 

 

The main claim of this patent is the creation of a gripper that uses soft fingers that can be 

individually controlled to grip objects and produce motion. Similar to our product, soft fingers 

are mounted radially around a central point. However, the soft fingers discussed in claim 1 are 

simply rigid robots with a soft elastomer added on top. This is very different from our 3D soft 

robot in that cables and rigid parts are used to produce motion compared to geometries and 

pressures. Although both robots produce similar motion and have “soft components”, the robot 

patented here is much more so a rigid robot with added soft material and is in no way 3D printed 

differentiating our product from interfering with this patent. 

 

US Patent 20170095925 A1: Soft Body Robot for Physical Interaction with Humans [9] 

 

Walt Disney has recently applied for a patent based on the application of soft robots. 

Although Disney’s robot is not fully soft, it is composed of a rigid interior that is inside of a soft, 

pneumatically powered exterior. Disney’s main focus of the patent is human robot interaction.  

“In this regard, it is desirable to provide soft skin and/or a soft body. Above all 
other design requirements is the requirement for safety. To this end, the robot may 
include 3D printed, soft skin modules or segments (or body parts), and these 
modules may include a flexible, contact-sensing, air-filled cavity (or void/interior 
space). The module helps to absorb unexpected impacts, reducing the likelihood of 
human injury and actuator damage. Further, the module provides contact force 
feedback via a pressure sensor connected to the air-filled cavity. When distributed 
over the body of the humanoid robot, these modules give the robot the ability to 
sense contact forces on its various links. Full body sensing allows for the 
implementation of engaging physical interactions. The independent sensing areas 
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of the body allow a human to communicate with the robot through touch, drawing 
attention to certain links or guiding the motions of the robot.” [9] 
 

The overall goal of this Disney project is to create soft robotic characters for their parks that 

can safely interact with guests. These ambitious goals that Disney proposes show there are many 

applications for soft robots in the near future, many of which expand past the agricultural and 

pharmaceutical industries which this project is designed for. 
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Chapter 3 - Soft Robotic Hand – System Level Chapter 

3.1. Customer Needs 

Currently, robots are largely used in a variety of industry settings. Due to their ability to 

automate a large variety of mundane and repetitive tasks, robots have made a large footprint in 

manufacturing, packaging, and processing plants. The impact and use of robots is expected to 

continue to rise over the next few decades, with robots allowing for a greater growth in both 

workplace efficiency and labor-cost savings. Soft robotics is expected to garner a chunk of this 

market growth, largely in the food packaging and pharmaceutical industries where their “soft” 

touch is useful. 

Our project focused on both the food-packaging and pharmaceutical industries for 

deployment of our designed hand. We believe these industries are important benchmarks for 

ourselves, largely because in these industries soft robotics are already beginning to be deployed. 

Soft robotics in food packaging are necessary primarily due to the soft nature of fruits and 

vegetables. A soft robot should be capable of picking and placing the fruit/vegetables into 

packages while lowering the chance of damaging or bruising the product.  

Our team interviewed Dr. Gregory Baker in the Department of Management of Santa 

Clara University about the possibility of using soft robots in agriculture. Dr. Baker has a PhD in 

Agricultural Economics from Purdue and has been researching the agricultural industry for 

years. He expressed the great potential for soft robots in the packaging industry noting that 

current packaging involves humans and robotic automation. Due to dangers of humans and 

robotics working side-by-side, Dr. Baker noted that soft robots could increase the overall 

efficiency throughout a factory and allow for a factory to process riper fruit and vegetables. 
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Research into the pharmaceutical industry indicated that robots currently have and will 

continue to play a large role in packaging. It is estimated that robots will be a part of 34% of 

primary pharmaceutical packaging operations in North America by 2018 [10]. Robots in 

pharmaceutical offer increased efficiency when compared to humans, but require great precision 

in their abilities to pick up small items such as pills. Similar to food packaging, robots in the 

pharmaceutical industry should be capable of working side-by-side with humans while supplying 

a touch that won’t damage the object being lifted. 

From our market research, it was determined that the deployment of soft robots in both 

the pharmaceutical and food packaging industries will continue to rise. The capabilities of soft 

robots to improve functionality when working alongside humans as well as add a softer touch in 

gripping items make them optimal for industries such as food packaging and pharmaceuticals. 

Additionally, soft robots allow for a lower price point in comparison to current rigid robots. By 

expanding the overall availability, soft robotics will become a focal point in these two industries 

for both small and large corporations. 

3.2. System Level Requirements 

The overall system goals were geared towards revolutionizing the soft robotic industry 

and focusing on the two industries mentioned earlier: food-packaging and pharmaceutical. The 

soft robotic hand should be capable of lifting both an apple and a pill with little to no human 

involvement. The standard weight for a small apple is around 100 grams and the standard weight 

of a large pill is 4 grams. These values were used as the benchmark for the objects. These two 

items were specifically chosen for both their differences in size, shape, and weight proving the 

functionality and precision of the hand. The two items will highlight the overall capabilities of 

the hand and will provide a proof of concept for the design.  
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The hand is to be controlled via a pneumatic control system. Pneumatically controlled 

soft robots is the current standard of the industry and utilizing pressurized air will ensure greater 

safety of the device. The pressurized air should be capable of creating enough actuation and 

force for the hand to lift both an apple and a pill. Additionally, the control system should be 

compatible with a user interface that is capable of controlling the overall pressure input of the 

actuators. Ideally, this user interface should be a computer program that allows for rapid control 

of the pressure and feedback. 

To differentiate the project from current soft robotics, the hand (namely the “fingers”) are 

to be 3D printed. As discussed, current soft robotics relies on hand molding which can lead to a 

number of limitations in the overall design of the robots. Our goal is to highlight the capabilities 

of 3D printing in soft robotics which we believe will be able to eliminate a number of the 

problems associated with hand molding. Additionally, the final printed material should have 

properties which rivals or exceeds that of silicone. Silicone was chosen as the benchmark due to 

it being the primary material which is deployed in soft robotics. 

Finally, the overall design of the soft robotic hand should be safe for use by and around 

humans. As mentioned, current robotics limits the amount of human-robot interaction that is 

possible in industry settings due to safety concerns. Although the design of the robotic arm is out 

of the scope of this project, the hand design and pneumatic control system should serve as a 

proof of concept of the overall safety of soft robotics. 
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3.3. Physical Sketch 

 

Figure 4: System level sketch showing 3D printed gripper concept for use in agricultural packing house 

Figure 4 is an example sketch of the overall system design. The sketch highlights the 

overall project goal of creating a 3D printed, soft robotic hand that is capable of lifting a 100-

gram apple and a 4-gram pill. Additionally, the sketch shows the primary subsystem 

components: the fingers/actuators, a holder connecting all the actuators, and the pneumatic 

control system. 

3.4. Functional Analysis 

The overall functional use of the soft robotic hand is to be able to both lift and place 

objects of various sizes with little to no human interaction. The purpose is to prove the 

functionality of the device in various industries such as food packaging and pharmaceutical. It is 

ideal that the device will eventually be paired with software allowing the hand to them be fully 

automated to create greater efficiency within these industries. By being created out of soft 

materials, the robot will allow for side-by-side human interaction eliminating the fear of 

accidents typical to current robotics. In this manner, the soft robot has the potential to replace 

many current robotic designs while possessing a lower price point to enhance accessibility.  
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The soft robot hand is to made up of four subsystems: the actuators, the control system, 

the handle, and the user interface. Each component is pertinent to the overall success of the hand 

and each has various requirements and functions. The most prominent of the subsystems is to be 

the soft robotic actuators. The actuators are essentially the fingers of the hand, providing the grip 

and subsequent force on the objects to be lifted. Each finger will have an input of pressurized air 

which will create the bending action of the finger. The resultant outputs will include stresses in 

the finger, bending of the finger, and a force when the fingers are actuated against an item to be 

lifted. 

The control system is the component which allows the actuation of each finger. The 

primary function of the control system is to properly monitor and control how much air is input 

into each finger. By being capable of successfully managing the pressure within each actuator, 

the control system will allow for greater control and manipulation of the entire hand. The control 

system is to be powered by a standard battery with a microcontroller sending a signal to the 

system to manipulate how much air is allowed to each finger. The resulting output of the control 

system will be a direct current voltage sent to a pressure regulator attached to each finger. 

The functionality of the handle is to provide a manner of attaching and arranging the 

fingers to the control system. The handle has points of attachment for all the fingers and 

locations for the tubing to be connected individually. The handle is pertinent to allowing all the 

subsystems to interact and successfully operate in gripping and lifting objects. 

The user interface is the final subsystem component of the soft robotic hand. The user 

interface is the computer programming/code that is capable of interfacing with the control 

system to vary the input signals sent to each regulator. The user interface is capable of rapidly 

controlling each signal, with little to no lag between changing the input and the output by the 
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finger. Additionally, the user interface is capable of interacting with anywhere from 2 to 8 

pressure regulators. 

 
3.5. Benchmarking Results 

Table 1: Benchmark table analyzing current use of soft robotics by two companies (Soft Robotics and Pneubotics) 
and research labs (namely Harvard) [2], [11], [12] 

Company 
Name 

Current Soft Robotic 
Design 

Summary of product 
and uses 

Key Features 

Soft Robotics 

 

- Primarily used for food 
packaging 
- Extension of Harvard 
Lab 
- Mostly a proof of 
concept 
- Developing largest 
market share of soft 
robotics in food 
packaging  

-Number of fingers can be 
varied from 3-8 
-Established control 
software for adjustment of 
strength and level of 
actuation 
-Software allows for 
storing up to 8 grip 
profiles 
- Hand molded 

Pneubotics 

 

-Minimal industry use 
-Have been working on 
proof of concept to 
master design of the arm 
-NASA has shown 
interest in the company 
and their designs 

-1:2 weight to payload 
ratio 
-Controlled strictly 
through pressurized air 
-Rapid assembly and 
setup 
-Utilizes fabric as primary 
material 

University 
Laboratories 
(Harvard) 

 

 

-Proof of 
concept/research work 
to understand soft 
robotics 
-Goal to create a better 
predictive model to 
enhance use of soft 
robots in industry 

-Harvard has created soft 
actuators that are 
embedded with flexible 
materials such as cloth 
and paper 
-Most designs rely on 
multi-step molding 
techniques  
-Created fully soft sensors 
for monitoring the 
kinematics of the robots 
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Table 1 analyzes the key features and current design of soft robotics being utilized by two 

companies (Soft Robotics and Pneubotics) and the research performed by university laboratories 

(namely Harvard). The table is utilized to establish a benchmark for the soft robotics sector as a 

whole to set a standard for our robot while analyzing the overall trends of soft robotics. The key 

highlights of the benchmarking results are that all current soft robotics rely on hand molding, that 

Soft Robotics specifically can vary the number of fingers of their grippers from 3-8, and that 

Pneubotics creates robots with a strength to weight ratio of 2:1. 

