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RESEARCH ARTICLE Open Access

Stability of petal color polymorphism: the
significance of anthocyanin accumulation
in photosynthetic tissues
José Carlos Del Valle1* , Cristina Alcalde-Eon2, Mª. Teresa Escribano-Bailón2, Mª. Luisa Buide1,
Justen B. Whittall3 and Eduardo Narbona1

Abstract

Background: Anthocyanins are the primary source of colour in flowers and also accumulate in vegetative tissues,
where they have multiple protective roles traditionally attributed to early compounds of the metabolic pathway
(flavonols, flavones, etc.). Petal-specific loss of anthocyanins in petals allows plants to escape from the negative
pleiotropic effects of flavonoid and anthocyanins loss in vegetative organs, where they perform a plethora of essential
functions. Herein, we investigate the degree of pleiotropy at the biochemical scale in a pink-white flower colour
polymorphism in the shore campion, Silene littorea. We report the frequencies of pink and white individuals across 21
populations and underlying biochemical profiles of three flower colour variants: anthocyanins present in all tissues
(pink petals), petal-specific loss of anthocyanins (white petals), and loss of anthocyanins in all tissues (white petals).

Results: Individuals lacking anthocyanins only in petals represent a stable polymorphism in two populations at the
northern edge of the species range (mean frequency 8–21%). Whereas, individuals lacking anthocyanins in the whole
plant were found across the species range, yet always at very low frequencies (< 1%). Biochemically, the flavonoids
detected were anthocyanins and flavones; in pigmented individuals, concentrations of flavones were
14–56× higher than anthocyanins across tissues with differences of > 100× detected in leaves. Loss of anthocyanin
pigmentation, either in petals or in the whole plant, does not influence the ability of these phenotypes to synthesize
flavones, and this pattern was congruent among all sampled populations.

Conclusions: We found that all colour variants showed similar flavone profiles, either in petals or in the whole plant,
and only the flower colour variant with anthocyanins in photosynthetic tissues persists as a stable flower colour
polymorphism. These findings suggest that anthocyanins in photosynthetic tissues, not flavonoid intermediates, are the
targets of non-pollinator mediated selection.

Keywords: Anthocyanins, Flavonoids, Flower color polymorphism, Loss of pigmentation, Non-pollinator mediated
selection, Plant secondary metabolites, Pleiotropy

Background
Mutations are the primary source of genetic variation in all
organisms and have a key contribution to phenotypic diver-
sity [1, 2], but not all mutations are evolutionarily relevant.
Some phenotypic changes are produced through spontan-
eous mutations with deleterious effects that are consistently
eliminated by purifying selection [3]. In contrast, persistent

phenotypic changes arise from mutations maintained by
balancing selection through frequency-dependent or het-
erogeneous selection or through the promotion of multiple
adaptive peaks [4–8], resulting in a population polymorph-
ism for that trait [9–11]. Factors that may determine why
some new phenotypes are fleeting and some persists as
polymorphisms are still open [12, 13], but the study of
flower color is helping to shed light to this issue [14–17].
Flower color variation has drawn the attention of

many naturalists through the history [18–20], and now-
adays continues to be an important focus of research to
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evolutionary biologist [14, 21]. Flower color has been
considered as an adaptive trait for pollinator attraction
[22], but underlying pigments also have other functions,
especially in vegetative tissues. Anthocyanins are the
most common plant pigment that color flowers, confer-
ring orange, red, pink and blue colors [23] that attract
diverse functional groups of pollinators [22, 24]. For
example, variation in anthocyanin content in monkey-
flowers (Mimulus) results in red and pink-flowered
species that are visited by hummingbirds and bees, re-
spectively [25, 26]. In vegetative tissues, anthocyanins
may show protective roles such as sunscreens, antioxi-
dants or antipathogens, among others [27, 28]. Thus, loss
of anthocyanins may affect pollinator activity, but may
also have physiological effects depending on whether they
are accumulated or not in vegetative tissues. If the loss of
anthocyanins is confined to the flowers (usually in petals),
the rest of the plant can produce anthocyanins and reduce
any negative pleiotropic effects in other tissues [29, 30],
whereas anthocyanins-lacking individuals in the whole
plant potentially grow and reproduce, but frequently ex-
hibit fitness disadvantages that seem to explain their scar-
city in the wild [31–33] (see Additional file 1: Table S1).
Petal-specific loss of anthocyanins is frequently in-