 
Table 2: Range of various material properties of silicone, used as a benchmark for the chosen material due to wide 

use of silicone in soft robotics [13] 

Material Yield 
Strength 

(psi) 

Ultimate 
Tensile 

Strength (psi) 

Elastic 
Modulus 

(psi) 

Percent 
Elongation 

(%) 

Static 
Coefficient of 

Friction 

Silicone 350-800 350-800 145-7250 200-500 0.3-0.8 

 

           Table 2 highlights various material properties of silicone, the commonly used material for 

soft robotics. The table is included because silicone served as the benchmark for our material 

selection in our design [13]. The material chosen for 3D printing should rival or exceed this 

established benchmark to serve as a viable option for the robotic hand. 

3.6. Issues, Options, Tradeoff, and Rationale  

Material Selection 

After establishing our overall goals and benchmarks for the project, the team had to 

overcome a number of issues and tradeoffs regarding the project. First and foremost, our group 

had to decide what material would be used for our prototype. Because it was determined that the 

hand should be 3D printed versus molded, our team needed to find a material that was capable of 

being printed while reaching benchmark material properties. Our team was partnered with 
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Molecule Corp. which provided us with access to their 3D printing materials and to their labs. In 

return, our project was to serve as a proof of concept of the capability of their materials. To 

determine our ideal fluid, a number of tensile tests and experimental testing was performed on 

two of Molecule’s materials: Molecule XS and Molecule RH. Ultimately, Molecule XS was 

chosen as the ideal material due to its higher material properties for Elastic Modulus and Percent 

Elongation. Additionally, Molecule RH had consistent failures when basic experimental testing 

was performed on simple pocket iterations. 

Pressure Input 

As briefly discussed, a pneumatic control system was chosen as the subsystem capable of 

varying pressure input to create actuation of each finger. The team was deciding between 15 psi 

valves and 30 psi valves for the control system (the valves affect how much pressure is sent to 

each finger). Ultimately, the team determined that a maximum pressure input of the control 

system would be 15 psi. This decision was made for two reasons: 1) 15 psi valves were cheaper 

and 2) 15 psi would make for a safer robot in comparison to 30 psi. Moving forward, the 

geometry of the fingers was designed for actuation at pressure inputs ranging from 0-15 psi. 

One Print versus Multiple Prints 

An important design decision for the overall system was whether the hand would be 

made up of one print versus multiple prints with an assembly. Ideally, the hand would be 

completed in one print - all the necessary fingers and palms eliminating the need for assembly. 

Our team believed this would create for a more functional hand design and serve as a better 

proof of concept for the capabilities of 3D printing. For the process of printing the hand, our 

team was greatly limited due to the design area of the printers. The printers used had a build area 

with the length of approximately 2.5 inches. This created a large constraint on the overall design 
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with the only possibility of a full hand being printed requiring a complex layout and support 

system for the hand. 

Ultimately, it was decided that the hand would be created through a multi-part assembly. 

Each finger would be printed separately and the palm/handle would be a separate print as well. 

This is how current soft robots are molded and assembled and the process of printing everything 

separately resulted in more rapid, simpler prints. 

Thumb versus Gripper 

An additional issue with the project was the initial reach goal of creating a robotic hand 

with four fingers and one thumb. Initially, the team believed that the design of a thumb would be 

the ideal route of design which would enhance the overall functionality and capabilities of the 

robotic hand. A thumb would allow our design to expand beyond simply serving in food-

packaging and the pharmaceutical industry, having great potential for the eventual design of a 

prosthetic limb. During the early design phases, our group began early research into the potential 

thumb design. A prototype is shown in Figure 5. The design was based off research into soft 

robotics, replicating an elephant’s trunk. With three channels for air to be stored, it was believed 

that varying pressure inputs in the channels could ultimately result in the desired actuation.    

 
Figure 5: Printed thumb prototype utilizing 3 channel design  
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Ultimately, the thumb was eliminated for consideration as the design moved forward. 

There were a number of difficulties involving both the design of the thumb, printing, and 

experimental testing. Due to this, the focus could then be placed exclusively on the fingers. 

3.7. System Layout 

 
Figure 6: Overall system layout of the 4 finger, robotic gripper utilizing a user interface, a microcontroller, an RC 

filter, a pump, and a pressure regulator to create actuation of the fingers [14], [15], [16], [17] 
 

Figure 6 provides a system layout of the entire robotic hand system. The system utilizes a 

user interface paired with a microcontroller to send various PWM (Pulse Width Modulation) 

signals to an RC filter. The RC filter works to convert the PWM signal to a DC voltage, with this 

voltage value determined by the width of the PWM signal. Depending on the value of this 

voltage (0-5 V), the pressure regulator then varies the amount of pressure input from the pump 

that is output into each actuator. 

3.8. Team and Project Management 

It is important in all projects to have a clear idea of team management prior to starting the 

design process. For our project, all of us had different experience in engineering design whether 

it be coding, 3D modeling, project management, etc. Although we were all involved in every part 

of the design process, different group members spearheaded individual parts of the project such 
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as control system design and part sourcing (Chris), FEA and printing mechanics (Zack), and 

mechatronics system and mathematical design (David). With this in mind, we aimed to make 

sure that every member was aware of what was going on during all phases of the project. We 

also focused on using a top down design process where the design of all subsystems was 

completed with the top-level system and goals in mind.  

Over the course of this project it was assumed that various problems and challenges 

would arise. This is expected of any engineering task, however overcoming these obstacles can 

be the difference between a successful project and a failed one. Our team scheduled weekly 

meetings with our advisors, Dr. Panthea Sepehrband and Dr. Michael Taylor, which allowed us 

to use their expertise to stay on track with the project, set goals, and overcome any obstacles. 

Additionally, our team met regularly with all group members to brainstorm solutions and work 

on any problems that would arise. Due to the complex nature of our project, specifically with the 

mathematical simulation portion, we assumed a large amount of problems would arise. Some 

technical issues that occurred included: FEA analysis (namely licensing restrictions), actuator 

printing, component lead times, and access to certain facilities. 

Another complex part of this project was dealing with the overall budget. Luckily, our 

partnership with Molecule Corp. provided us with all of the needed printing resins free of cost, 

greatly reducing our budget. However, almost all of the remaining budget was devoted to the 

creation of our pneumatic control system and can be viewed in the Bill of Materials in the 

Appendix F. Outside of our partnership, all of our funding has been raised independently of the 

University totaling at $4,600. Although we had such a large budget, we only needed around 

$3,000 and saved the additional amount for backup and potential project expansion in the future. 
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Some of these expansions include sensors for the fingertips, PCB printing, and creation of the 

thumb subsystem.  

Our main project timeline consisted of design and planning in the fall, control system 

assembly and overall prototyping in the winter, and finalization and presenting in the spring. A 

more broken down version of the project schedule can be viewed in the Gantt chart in the 

Appendix.  

Our group's approach for this project was to treat it as though we are engineers working 

for a mechatronics company. Our diverse background working for different robotics, product 

development, and 3D printing companies has provided us with a plethora of experience in 

industry as design engineers. Our general design process was to make sure all aspects of the 

project had been properly thought out and all simulation and mathematical verification had been 

properly completed prior to making large decisions. Throughout the design process we also 

properly documented all aspects including 3D modeling and drawings, BOM maintenance, 

budget updates, and thorough testing reports. Although we planned to approach the design of this 

project first using simulation and modeling tools to verify design choices, our access to 3D 

printing also allowed for rapid prototyping to take place, aiding in design updates through 

experimental testing.  
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Chapter 4 – Mechanical Subsystems 

4.1. Soft Robotic Actuators 

4.1.1. Role and Requirements 

The overall role of the soft robotic actuators is to bend at various angles when supplied 

specific pressures in order to pick up objects of various sizes, namely an apple and a pill. In order 

for this objective to be met, a number of goals were set for the actuators and their functionality. 

To successfully create a 3D printed soft robotic hand, the individual actuators must also 

be 3D printed. This goal helps set our hand apart from other products on the market today. As 

discussed, almost all current soft robots are hand molded out of silicone or other polymers, 

which greatly decreases the possible geometries and also increases the prototype time. By 3D 

printing the actuators, the range of geometry possibilities is greatly increased while allowing for 

more rapid iteration and design. 

Secondly, the actuators must be functional for a pressure range between 0 and 15 psi. A 

max pressure of 15 psi was chosen for safety precautions, but the actuators must prevent failure 

at this maximum pressure input. Additionally, each finger must deform at upwards of 2 inches at 

the maximum pressure input. This goal ensures that enough deformation will occur to allow for 

smaller objects like a pill to be lifted while ensuring a proper resultant force. Also, in order to 

rival current soft robots, the static coefficient of friction of the material used must be able to rival 

or exceed that of current silicones used. As discussed in the Benchmarking Results section, our 

hand’s overall functionality should be similar to current soft robotics. This requires similar 

pressure input requirements and similar resultant forces which is dependent on the coefficient of 

friction. Lastly, each individual finger must supply enough force to allow for an apple to be lifted 

when expanded to a 3-5 finger gripper.  
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In summary, there are 5 goals for these soft robotic actuators: 1) they are 3D printed, 2) 

they can withstand 15 psi, 3) a maximum fingertip deflection greater than 2 inches, 4) their static 

COF is similar to silicone, and 5) they can exert enough force to lift an apple when paired with 3-

5 fingers. Through testing, the success of these actuators can be determined by analyzing their 

ability to meet these goals. 

4.1.2. Issues, Options, Tradeoff, and Rationale 

Printer Selection 

Moving away from hand molding to meet the first outlined goal of our actuators, the team 

had to obtain access to 3D printers and printing fluids. Luckily, our team was partnered with 

Molecule Corp. which provided us with access to their printing labs. Our partnership was created 

due to the materials that Molecule owns, highlighted by Molecule’s XS material which was 

discussed in the System Level Chapter. 

Although the partnership with Molecule made 3D printing possible, there were still a 

number of issues encountered. To begin, an Origin DLP 3D printer was initially selected as the 

printer of choice. Origin’s printers utilized Teflon trays which were optimal when working with 

Molecule XS. Teflon trays were required due to the ability to withstand that materials curing 

during printing. Silicone trays (those typically used) can suffer a burning failure during the 

curing of Molecule XS. Unfortunately, the build length of this printer was 64mm, which was 

smaller than that of our ideal finger size. We hoped to create a finger that was similar in length to 

a human finger of 3.5 inches (~90 mm). Due to the tray limitations, these fingers would have to 

be printed at high angles, forcing support structures to be used which can not only decrease the 

accuracy of the print, but also greatly increase the print time (~5 hrs. per finger). As we worked 
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more and more with the Origin printers, our team continuously struggled with the build area 

limitations. 

In the middle of our project, Molecule was given 2 new printers that were designed by 

3D Systems, the Figure 4®. These printers had a build length of 107.52mm (~4.20 inches), 

allowing for fingers to be printed with no support structures. This would allow for quick and 

accurate prints and rapid design iterations for our team (~45 min per finger). Due to the build 

length of the 3D Systems printer, it was ultimately determined that these were the ideal printers 

for the requirements of the project. 

 
Material and Material Curing 

Once a printer was selected, the Molecule XS material was analyzed. The Molecule XS 

material is UV curable meaning that when applied with energy from a light (laser or projector), 

the material turns from a liquid to a solid. The material used is also extremely unique and unlike 

any 3D printing materials due to its curing capabilities. Depending on how the material is cured 

on the printer (how much energy is applied, thickness per layer), the mechanical properties can 

be greatly varied. For the use of this project, a very small percentage of the material properties 

that Molecule XS could meet were analyzed.  



       

 24

Material Testing 

 
Figure 7: Instron testing apparatus for tensile testing 

 
In order to understand the properties, tensile testing was performed using an Instron with 

a 5 kN load cell (Figure 7). The method of collecting data followed the ASTM standard for a 

rubber like material. With this, the load was displacement driven and pulled at 50 mm/min, and 

extensometers were used in order to follow standards, and collect the most accurate results. 

Figure 8 shows the small material range of the Molecule XS material that was to be analyzed for 

the scope of this project. 

 
Figure 8: Range of material property capabilities of Molecule XS considered for the project 
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Coefficient of friction testing was also performed on the Molecule XS material using an 

Instron, this time with a 500 N load cell. The testing was performed on five materials (paper, 

cardboard, plastic, aluminum, and felt) to get a range of the coefficient of friction. To perform 

the test, a small sled was connected to the Instron via a nylon string with a thin layer of the 

Molecule XS material attached below. Pull the specimen against the Instron until it is taught, and 

then initialize the test by zeroing the extension. Use the “Set Displacement” option of 5 inches. 

Perform the test and the data will be automatically plotted by the Instron. The test was repeated 3 

times for each material. The testing apparatus can be seen in Figure 9. 

 

 
Figure 9: Instron testing apparatus for coefficient of friction testing 

 
The static and dynamic coefficient of friction values were automatically calculated within 

the software, with the results outlined in Table 4. Table 3 highlights the final results for the 

coefficient of friction testing and includes the results from the tensile testing. Figure 10 and 

Table 4 show an example of the plotted data and a results table for 2 of the materials in which the 

Molecule XS was tested upon. Figure 10 shows the basic results of the test showing the 

extension of the Instron versus the supplied load. Table 4 shows the table that is automatically 
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generated from the Instron with the test number and the subsequent static coefficient of friction 

and dynamic coefficient of friction. As is shown, the range of the static coefficient of friction of 

the Molecule XS material far exceeded that of silicone. 

 
Table 3: Comparison of mechanical properties of Silicone and Molecule XS [13] 

Material Yield 
Strength 

(psi) 

Ultimate 
Tensile 

Strength (psi) 

Elastic 
Modulus 

(psi) 

Percent 
Elongation 

(%) 

Static 
Coefficient of 

Friction 

Silicone 350-800 350-800 145-7250 200-500 0.3-0.8 

Molecule 
XS 

700-1000 1285-1555 1510-6380 230-275 1.01-3.1 

  

 
Figure 10: Plotted static coefficient of friction testing performed on the Molecule XS material 

 
Table 4: Tabulated results of the static and dynamic coefficient of friction results for testing of the Molecule XS 

material 
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The range of capabilities that the material is able to reach allows for a number of different 

geometries to be designed and tested. Each design could be tested at various print settings with 

each variation affecting how the actuators would ultimately function. This flexibility allowed for 

in depth testing for each geometry design which affected the overall understanding of the soft 

robotic actuators. 

Analysis 

As discussed in Roles and Requirements, one of the primary goals of the material is to 

obtain a static coefficient of friction value comparable to that of silicone. Through testing, it was 

confirmed that Molecule’s XS material was capable of exceeding that of silicone, allowing for 

this goal to be met. With this, it was determined that our actuators would have to exert lower 

forces than common silicone actuators based on the relationship between force and friction. 

Equation 1 shows the relationship between the weight of an object (ܹಲ
ು
) and the horizontal force 

applied by all the fingers (Fsum) with the static coefficient (ߤ). 

                                    1  

In order to have a better understanding of actuator motion, FEA simulation was 

performed on various finger and knuckle designs. The primary simulation softwares used for 

analysis of the fingers were Abaqus and Solidworks with the goals of simulation being: to allow 

for rapid design iteration, analyze stress concentrations and deformations of actuators, and to 

compare simulation testing to experimental testing.  

Simulations of knuckle and finger actuators were performed using the Neo-Hook 

nonlinear, hyperelastic model. These models were made accurate by applying the material 

properties found through experimental testing. In order to manipulate experimental testing, the 

left side of the actuator was applied a fixed boundary condition, and a pressure was applied to all 
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inside pockets. In order to speed up simulation and decrease the number of nodes, the finger was 

cut in half (seen in cross sectional images Figures 11 and 12) and a symmetry boundary 

condition was used across the median plane.  

Overall, due to student licensing restrictions, accurate simulation results were not able to 

be achieved. Abaqus had a nodal restriction, preventing analysis of complex actuator geometries 

during extreme deformation and Solidworks did not allow for the input of a material with custom 

properties. Although this did not allow us to compare simulation results to experimental results, 

comparisons of actuator stresses and deformation within the software were still utilized. Figures 

11 and 12 shows one way in which a design iteration was performed. By analyzing the different 

stress concentrations, our team was able to choose one geometry (Figure 12) over another 

(Figure 11) due to the lower stresses. 

 

 
Figure 11: FEA image of a two knuckle finger with resultant stresses at 2 psi 
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Figure 12: FEA image of a full-knuckle finger with resultant stresses at 2 psi 

 
4.1.3. Design Description 

Knuckle Design 

Initial iterations of the actuators were designed as knuckles. Design began with the 

knuckles since they are the primary component of motion when comparing to a human finger. 

Since soft robotics is a new industry, our team had little experience and exposure to the 

dynamics of soft robotic motion. By beginning with the simpler component of a knuckle, we 

were able to quickly iterate the design while performing simple experimental testing.  

To gauge the success of these knuckles, a simple experimental test procedure was 

performed. Initially, the knuckles would be pressurized with air at 3 psi with the deformation 

analyzed and recorded. Pressure would then be gradually ramped up until failure would occur, or 

15 psi was achieved. The points of failure would then be analyzed and recorded. 

 
Figure 13: Original, triangular pocket knuckle design 
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Figure 13 shows an initial prototype design with triangular pockets. The initial belief was 

that when the top triangular pockets were pressurized, they would expand creating a large 

enough force to create bending about the bottom base layer. In practice, this design ultimately 

was gauged as non-successful due to the inability of the geometry to experience any bending. 

Due to this design failure, the design was iterated, printed, and then retested. We decided 

to move towards a curved pocket design, using splines in Solidworks. This was done in hopes 

that the radial pressure forces would expand the pockets, creating a larger force which would 

ultimately cause bending about the thick base layer. When analyzing the curved pocket system, 

knuckles were designed with three and five pockets. Cross sectional images of these designs can 

be found in Figures 14a and 14b. 

 

 
Figures 14a and 14b: Design iterations of knuckle with rounded pockets - finalized knuckle design is the image to 

the right 
 

After pressurizing these designs with 3 psi, both were able to experience deformation, 

allowing for the designs to be compared to one another. Overall, it was determined that both 

knuckles had very similar deformations when tested at 3 psi, allowing for the 3 pocketed 

knuckle, (Figure 14b), to be chosen due to its simplicity. From this knuckle, the team was able to 

focus on expanding into the design of the finger.  
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Finger Design 

Once the final knuckle design was achieved, finger iterations were relatively simple. The 

finger designs relied on scaling up from the final knuckle design Shown in Figure 15, initially a 

two knuckled system was analyzed. 

 
Figure 15: Original, two knuckle finger design 

 

The initial design was chosen due to its resemblance to a human finger. It was believed 

that the two knuckled, actuator design should create similar bending to that of a finger allowing 

for comparable motions of both. A second design was also created (Figure 16) which relied on a 

fully knuckled finger. This was done primarily to compare to our initial design relying on only 

two knuckles. As briefly discussed, in Simulation under this section, our team was able to 

compare the stress concentrations between the two designs. In Figures 11 and 12, it is shown that 

the Abaqus simulations performed at 2 psi resulted in a maximum stress in the two-knuckle 

design which was nearly double that in the fully knuckle design. Thus, our team opted for the 

design with the lower stress concentration. 

 
Figure 16: Full knuckle finger design 
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In order to increase the precision of these actuators and allow for smaller objects to be 

lifted (such as a pill), a fingertip was added. This fingertip was designed to function similarly to 

a fish fin. The fish fin design allows for an opposing force on the fingertip (the reaction force of 

the pill) to create some give on the fingertip which would allow for a softer touch. Figure 17 

shows the final finger design.  

 
Figure 17: Finalized fully-knuckled finger design with additional fingertip 

 
4.1.4. Supporting Evidence and Results 

Once a final finger design was chosen, experimental testing was performed in order to 

select the ideal printed material properties of the finger. As stated above, and shown in Figure 8, 

the material properties of the 3D printing fluid can be changed by varying the settings of the 3D 

printer. Ultimately, the printer settings have a noticeable impact on the overall performance of 

the finger motion. Due to this, in order to select the ideal final material properties, experimental 

testing was performed on the finger at a variety of print settings. The testing included: force 

testing and displacement testing. 

Force testing was done to determine whether the force goals could be met. The force was 

analyzed by holding the finger at a constant height above a scale and applying a variety of 

pressures ranging from 0-15 psi. At each pressure the force was measured 3 times and the 

average value was taken. It was determined that, at the chosen print settings, each actuator would 

exert 0.16 lbs. 
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Displacement testing was also done to see if the displacement goal of two inches could be 

met. In order to test whether this goal could be met, the finger was held constant and activated 

with pressures ranging from 0-15. At each pressure, a dot was drawn at the fingertip, and the 

displacement was measured with a ruler. Similar to force testing, the displacement was measured 

three times in order for an average to be calculated. It was determined that at max pressure, the 

finger would experience 2.17 inches of displacement. 

Test results of the force and displacement testing can be found in the “Verification Data” 

section found on page 23. 

Table 5: Table indicating the original actuator goals and the overall results of each 

Goals Results 

3D Printed 
 

Functional for Pressure Range of 0-15 psi 
 

Minimum 2 inch Fingertip Displacement at Max Pressure 
Input 

2.17 in Displacement at 15 psi 

 

Static COF Comparable to Silicone Exceeded Silicone’s COF by 

3x  

3-5 Fingers capable of Supplying Enough Force to Lift 100 g 
(0.022 lb.) Apple 

Single Finger Exerted 0.16 lb. 

 

 

Overall, it was determined that all 5 goals for the actuators were able to be met.  More 

analysis into how these goals were met can be found in the next section, Verification Data. 

4.1.5. Verification Data 

Calculations 

As stated above, one goal of the actuators was that each individual finger must supply 

enough force to allow for an apple to be lifted when expanded to a 3-5 finger gripper. In order to 
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have an idea of what force each individual actuator would have to exert, calculations were done 

based on a 3 finger gripper.  

Based on Equation 1 in ‘Material and Material Curing’ ( ஺ܹ/௣ ൌ  ሻ and using theߤ௦௨௠ܨ

lowest determined static coefficient of friction (1.01), the maximum required force for a 3 finger 

gripper is approximately 0.08 lbs. This value was set as the standard benchmark for all our prints 

to ensure forces large enough for lifting an apple. 

Force Testing 

Once determined that each finger must exert 0.08 lbs. of force, fingers at 4 different print 

settings (2 settings on 2 printers) were analyzed to see whether they could exert the required 

force. More description of the printers can be found in the Appendix G. Figure 18 analyzes the 

force exerted by these 4 different fingers at a variety of pressures. 

 

 
Figure 18: Force [lb.] vs. pressure input [psi] for fingers at 4 print settings 

 

As seen in Figure 18, all 4 print settings were able to exert enough force to, in theory, lift 

an apple with a 3 finger gripper. Due to the similarity is exerted force, and the fact that all four 
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fingers were able to meet the goal, further testing was done in order to determine the ideal print 

setting. 

Displacement Testing 

The next set of testing done was displacement testing. As stated as a goal above, each 

finger needs to deform more than 2 inches at the maximum pressure input. Figure 19 analyzes 

the displacement of the same four actuators that were analyzed in force testing.  

 

  
Figure 19: Fingertip Displacement [in] vs. Pressure [psi] for fingers at 4 different print settings 

 

As seen in the displacement graph, only Printer 2 Settings 1 and 2 were capable of 

reaching two inches of displacement. We determined that, for the sake of this project, the 

maximum force exerted was more important than displacement, as long as the goals could be 

reached. With this, Printer 2 Setting 2 was chosen. This print setting allowed for 2.17 inches of 

displacement and 0.16 lbs. of force when tested at 15 psi, both of which exceeded the goals. 

More testing can be found in Appendix H. 
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Final Material Selection 

Once the final material was decided upon, tensile testing was done in order to better 

understand its mechanical properties. Figure 20 shows the tensile data of the final material. It can 

be seen that the mechanical properties happened to fall right in the middle of the range that we 

analyzed.  

 

 
Figure 20: Plotted final print settings in comparison to the initial considered range 

 
Cycle Time 

In order to have a better idea of the actuators performance, further testing was conducted. 

One data point tested for was the cycle time. The cycle time determines the amount of time it 

takes for an actuator to be fully deflected by a pressure input of 15 psi and then return to its 

initial state. In practice, this would determine the time needed to wait in between lifting different 

objects on an assembly line.  Cycle time testing was done by using a stopwatch and analyzing the 

time it took for the material to hit maximum deformation, and when purged, return to its initial 

state. Each print setting was tested 5 times to find the average cycle time. Overall, a cycle time 

range of 0.4 to 5 seconds was found, with the final material setting having the lowest value (0.4 
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seconds). This testing further validated the use of the final material properties chosen. Table 6 

shows data collected for one setting that was tested in force and displacement testing (Printer 1 

Setting 2). For more information on the printers and print settings, look in the Appendix. 

 
Table 6: Cycle time testing for Printer 1 Setting 2 

Trial Pressure [psi] Open [s] Close [s] Total [s] 

1 15 3.93 0.20 4.13 

2 15 3.95 2.16 6.11 

3 15 3.2 0.21 3.41 

4 15 4.5 0.28 4.78 

5 15 3.36 2.12 5.48 

 

4.2. Control System 

4.2.1. Role and Requirements 

The overall role of the control system is to supply the finger actuators with varied 

pressure inputs in order to achieve the required bending and force to lift different objects. 

However, to achieve this overall goal a variety of different requirements must be met. One such 

requirement is that the control system be capable of individually controlling up to four fingers at 

a time (outputting between 0-15 psi to meet our safety requirements). This is needed to pick up 

smaller objects such as a 4g pill where only two fingers must be supplied pressure at a time. If all 

four fingers are on the same control circuit then this drastically limits the capabilities of the soft 

robotic gripper, making it a less viable product. Another needed requirement is that the control 

system fit within an 18”x12”x6” space. This allows our project to be both mobile and 

lightweight, as well as reducing the overall footprint of our soft robotic system when compared 

to current industrial robots. Lastly, the control system must be able to successfully interface with 
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a variety of different user interfaces so that design capabilities of our chose interface are not 

limited by the control system. This will allow us to choose the best control system for our needs 

as well as show application for working in a variety of industries that may have different 

software standards. 

4.2.2. Issues, Options, Tradeoff, and Rationale 

To meet the overall role and individual requirements for the control system we chose to 

use four major components in our design: an air pump, microcontroller, RC filter, and pressure 

regulators. The block diagram for the system as well as the final design are shown in Figure 21. 

 
Figure 21: Basic block diagram of designed control system with components highlighted 

 
The first component of this system, the pump, was chosen to be a Parker BIITC micro 

pneumatic pump capable of supplying 32 psi. This was chosen due to the ample output pressure 

as well as the size being much smaller than most air pumps on the market. This allows for the 

control system to be very small in size since air pumps typically take up more room than other 

control system components.  

The second control system component chosen was our microcontroller. The 

microcontroller is responsible for controlling the regulators which require a voltage signal to 



       

 39

vary the pressure. For this application, the two industry standards in microcontrollers are an 

Arduino or a raspberry pi. Since both are similar in control and output signal, we decided that the 

Arduino mega would be a better choice due to having more pulse width modulation (PWM) 

output ports than a raspberry pi. As previously mentioned, the pressure regulators require a volts 

of direct current signal (VDC) to be controlled. However, off the shelf microcontrollers can only 

output a PWM signal and do not have built in digital to analog converters which would transform 

this PWM wave into a voltage output. To control the outputted PWM wave a command between 

0-255 is sent to the Arduino. Based on this command sent the duty cycle of the square PWM 

wave width is varied changing the output. This is illustrated in Figure 22. 

 

 
Figure 22: Pulse Width Modulation (PWM) signals with respective duty width and expected power output [18] 

  
The third control system component is a custom RC (low pass) filter. After the width of 

the wave is varied, the RC filter is used to convert the 0-255 PWM wave into a proportional 0-5 

V signal. To achieve this desired 0-5V conversion we used a 3.3 kOhm resistor, 22 uF capacitor, 

and TI2451 op amp. This combination of components was chosen using a RC filter calculator 
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designed to quickly create RC filters for electrical systems [19]. In Figure 23 the generated 

wiring diagram for the filter and Arduino Mega is shown. 

 

 
Figure 23: RC Filter for converting PWM signal to DC voltage output [15] 

 
The final component of the control system is our pressure regulators which step down the 

pressure from the pump and send the desired output to the finger actuators. For this application 

(as well as to meet our requirements) the pressure must be stepped down from 32 psi to 0-15 psi 

all while individually controlling this input for each finger. To achieve this, we looked at a 

variety of different regulator options including solenoid valves with custom feedback loops, off 

the shelf digital regulators, as well as creating a custom regulator system. However, due to the 

ease of use and small dimensions we decided to use electronically controlled proportional 

pressure regulators from SMC (P/N ITV00). These regulators essentially use two internal 

solenoid valves, a release valve, and a custom internal PID controller to step down pressure 

proportional to a 0-5V command signal. As previously stated, this 0-5V signal comes from 

converting the Arduino’s PWM output into a VDC signal via an RC filter. This allows our 

control system to be very compact as well as simplifying the overall control of each regulator. 
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Another major benefit of these control regulators is that they can easily be arranged in a manifold 

so that only one supply pressure port is needed, reducing the amount of tubing needed. You can 

see the selected regulators in Figure 24 as well as the final design of the pneumatic control 

system (Figure 25). 

 
Figure 24: SMC Proportional Pressure Regulators [17] 

 

 
Figure 25: Finalized control system with regulators, RC filter, pump, and Arduino board 

 
After completing the design and assembling the final control system our group noticed a 

few issues that could be improved upon. For starters, the system was designed to be able to 

control up to 10 regulators (and thus 10 fingers) at once. This was a design choice made due to 

not having finalized a gripper design before the components had to be ordered based on lead 

times. If the system was only made to control four fingers as in our final gripper design, then the 

overall system volume could have been drastically reduced. In addition, the scope of this project 

was mostly as a proof of concept however, if time had permitted making a PCB board for the RC 
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filter would not only reduce the needed space of the control system (by eliminating the 

breadboards) but would make the wiring connections more reliable. Throughout the prototyping 

phase we frequently ran into wire connection issues due to our use of breadboards and jump 

wires, something that a PCB with solder connections would eliminate. In addition, the use of 

compact PCB circuitry would move our control system much further into a production phase 

when compared to the current prototype design. This would also allow us to have a more stable 

filter which although was plenty accurate for our needs, would decrease the lag observed in 

converting the PWM into VDC and allow for quicker actuation time of the soft robotic actuators. 

5.2.3. Supporting Evidence and Results 

The final design specifications for the control system are given in Table 7. Based on these 

final results, it is clear that the design was able to effectively meet all initial requirements 

including the individual control of four fingers, the output of pressure between 0-15 psi, as well 

as being compact enough to fit on top of a table (overall dimensions 18”x12”x6”). 

Table 7: Table highlighting various components of the control system with their respective requirements and 
outputs 

Component Specification Value 

Pump Power Requirement (V) 12 

Output Pressure (psi) 32 

Regulators Power Requirement (V) 12 

Control Signal (V) 0-5  

Output Pressure (psi) 0-15 

Microcontroller PWM Output 0-255 

Number of PWM Ports  13 

Max Voltage Output (V) 5 
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4.2.4. Verification Data 

To verify that our system was working properly we used a combination of LabView and 

laboratory equipment (oscilloscope, multimeter) to test the voltage seen at different points of the 

control system and filter components. By sending a PWM command between 0-255 to the 

Arduino it was expected that a proportional response for both the converted voltage signal and 

pressure output would be seen. For example, sending 100 to the Arduino would give 1.275 volts 

out of the filter and 3.825 psi from the regulators. Completing this testing at a variety of different 

PWM inputs showed that we were getting the proper values which we expected, confirming that 

our control system worked properly. Figure 26 shows an example Arduino code used to test that 

the filter was converting the signal properly is shown. 

 

 
Figure 26: Verification test of the filter indicating the voltage output with the respective PWM signal sent 

 
4.3. User Interface 

4.3.1. Role and Requirements 

The primary role of the user interface is to properly interact with the control system 

(Arduino Mega) creating an easy-to-use program allowing for control of PWM signal. The PWM 

signal sent from the microcontroller is in ultimate control of the pressure inputs to each actuator 
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of the hand. The user interface must be capable of interacting with up to 10 different 

valves/actuators while ideally allowing for rapid, real-time control. Finally, the user interface 

should be capable of allowing for real time data acquisition of the resultant voltage signals. 

4.3.2. Issues, Options, Tradeoff, and Rationale 

The primary user interfaces analyzed for the project were the Arduino IDE, a python 

script code sponsored by Arduino, and LabView, a National Instruments based program. The 

Arduino IDE is a free download from Arduino’s website [20] and a basic picture of the code is 

shown in Figure 27. The example image shows the process of using the Arduino IDE for control 

of 4 valves. Highlighted in the image is the required lines of coding for the Arduino IDE that 

allows for control of the pressure regulator valves. First, a line defines the pins in which the 

PWM signal are to be sent from. Next, the width of the signal (varies from 0-255) is defined. 

Finally, a line defines the signal sent as an output. Defining the signal as an output ensures that 

the Arduino writes the signal to be used by the control system. Every time a change is made to 

the script shown, the new code must be uploaded to the Arduino which can create a lag of 

approximately 5 seconds. 

 

 
Figure 27: Arduino IDE script for control of 4 pressure regulators with lines highlighted with descriptions 
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The LabView program requires the downloading of a package known as LIFA (LabView 

Interface for Arduino) [21]. This package is required to use the Arduino with the LabView, 

providing the program with various blocks and controls required for proper interaction between 

the two components. LabView offers the package for free with a LabView license which was 

provided to the team by the school. 

Similar to the Arduino IDE, the LabView program for controlling the pressure regulators 

is also quite simple. The program requires a simple while loop which allows for constant, real-

time uploading of the code to the Arduino and requires 3 simple controls and a Block Diagram. 

Figure 28 highlights the key components of the LabView program. Controls are created to define 

the pin in which the signal is sent, define the signal as an output, and finally to control the width 

of the duty cycle sent to the control system. In comparison to the Arduino, rather than having to 

type in the signal width a slider control was created. This allows for rapid changing of the signal 

width, eliminating the delay that results from having to type in the value. Additionally, as briefly 

discussed, the LabView runs with a while loop which creates constant uploading of the code to 

the Arduino creating instant response to a change in the PWM control. 

 
Figure 28: LabView program with defined controls and block diagram for controlling a single pressure regulator 
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4.3.3. Design Description 

Ultimately, the final design choice utilized the LabView functionality. The LabView and 

LIFA package allowed for easy-to-use and easy to create programs that could be custom 

designed to control anywhere from 2 to 10 pressure regulators. The custom sliders deployed for 

controlling the PWM signal was confirmed to be faster when compared to the Arduino IDE. By 

constantly uploading the code to the Arduino board, there is no delay in using the LabView 

program as there is with the IDE. Additionally, the LabView program can allow for user 

feedback regarding the resultant voltage signal sent to each regulator. In order to do this, 

additional block diagrams were created to measure voltage and the resultant output was plotted. 

 
Figure 29: LabView program for controlling 4 pressure regulators individually 

 
Figure 29 shows one of the finalized programs deployed for the gripper. This specific 

LabView program allows for control of 4 different pressure regulators with a slider control 

varying from 0-255. This program allows for each finger to be controlled separately following 

the Arduino’s pin numbers and pin modes being defined. Additional programs designed relied on 

a singular control for the PWM signal meaning all 4 fingers were sent the same pressure. 
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4.4. Handle 

4.4.1. Role and Requirements 

The fourth and final subsystem in this project is the handle which connects the control 

system to the finger actuators. The overall role of this subsystem is to allow for quick and secure 

connection between the pressure hoses and the finger actuators so that the entire system can be 

moved/lifted to grasp objects. To fulfill this overall role a variety of requirements must be met. 

This includes having the system be 3D printed to meet one of our overall project goals, be 

capable of attaching four finger actuators in a configuration where picking up both a 100g apple 

and 4g pill can be achieved, and be designed in such a way that someone can easily lift the 

gripper to simulate the motion of a robotic assembly line arm. Through the fulfillment of these 

subsystem requirements the overall role of the handle can be successfully achieved.  

4.4.2. Issues, Options, Tradeoff, and Rationale 

In order to create a handle that could successfully meet all of our projects requirements 

some design options had to be taken into consideration. We began by creating a design matrix to 

analyze the best amount of finger connections to add to the handle. This was necessary to 

consider since the gripper must exert enough overall force to lift a 100g apple. In addition to this 

tradeoff study it was important to conduct a similar design matrix for finger spacing. In order to 

lift both the apple and the pill, the finger actuators must be properly spaced so that at a chosen 

pressure input they would bend/displace properly to lift objects. To pick up an apple and lift a 

pill the fingers must perfectly meet fingertip to fingertip when reaching max deflection of 2.17”. 

Seen in Table 8 is the design matrix used to evaluate the handle design in terms of the number of 

actuators needed to meet requirements.  
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Table 8: Comparison table for 3 Finger gripper vs. 4 Finger gripper 

Gripper 
Type 

Required Force 
per Finger [lb.] 

Pros Cons Manufacturability 

3 Finger 0.08 -Force to lift an 
apple 

-Spacing for 
lifting small 

objects 
-Restricted 

application range 

 

4 Finger 0.06 -Force to lift an 
apple 

-Diagonal fingers 
for lifting a pill 

-Restricted 
application range 

 

 

Once proper rationale was decided upon a number of issues with the subsystem could be 

evaluated and improved upon. One such issue was that due to the nature of 3D printing it was 

going to be difficult to properly connect both the actuators and the pressure hoses to the handle 

without using non-3D printed components. We evaluated this issue and decided that the use of 

off the shelf hardware was not only necessary to allow for solid component connections but that 

it would allow for quick disconnect of both the hoses and the fingers. Another issue that we 

expected was the print quality of the handle. Although it was our goal to 3D print this subsystem 

(which was achieved) it was obvious that the quality and consistency of the print was lower than 

that of a machined handle. Although we were able to print the handle, a machined counterpart 

would have been much easier to interface with the off the shelf hardware and had time permitted 

would have been a better overall design. 

4.4.3. Design Description 

After considering the issues and options associated with the handle subsystem and 

creating design matrices to determine the best design, 3D modeling and printing began. This led 

us to our final design which is shown in Figure 30. As seen, we designed and prototyped a 4 
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finger gripper that was 3D printed. From here we used press fit 10-32 threaded inserts on both 

sides which allowed for quick connect hose connectors to be screwed in on the top of the handle 

and Eldon James couplers to be screwed into the bottom for actuator connection. After the entire 

system is assembled the handle allows for objects to be picked up and manipulated in a variety of 

ways to simulate the attachment of our soft robotic gripper to an industrial robotic arm. 

 
 

Figure 30: CAD image of fully assembled gripper 
 

4.4.4. Supporting Evidence and Results 

Upon finalizing the design of the handle, we were able to successfully assemble the 

gripper and test to determine how successful our design would be. We were able to not only meet 

both overall project goals by picking up both a 100g apple and a 4g pill, but were capable of 

lifting a variety of other objects and a weight of over 1.6 lbs. The completion of these goals 

allowed us to determine that both the amount of finger actuators chosen (4) and the spacing 

between them (3.75” diagonal) was the proper design choice for our requirements.  
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Chapter 5 - Test and Results 

Testing of the entire system was performed by analyzing what objects could be lifted by 

the finalized four finger gripper, mainly an apple and a pill. In order to test the ability of our 

gripper to lift these objects, we used the LabView interface which contained the pressure sliders 

to slowly increase pressure sent to the fingers and grip the various objects. Testing began with 

the apple where multiple apples were used ranging from 100g-170g to ensure that our gripper 

could lift a variety of different apple sizes which may be used in the agricultural industry. Each 

apple was tested multiple times to maintain the ability of the gripper to consistently lift each 

apple. To maintain consistency, each test the gripper was held unpressurized over each apple and 

pressure was slowly increased from 0psi up to maximum pressure at 15psi per finger. From here 

the gripper was manually raised up and down a minimum of 3 times to ensure that the apple was 

securely held and would not fall out as the gripper completed a range of motions. After testing it 

was conclusive for all different sized apples that the gripper could successfully hold the apple 

and would: 1) not drop it and 2) not bruise or damage the fruit. For the pill, the same testing 

procedure took place however only the two diagonal fingers were sent pressure so that they 

would meet at the pill and lift the object. Once again, after testing a variety of fish oil pills 

(chosen for their 4g weight standard) the gripper was able successfully grip the pill through a 

variety of motions. Each of these successful tests proves that our soft robotic gripper could 

properly lift a variety of objects, specifically those highlighting the use in agricultural and 

pharmaceutical packing. 

Although the gripper was able to lift both a 100g apple and a 4g pill which was our teams 

target goal, we determined that the maximum weight our gripper could lift would be a useful 

data point to measure the success of our project. To measure this, we used an empty coffee cup 
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due to its capabilities to hold an increasing amount of weight and followed the same testing 

procedure as the apple. Our gripper was able to lift up to 800g (~1.76lbs) before a finger 

connection failed and a press fit insert pulled out of the handle. For the max weight testing our 

limiting factor was not the fingers or the amount of pressure we could send but was due to the 

cap being 3D printed. To improve upon this design using a machined aluminum cap would 

eliminate the need for press fit inserts and allow for a much higher weight to be picked up. 

Although our gripper eventually failed, it successfully met all project goals and was a great proof 

of concept for adding soft robots into both the agricultural and pharmaceutical industries.  

 
Figures 31a and 31b: Images taken during successful testing of the gripper for a 100g apple and 4g pill 

 
Table 9: Final specifications for the 4 finger 3D printed soft robotic gripper 

Specification Value 

Max Gripper Force [lbs.] 0.66 

Max Fingertip Displacement [in] 2.17 

Max Lifting Weight [lbs.] ~1.60 

Cycle Time [s] 0.40 

Finger Actuator Weight [lbs.] 0.03 

Gripper Weight [lbs.] 0.48 

Strength to Weight Ratio 4.48 

Actuator Print Time [min] ~45 
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Chapter 6 - Cost Analysis 

Funding 

The current budget of the project is $4,569. This budget was raised from a $1,000 prize 

awarded to our team in the Donald L. Lucas Pitch Competition and the remaining $3,569 was 

raised from the team’s Kickstarter campaign. 

Spending 

The overall cost of the prototype will be associated to two primary factors: the cost of 3D 

printing fluids and the control system. Fortunately, the 3D printing fluids are provided to our 

group for free from Molecule Corp. Other costs will come from some off the shelf components 

necessary to perform testing and finalize the handle design. 

Initially, we believed that 10 actuators were required. This forced us to spend $2,080 on 

10 proportional regulator valves, which made up the majority of our spending. Excess control 

system spending added up to $637. This was made up of circuit boards, wires, an Arduino, and 

other small costs. Lastly, small costs to perform testing (scale and other components) came out to 

about $250 dollars. A pie chart of the total costs can be found in Figure 32. 

 
Figure 32: Spending breakdown 

Thanks to the support and material donations from Molecule, we were able to have about 

$1,600 (~35%) of excess funding. 
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System Price 

Overall, it was determined that a gripper with 10 valves or actuators is not necessary. In 

order to match industry standards (soft robotics starter pack) a system with 6 valves and 

actuators will be used. This would allow for the system to power grippers ranging from 2-6 

actuators. A 6 valve control system would cost about $1,800. Further costs would come from the 

3D printing materials, as it cannot be assumed they will continue to be free. The material used 

(Molecule XS) costs $249 a liter. Each finger uses about 40 mL of fluid, meaning that a liter of 

fluid can print 25 fingers, making each finger cost about $10. Also, the production of a handle 

will cost about the same when including off the shelf components. This would make the handle 

and fingers to cost $70 when supplying the user with 6 actuators. Although only a 4 finger 

gripper will be sold in the starter kit, CAD designs of 2, 3, 5, and 6 finger handles can be bought 

at low prices. 

Overall, our starter kit would have a raw cost of about $1,900. Rather than using cost-

based pricing in order to determine our final cost, we will use price-based pricing. This will 

allow us to compare our starter kit to Soft Robotics Inc. which is $12,999 [2]. We determined 

that our starter kit would sell for a price between $8,000 and $10,000. This would allow us to 

have very high margins (400-500%), while also undercutting the market price, allowing us to 

gain market share in the growing soft robotics industry. 

These types of margins would allow us to quickly purchase 3D printers and do all 

manufacturing in house. To begin, print farms could be used in order to save large spending on 

printers. This would allow us to get our feet on the ground before bringing manufacturing in 

house. 
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Chapter 7 - Engineering Standards and Constraints 

Health and Safety 

The design of a soft robotic hand can be seen as vastly safer in comparison to current 

rigid robotics. As briefly discussed, many rigid robotics, when utilized in large scale factories 

operate at rapid speeds to maximize efficiency. This poses a large threat to workplace safety 

limiting the ability for humans to work side-by-side with robots. Rather, companies opt for 

creating containment cages for their robots or humans are forced to operate in entirely different 

rooms then the automated bots.  

By deploying soft robots, workplace accidents involving humans and robots can be 

almost entirely eliminated. The fear of bumping or hitting a soft robot is almost non-existent. 

Due to the 3D printed, soft plastic nature of the robot, getting hit with the robot at the speeds 

required for operation is more comparable to getting hit with a balloon rather than a car. In doing 

so, the need for cages and the separation of humans can be eliminated, resulting in workplace 

efficiency and almost the entire elimination of workplace accidents involving robots. We believe 

that some precautions will be required for proper human-robot interaction seeing as accidents 

involving pinch points may still occur if workers aren’t entirely careful. 

The primary safety concern of the 3D printed soft robot is the type of material being 

used. The current material being used has passed cytotoxicity and is currently being tested to 

become an FDA approved material. In order for the material to meet these safety standards, the 

material must be cured properly. Currently, Molecule is accepting printed parts to test the percent 

that the material is cured in order to analyze the cure and validate a “print-post cure” process. 

Once any “print-post cure” method is validated, it can be confirmed that the material will meet 

the safety requirements stated.  
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Manufacturability 

A key feature of our groups soft robotic gripper is that 3D printing is the main form of 

manufacturing. Unlike current soft robots or rigid robots currently deployed in industry, our 

gripper can be completely 3D printed cutting down on manufacturing cost, time, and accuracy. 

As previously mentioned, manufacturing silicon parts can be a costly, time consuming process 

[22]. Our ability to 3D print our silicon-based parts not only reduces time and cost, but allows for 

quick replacement of broken parts in an industrial setting. All that is needed to create 

replacement parts is an on-site 3D printer and a bottle of fluid. This streamlines repair time, cost, 

and efficiency allowing for a better manufacturing method of the gripper components.  

When taking our project from the research phase into a commercialized product it is 

important to recognize that some components will need to be added to the 3D printed design 

such as metal connectors, push-fits, etc… Although this means the commercialized product 

could not be 100% 3D printed, it is simple to incorporate these add-ons into the printed design to 

allow for quick and easy system integration. This is much easier to accomplish via 3D printing 

since holes, threads, and slots can more easily be added into the 3D model and printed when 

compared to machining or die casting a similar part.  

Ethical 

The utilization of automation in manufacturing and packaging plants can receive 

complaints of being unethical due to the elimination of lower-skilled positions. As discussed in 

the Background, this elimination of lower-skilled jobs does occur, but it has been argued that 

robotics and automation result in major growth of the number of skilled jobs. Our robotic design 

is similar to current automation systems - the robot performs mundane tasks largely required of 

humans. But, our design is limited in comparison to current designs as well. Our robotic design 
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cannot perform as many tasks as current automation systems due to the inability of automatically 

changing its tool (the hand/gripper design) and limitations due to the current programming. Due 

to this, there will be a requirement for more low-skilled workers assisting the processing 

operation with our robot. 

Additionally, less than 10% of jobs performed can be fully automatable meaning there is 

always a requirement for human assistance with robotics [23]. Our soft robotic design allows 

humans to work directly alongside the robots (with some precautions), meaning more efficient 

operation and the possibility for more human employment. Through our soft robotic design, we 

believe that the implementation of our robots in food packaging would cut in half the amount of 

lower-skilled jobs typically lost when new automation systems are created while maintaining the 

same number of newly created higher-skilled positions. 

Economic 

One of the great positives of current robotic systems in manufacturing and packaging 

plants is the enhanced efficiency paired with fewer human employees resulting in labor-cost 

savings. As discussed in the Ethical subsection of our design, the deployment of our soft robot 

would result in greater human employment due to the simpler nature of the design and the 

enhanced capabilities of human-robot interaction. In doing so, a factory or plant deploying our 

robot will see larger wage payments paired with a lower efficiency than current automation 

designs (humans are generally less efficient than fully automated robots). As a result, the plant 

output may slightly decrease in comparison to a fully automated factory utilizing rigid robots 

while the operating costs increase. From our estimates, we perceive that the labor-cost savings of 

a plant using our robotic design will be cut in half in comparison to an automated rigid robotic 

plant. 
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Sustainability 

Currently, our soft robot is being designed for a few specific applications, none of which 

will severely help the sustainability of the environment. Although the applications of this robot 

may not be sustainable, the energy use, and ability to work 24 hours a day are considered 

sustainable. Similar to current rigid robot technologies, by balancing the energy use over a 24-

hour span, the electrical efficiency is much higher, and can lead to large energy savings. 

Currently, power is generated at a constant value that matches the peak hours, leading to large 

waste in energy when during certain parts of the day. By using automation, the efficiency is 

much higher, due to the balance in energy use over the day. 

Also, due to the simplicity and lightweight of our soft robotic design, the predicted 

energy use is much lower than that of rigid robots. By helping balance the energy use, and 

decreasing energy when compared to other robots, it is believed that if commercialized, our soft 

robot would dramatically increase the electrical sustainability of the companies that use our bot. 

Furthermore, the materials being used in our project are considered to be OXO-

degradable. OXO-biodegradation is defined as "degradation resulting from oxidative and cell-

mediated phenomena, either simultaneously or successively.” By using these material, the waste 

can be degraded, allowing for these bots to be considered sustainable. 
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Chapter 8 - Conclusion 

After researching the robotics industry, it became apparent to our group that there are 

various flaws with rigid robots. Some of these flaws include safety issues, size, weight, and cost. 

After analysis of these issues our group realized that there was a large market for a new type of 

industrial robot which prompted our research into soft robotics. We then secured a partnership 

with Molecule Corp., a leader in the 3D printing resins industry, who agreed to sponsor our 

project and supply us with materials and resins to create a fully 3D printed, soft robotic gripper. 

Our project goal was to design this gripper so that it could be 3D printed and capable of picking 

up both a 100g apple and 4g pill.  

In order to achieve our project goals, our group began by designing four main 

subsystems: the soft robotic actuators, the control system, the user interface, and the handle. 

Over the course of a year we were able to use our engineering knowledge, as well as CAD, and 

FEA to successfully design each subsystem and create a gripper capable of picking up both a 

100g apple and 4g pill. The pneumatic control system was created to output 0-15psi and control 

up to 10 individual actuators, all while fitting within an 18”x12”x6” container. A LabView VI 

was created which successfully interfaced with the pneumatic control system and allowed for 

real time control of 10 individual actuators at a time. The final handle design utilized four 3D 

printed soft robotic actuators (similar to fingers) that would achieve a maximum deformation of 

2.17” at 15 psi. The combination of these subsystems resulted in a product which met and 

exceeded all of the initial goals, successfully picking up both of the goal objects as well as lifting 

a maximum weight of 800g (~1.76lbs) and a variety of other objects. The scope of this project 

was to create a proof of concept for introducing soft robots into various industries which after 

completion of this research project was successfully accomplished. 
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Many hypotheses that the future of industrial robots lays with technology that will allow 

humans and robots to work side by side. Soft robots allow for this form of interaction to take 

place and provide many other benefits such as being lightweight, cost efficient, and easily 

customizable for any industry. This project has successfully shown the capabilities of soft robots 

to break into traditional mechanized industries such as agriculture and pharmaceuticals, but also 

shows the possibility to add mechatronics into untouched industries where rigid robots could not 

safely be implemented. As rapid advancements in material sciences and mechatronics continue 

to occur, the use of soft robots will simultaneously increase allowing for these new robots to 

break into industry in the near future. 
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Appendix A: Gantt Chart 

 
Figure 33: Gantt chart for Winter quarter 

 



       

 63

 
Figure 34: Gantt chart for Spring quarter 
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Appendix B: Printer Settings 

Printer 1: Origin prototype printer 

 Setting 1: 0.7 seconds of cure per layer 

 Setting 2: 1 second of cure per layer 

 

By changing the cure time per layer, the material hardness could be affected. Other than 

the cure time per layer, all other print settings were held constant.  

 

Printer 2: 3D Systems Figure 4 

 Setting 1: 50 micron layer thickness 

 Setting 2: 100 micron layer thickness 

 

Due to different “triggers” when changing cure settings between the Origin and 3D 

systems printer, different values were changed. By changing the layer thickness, the material 

hardness was changed in a very similar way that cure time changed the settings on the Origin 

printer. 
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Appendix C: Health and Safety 

Uncured 3D Printing Resins 

The Molecule XS material is harmful if not properly cured. The material can cause skin 

irritation, and during the cure process, a respirator must be worn. In order to avoid any safety 

concerns of this material, certain steps must be made. First off, the post cure procedure of this 

material must ensure that the material has a very high cure conversion. In Molecule’s lab, a D 

Bulb with a belt is used. The material is passed under the light 8 times when travelling at 25 

ft/min. Other post cure procedures can be used, but test pieces must be sent to Molecule in order 

for them to check the cure conversion. Depending on the percent cure, they can approve your 

post cure procedure.  

If being used for medical purposes or in contact with food, further post processing 

methods must be used. The material must be soaked in IPA (isopropyl alcohol) for 24 hours, and 

then placed in a 60 C oven until all IPA is evaporated. This will not hurt the material properties 

of the part, but will ensure that ALL uncured resins are removed from the part. This is referred to 

as an extraction method. 

Also, when working with the resins, gloves and safety goggles must be worn to avoid any 

skin irritation. There are a number of hazards that could be caused by direct contact with this 

fluid (skin irritation/rash, severity varies from person to person), so wearing gloves and safety 

glasses is mandatory. 

3D Printing 

For this project, there are a few different printers being used, but there are some hazards 

that remain constant for all stereolithography printers. First, due to the use of high power lasers 

or projectors, users must be sure to not look at these lights. Although these lasers or projectors 
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are normally covered by the tray of resin, and have UV protected covers, extra precaution must 

still be taken. Also, when handling any part of the printer, make sure that gloves and safety 

goggles are worn due to the uncured resin (more information on this can be found in the Uncured 

3D Printing Resins section). Lastly, when removing a part from the build platform, it must be 

done carefully. In some cases, when a large cross section is attached to the build platform, the 

piece will be very difficult to remove with a scraping tool. When this occurs, make sure to 

remove carefully, as in some cases you will accelerate through the piece and can cut your hand 

on the build platform. This can cause 3D printing resins to get into the bloodstream which may 

cause skin irritation. 

Control System  

To prevent injury many precautions have been taken within the control system to isolate 

all electrical components. A custom acrylic component holder will be made to separate all 

components and have specific routes for all the wires to run. This will prevent unwanted 

electrical connections and shorts from occurring. In addition, pressure blow out (purge) valves 

have been incorporated into the system so that no backpressure buildup can occur. Mechatronics 

industry standards will be maintained on all components and connections to ensure that the 

highest level of safety is met. The pressures used in this system will be no greater than 30 PSI 

(however the working range is closer to 0-15 PSI) limiting the danger that can occur from 

pressure build ups and leaks. The fluid used will be air to limit danger compared to using 

different inert gases. Lastly, to prevent any other electrical hazards the control system will be 

isolated (acrylic shield) to prevent any contact with the outside environment (water, dust, etc…). 
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Test/Operation 

Testing of the full assembly relies on the control system, the printed hand, a LabView 

program and a voltage source. 

To begin testing, ensure that the control system is properly attached to the hand. Make 

sure that there are no holes in the hand or tubes as these could be points for air to leak. Connect 

the power source to the control system. The full assembly should have tubes and cords short 

enough that they will not run on the ground thus tripping shouldn’t be an issue. To test the hand, 

vary the set point voltage on the LabView program with the pump on. The set point voltage will 

vary how open or closed the transducers are for each finger to allow air to enter. 

To lift an item, have one user grip the printed hand. Hold the hand over the item of 

interest and have another team member change the set point voltage for the LabView. Hold the 

hand through the entirety of the operation, allow it to close around the item. Slowly lift the item a 

short distance upwards and then set it back down. Have the other team member disengage the 

gripping of the hand. Once the test is completed, disconnect the power source from the control 

system. 

The final hand assembly should be light (under 5 lbs.) so lifting by a user shouldn’t be a 

concern. Take note of any points on the assembly that may be sharp or possess pinch points. If 

there are noticeable locations, take extra precaution during operation or find a means to eliminate 

the dangers. 

Material Storage 

When these materials are not being used, they must be stored properly. Avoid leaving 

these materials in high temperature places, and make sure they are in UV proof containers to 

avoid premature curing. The max storage temperature of the printed material and the fluids 
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should not exceed 85° F. These materials have a shelf life of about a year, so the manufacturing 

date should be known. Although old resins will not have new safety hazards, material properties 

may be effected. 

All materials are stored in the Molecule chemical room that is kept at a proper 

temperature for these chemicals. We must make sure that we put the materials in the room after 

use. 

Part Storage 

When a soft robotic hand is not in use, the part must be properly stored. The only concern 

when storing the part is temperature. With this, one must be certain to avoid leaving a soft 

robotic hand at very high temperatures as is may affect the material properties. 

As of now most prototypes are tested and are normally analyzed and thrown away. As we 

begin to have longer lasting prototypes, the parts will be stored for the mean time at Molecule, 

Corp. To create greater access to the parts, a location on campus should be found for storage such 

as the Machining Lab. Our team must get approval from Dan MacCubbin and obtain a 

designated space or find an alternative location on campus if we are unable to do so. 

Disposal 

The resins being used must also be disposed of properly. Due to the waste hazards that 

this resin has, there are two potential disposal methods that must be used. First, the resin can be 

disposed of as a chemical waste. This has some restrictions as it can be difficult to get permits to 

dispose chemicals. The second and better option is to use Molecule’s Eco Cure product. This 

product solidifies the resin and allows for it to be disposed with normal trash. 

Since all printing is being done at Molecule, disposal will be very simple. Molecule can 

use their Eco Cure product, but is also approved to dispose chemicals legally. This makes our 
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disposal process very simple. If any liquid materials (not using EcoCure) need to be disposed of, 

make sure to pour them into the chemical waste bins located in the hoods. 
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Appendix D: Patent Search 

Title: 3D Printed, Soft Robotic Actuators 

Description: Soft robotics is an emerging industry within robotics, focused on replacing rigid 

materials currently deployed with soft, flexible materials. Commonly, soft robotics deploy 

materials such as polymers and fabrics, capable of being designed and manipulated in a manner 

that enhance the overall capabilities of robotics. Many soft robotics act similarly to a balloon, 

being inflated and deflated in various manners to create motions such as twisting, flexing, and 

straightening. This creates a wide range of capabilities for soft robots. Where rigid robots cannot 

be used (i.e. situations where a “soft” touch is required or operation is on non-rigid surfaces) soft 

robots can now be deployed. 

The deployment of polymer based soft robotic actuators has largely been attributed to 

growth in the last 2-4 years. During this time, soft robotics has been limited to actuator design 

via hand-molding and silicone based polymers. In doing so, current actuators suffer from a 

number of issues limiting their overall use and functionality. Namely, hand-molding vastly limits 

the overall geometry deployed. Almost all patented soft robots are forced to be created in multi-

part assemblies, delaying how quickly they can be manufactured as well as creating issues with 

repeatability and quality. Additionally, hand-molding limits scalability of designs. With high 

costs and large lead times, rapid design iterations of soft robotics are basically non-existent. 

The primary feature of the discussed design is its capability of being entirely 3D printed. 

A partnership with Molecule Corp. provided us with exclusive access to their 3D printing fluid: 

Molecule XS. This material has the potential of rivaling or exceeding material properties of 

silicone - the most widely used polymer for soft robotics. By 3D printing the actuators, issues 

with hand molding are entirely eliminated while creating a print in a single, simple process. 3D 
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printing allows for the design of actuators with no limitation on their potential geometry. Rather 

than requiring multiple molds and an assembly, the actuator is ready almost immediately after 

the print is finished. With the expanding technology in 3D printing, an actuator can be printed in 

a little under an hour. 

The design of the actuator includes three distinct features: an inflatable upper layer, a 

thick base layer, and a fingertip. The inflatable upper layer is made up of a series of pockets, 

extending along the entire finger. The pockets will alternate in size with a smaller pocket 

followed by a subsequent larger pocket. The design was completed through the use of splines, 

with the small pockets reaching a height of 0.51 in and the larger pockets reaching a height of 0.6 

in. There is a singular pressure inlet in each actuator where air of various pressure values can be 

pumped into the finger. When this occurs, the pressurized air is capable of expanding the pockets 

of the upper layer. This outward expansion can create the bending required. 

The thick base layer is 0.1 in thick and 3.5 in long. The design of the thick base layer is 

meant to create a reactionary force for the actuator. Due to its thickness and constant length, as 

the top layer expands due to the input the constant length of the base layer forces the top layer to 

bend. This bending is dependent on the amount of air pressure pumped into the finger - more 

pressure equals greater bending and vice versa.  

The final characteristic of the actuator is the fingertip. The fingertip relies on a ‘finned’ 

design similar to the design of fish fin. The fingertip allows for a soft touch for the actuator. 

When it presses against an object such as a pill, the fingertip has a certain amount of give 

allowing the surface of the fingertip to form around the object. This produces a greater surface 

area in contact with the object which will ultimately assist in lifting the object. 
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The variants analyzed for design of the full actuator considered either two knuckles of the 

full knuckle design. The two knuckle design was meant to mimic human fingers, attempting to 

create an actuator which can match the motions of an actual hand. Each variant had the three 

characteristics discussed above: a pocketed top layer, a thick base layer, and a fingertip. An 

initial iteration of the finger was printed and experimental testing for the finger was performed. 

The testing resulted in a finger with a very limited range of motion barely comparable to an 

actual human finger. As a result, this design was eliminated for contention. The next variant 

considered was the full knuckle design which was ultimately chosen for the final design. The 

primary reasoning for choosing this design was due to its capabilities of mimicking the motion of 

a finger. The full knuckle design was capable of meeting full actuation at the maximum pressure 

input (15 psi) while hitting various deflection points for lower inputs.  

Currently, there are two distinct companies working on soft robotic hands: Soft Robotics 

and Pneubotics. The two companies utilize hand molding for the creation of their full actuators, 

but their designs are deployed in a number of industries. The two companies have actuators with 

similar designs to the proposed design. A base layer with a pocketed top layer allowing for 

bending of the finger. Because the companies rely on hand molding, each actuator is made up of 

a multi-part assembly. Multiple molds are created for each finger which can create long assembly 

processes.  

One unique aspect of these current hands is there ability to vary the number of fingers 

utilized. Soft Robotics’ hands have magnetic connects for their fingers and palms to interact. 

These allows users to be able to vary the fingers used from 2 fingers up to 6 fingers. This creates 

a hand with a wide range of lifting capabilities with a user-friendly assembly process. 
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Overall, the design of the soft robotic actuators have great capabilities for mass 

commercialization. The 3D printing process expands the availability of the actuators and hands 

to smaller companies and industries, generally unable to pay the large up front costs for 

expensive robots. Additionally, because the actuators are made of soft polymers, the cost of 

materials goes way down. Molecule Corp. currently sells a liter of their fluid for approximately 

$249, which is capable of printing about 25 actuators. The largest overall front end cost of the 

actuators is the required purchase of a 3D printer which is roughly around $5,000. 

Comparatively, this cost is much lower than that of molding and the 3D printing process allows 

for rapid iterations and the ability to scale the design of the actuator easily without the 

requirement of a new mold. Due to the low cost and the overall success of a 4 finger gripper in 

lifting objects such as an apple and a pill, it is believed that the design would have great 

commercialization success in both the food packaging and pharmaceutical industries. 

Sketch: 

 

Figure 35: Cross-sectional CAD image of soft robotic actuator with highlighted components 
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Patent Classifications: 

F mechanical engineering; lighting; heating; weapons; blasting 

F15 fluid-pressure actuators; hydraulics or pneumatics in general 

F15B systems acting by means of fluids in general; fluid-pressure actuators, e.g. servo-motors; 

details of fluid-pressure systems, not otherwise provided for 

F15B15/00 Fluid-actuated devices for displacing a member from one position to another; 

Gearing associated therewith 

F15B15/08 Fluid-actuated devices for displacing a member from one position to another; 

Gearing associated therewith characterized by the construction of the motor unit 

F15B15/10 Fluid-actuated devices for displacing a member from one position to another; 

Gearing associated therewith characterized by the construction of the motor unit the motor being 

of diaphragm type 

 

B performing operations; transporting 

B25 hand tools; portable power-driven tools; manipulators 

B25J manipulators; chambers provided with manipulation devices 

B25J11/00 Manipulators not otherwise provided for 

 

B performing operations; transporting 

B25 hand tools; portable power-driven tools; manipulators 

B25J manipulators; chambers provided with manipulation devices 

B25J9/00 Programme-controlled manipulators 
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B25J9/10 Programme-controlled manipulators characterized by positioning means for 

manipulator elements 

B25J9/1075 Programme-controlled manipulators characterized by positioning means for 

manipulator elements with muscles or tendons 

 

F mechanical engineering; lighting; heating; weapons; blasting 

F15 fluid-pressure actuators; hydraulics or pneumatics in general 

F15B systems acting by means of fluids in general; fluid-pressure actuators, e.g. servo-motors; 

details of fluid-pressure systems, not otherwise provided for 

F15B7/00 Systems in which the movement produced is definitely related to the output of a 

volumetric pump; Telemotors 

F15B7/06 Details 

 

B performing operations; transporting 

B33 additive manufacturing technology 

B33Y additive manufacturing, i.e. manufacturing of three-dimensional [3-d] objects by additive 

deposition, additive agglomeration or additive layering, e.g. by 3-d printing, stereolithography or 

selective laser sintering 

B33Y10/00 processes of additive manufacturing 
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Appendix E: Arduino IDE Raw Codes 

The following images display the basic code structure of the Arduino IDE program. The 

code structure was briefly discussed in the User Interface subsection and the images are included 

to provide greater clarification. 

 
Figure 36: Arduino raw code for controlling 4 regulators 

 
 

 
Figure 37: Arduino raw code for controlling1 regulator 
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Appendix F: Design Tables and Sketches 

Table 10: Bill of Materials for the soft robotic gripper 

Top 
Level 

Sub 
Level 

1 

Sub 
Level 

2 Description Qty. B/M/O Vendor 
Vendor 
Number 

Price 
Per 
Unit 

Total 
Cost 

Responsible 
Person 

Order 
Date 

Received 
Date 

Soft Robotic 
Hand 1 M - - - - Team - - 

Soft Robotic 
Fingers 4 M - - - - Team - - 

3D Printed 
Handle 1 M - - - - Team - - 

3D Printing Resin 
- Custom - O - - - - Team - - 

Control System 1 B - - - - Team - - 
Baomain Silicone 
Tubing - Vacuum 
Hose Line 6mm ( 

1/4 Inch ) 9.8 
Foot 3M 1 B Amazon B01IB9BL3Q 11 11 Chris 12/15/18 12/19/18 

ARDUINO 
A000067 DEV 

BRD, 
ATMEGA2560, 

ARDUINO 
MEGA 2560 R3 1 B Amazon B0046AMGW0 43 43 Chris 12/15/18 12/20/18 

BTC IIS and TTC 
IIS Mineature 
Diafram Pump 1 B Parker D737-23-01 288 288 Chris 12/15/18 12/21/18 

Compact Electro-
Pneumatic 
Regulator 10 B 

SMC 
USA 

ITV0011-
2UMS 208 2080 Chris 12/22/18 - 

Regulator 
Manifold 1 B 

SMC 
USA IITV20-N02-2 69 69 Chris 12/22/18 - 

Acrylic Control 
System Container 1 M - - - - Team - - 

1/8" tubing 1 B - - - - Chris - - 

1/4" tubing 1 B - - - - Chris - - 

5/32" tubing 1 B - - - - Chris - - 

Page Totals  2491 
 

 

 

Table 11: Design matrix used to determine gripper configuration 
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Table 12: Scoring system used in design matrix 
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Figure 38: Early concept sketches for finger prototypes 
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Table 13: Product design specification (PDS) table 

Constraints Parameters 

 Units Datum Target 

Maximum Temperature °C 65 65 

Coefficient of Friction N/a 0.9 0.9 

Percent Elongation % 100 300 

Required Pressure psi. 0-12 0-15 

Range of lifting weights g 0-100 0-100 

Weight g 1,000 1,000 

Size m2 0.016 0.010 

Lifespan years 2 2.5 

Time to Produce hours 12-24 3-5 

Cost $ 10,000+ 3,000 
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Appendix G: Finger Force Testing Raw Data 

Table 14: Force testing raw data of the 0.7 s cure time with the Origin printer 

Voltage (V) Pressure (psi) PWM Output Force (g) Average Force (g) Average Force (lb.) 

1 3 50 

10 

9.333333333 0.02057645333 8 

10 

2 6 100 

21 

23.66666667 0.05217600667 24 

26 

3 9 150 

36 

35.33333333 0.07789657333 33 

37 

4 12 200 

50 

49.33333333 0.1087612533 49 

49 

4.5 13.5 225 

62 

62.66666667 0.1381561867 66 

60 

5 15 250 

73 

69.66666667 0.1535885267 69 

67 
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Table 15: Force testing raw data of the 1 s cure time with the Origin printer 

Voltage (V) Pressure (psi) PWM Output Force (g) Average Force (g) Average Force (lb) 

1 3 50 

4 

7 0.01543234 7 

10 

2 6 100 

18 

17 0.03747854 16 

17 

3 9 150 

24 

25 0.0551155 25 

26 

4 12 200 

40 

40.66666667 0.08965454667 41 

41 

4.5 13.5 225 

49 

49.66666667 0.1094961267 46 

54 

5 15 250 

54 

58.66666667 0.1293377067 61 

61 
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Table 16: Cure setting 1 on the Figure 4 printer 

Voltage (V) Pressure (psi) PWM Output Force (g) Average Force (g) Average Force (lb) 

1 3 50 

19 

20 0.0440924 20 

21 

2 6 100 

29 

30 0.0661386 29 

32 

3 9 150 

53 

49 0.10802638 45 

49 

4 12 200 

51 

51 0.11243562 51 

51 

4.5 13.5 225 

61 

58.33333333 0.1286028333 57 

57 

5 15 250 

57 

59.66666667 0.1315423267 60 

62 
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Table 17: Finalized cure setting for the Figure 4 printer 

Voltage (V) Pressure (psi) PWM Output Force (g) Average Force (g) Average Force (lb.) 

1 3 50 

13 

13 0.02866006 10 

16 

2 6 100 

23 

23 0.05070626 21 

25 

3 9 150 

46 

44 0.09700328 43 

43 

4 12 200 

56 

58.33333333 0.1286028333 59 

60 

4.5 13.5 225 

68 

64.33333333 0.1418305533 62 

63 

5 15 250 

74 

74.33333333 0.1638767533 73 

76 
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Appendix H: Finger Displacement Testing Raw Data 

Table 18: Finger Displacement results for the 0.7 sec cure Origin prints 

 

Table 19: Finger Displacement results for the 1 sec cure Origin prints 
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Appendix I: Finger Cycle Time Raw Data 

Table 20: Cycle time of 0.7 second cure on Origin printer 

Trial Pressure [psi] Open [s] Close [s] Total [s] 

1 15 3.3 0.4 3.7 

2 15 3.46 0.3 3.76 

3 15 3.1 2.18 5.28 

4 15 3.73 0.4 4.13 

5 15 3.26 2.33 5.59 

 
 

Table 21: Cycle time of the Figure 4 printer Angel 

Trial Pressure [psi] Open [s] Close [s] Total [s] 

1 15 0.5 0.23 0.73 

2 15 0.4 0.3 0.7 

3 15 0.3 0.3 0.6 

4 15 0.5 0.45 0.95 

5 15 0.3 0.45 0.75 

 
Table 22: Cycle time for the Figure 4 printer Braves 

Trial Pressure [psi] Open [s] Close [s] Total [s] 

1 15 0.25 0.21 0.45 

2 15 0.30 0.22 0.52 

3 15 0.21 0.20 0.41 

4 15 0.15 0.23 0.38 

5 15 0.18 0.26 0.44 
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Appendix J: Tensile Data 

 
Figure 39: Tensile test of finalized material settings on Figure 4 printer 

 

 
Figure 40: Tensile data output from Instron for Origin 1 second cure 
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Appendix K: Coefficient of Friction Data 

 
Figure 41: Trials performed on felt (1-3) and paper (4) for determining coefficients of friction 

 

 
Figure 42: Trials 5 & 6 performed on paper for determining coefficients of friction 

 
Table 23: Subsequent coefficients of friction determined from testing on felt (1-3) and paper (4-6) 
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Figure 43: Trials of tests performed on aluminum (1-3) and cardboard (4) for determining coefficients of friction 

 
 

Figure 44: Trials performed on cardboard (5-6) and acrylic (7 & 8) for determining coefficients of friction 
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Figure 45: Final testing performed on acrylic (9 & 10) for determining coefficients of friction 

 
Table 24: Coefficients of friction determined for testing on aluminum (1-3), cardboard (4-6), and acrylic (7-10) 
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Appendix L: Hand Calculations 

 
Figure 46: Hand calculations of required pressure input for max desired deflection 
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Appendix M: Simulation 

The Neo-Hookean model was deemed appropriate because it represents good modeling accuracy 

for strains under 20%. The Neo-Hookean model utilizes the approximation equation: 

ܹ ൌ ଵܫଵሺܥ െ 2ሻ ൅ ܬଵሺܦ െ 1ሻ2	#ሺ1ܣሻ  
 
where ܹ is the strain energy density of the model,	ܥଵ is a material constant equal to ܫ ,2/ ߤଵ	is the first 

invariant of the right Cauchy-Green deformation tensor, ܦଵ is a material constant equal to ߬ /2, and	ܬ is 

equal to the product of the three principal stresses of the material (123). Additionally, ߤ	is the shear 

modulus of the material and ߬ is first Lame parameter.  

 

 
Figure 47: Plotted modeling fits for stress-strain of hyperelastic materials [“Hyperelastic Material”] 
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Figures 48: Tensile simulation of a Type 4 test piece in Abaqus, an FEA simulation tool 

 
 

  
Figures 49: Tensile simulation of a Type 4 test piece in Abaqus, an FEA simulation tool 
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Figure 50: Mesh of full finger design for FEA simulation on Abaqus 

 
Figure 51: Indicated faces for boundary conditions and loading on a knuckle prototype uploaded in Abaqus 

 
Figure 52: Stress concentration on back of finger at 2 psi 
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Figure 53: Stress concentration on back of finger at 4 psi 
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Appendix N: Final Design Images 

 

Figure 54: CAD image of finalized control system design 

  
Figure 55a and 55b: Current knuckle prototype comparing pre and post input of pressurized air showing 

subsequent bending  
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Figure 56: Design drawing of thumb prototype 
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Figure 57: Solidworks drawing for soft robotic finger actuator 
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Figure 58: Design drawing for 3D printed handle 
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Figure 59: Solidworks assembly drawing for the complete soft robotic gripper system 
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