duced by regulatory mutations (that is changes in the
regulation of gene expression) and shows a mutation
bias to Myb transcription factors, the key regulatory fac-
tors controlling anthocyanin biosynthesis in plants [30,
34]. Different copies of Myb proteins regulate floral and
vegetative anthocyanins, thus the specificity of this regu-
lation is predicted to have low pleiotropic consequences
[35]. For example, in Ipomoea purpurea mutations the
regulatory IpMyb1 gene are responsible for anthocyanin
loss in pigmented flowers [36]. However, these muta-
tions do not affect the fitness of white-flowered plants
and show equal or even higher reproductive success
than that of the pigmented individuals [15, 29].
Anthocyanin-lacking individuals, on the other hand,

are conferred by loss-of-function in any of the structural
loci or whole plant regulatory genes of the anthocyanin
biosynthetic pathway (hereafter ABP) [30, 34]. Loss-of-
function mutations may target a high spectrum of genes
since there are more possible loci that could confer the
non-pigmented phenotype. Thus, the inactivation of any
structural gene of the pathway often limit the flux down
the ABP and block the anthocyanin production, but also
may affect the synthesis of uncolored/pale-yellow non-
anthocyanin flavonoids in the side branches of the path-
way [23]. These flavonoids, such as flavones or flavonols,
also perform important ecological functions because
they show similar or even more protective functions
against environmental stressors than anthocyanins them-
selves [37]. Therefore, the persistence of loss-of-function
mutations should be limited by the negative pleiotropic

effects associated to the absence of anthocyanins and/or
intermediate non-anthocyanin flavonoids [14, 17, 38].
The selection against these variants may depend on
where the mutation occurs and the associated negative
consequences for the flavonoid loss.
Loss of pigmentation, particularly due to absence of

anthocyanins, represents the most frequent cases of
flower color polymorphism in plants [39, 40]. White-
flowered morphs represent valuable natural genotypes to
know the possible selective disadvantages of lack of antho-
cyanins in the whole plant [33, 39, 41–43], but the non-
anthocyanin flavonoid composition of such plants is un-
known. In addition, the quantities of anthocyanins are usu-
ally correlated with those of non-anthocyanin flavonoids,
at least in some tissues, and the concentrations of the latter
are even higher than that of anthocyanins [44, 45]. Conse-
quently, it is difficult to distinguish which group of flavo-
noids is responsible for the putative selective disadvantage
of anthocyanin lacking plants [31–33], and studies that
clearly differentiate between flavonoid groups are limited.
The shore campion Silene littorea Brot. (Caryophyllaceae)

is an annual pink-flowered species that accumulates antho-
cyanins and non-anthocyanin flavonoids in petals and in
calyces, leaves and stems [44, 46]. The accumulation of
both kinds of flavonoids in vegetative tissues is highly
variable and seems to respond to light stress [46]. Silene lit-
torea grows along the Iberian coast, and exhibits an
anthocyanin-based pink-white flower color polymorphism
in two populations of the northwest distribution range, but
anthocyanin-lacking individuals are occasionally observed
in some populations [47]. In S. littorea, petal-specific poly-
morphism is likely due to downregulation of the flavanone-
3-hydroxylase (F3 h) gene through a downregulation of the
SlMyb1a transcription factor [47], but genetic causes of
anthocyanin-lacking plants are still unknown. Flowers of
this species are mainly visited by generalist pollinators from
the orders Diptera, Hymenoptera, and Lepidoptera; how-
ever, they do not seem to show strong pollinator preference
for either pink or white flowers (M.L.B. 2019, unpublished
data). Thus, the occurrence of petal anthocyanin loss and
whole-plant anthocyanin loss individuals in S. littorea
(hereafter PAL and WAL phenotypes, respectively) offers
an excellent opportunity for understanding the importance
of non-pollinator selection due to lack of anthocyanins
and/or non-anthocyanin flavonoids.
In this study, we seek to understand the factors that de-

termine the fate of different forms of anthocyanin vari-
ation in S. littorea. Thus, we investigated the population
frequency of three anthocyanin phenotypes (PAL, WAL
and fully pigmented) in 21 populations across the species
distribution range over five years. Then, we used high-
performance liquid chromatography coupled with diode-
array detection and electrospray ionization tandem mass
spectrometry (HPLC-DAD-MSn) to study the flavonoid
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profiles at the whole plant level in the fully pigmented
phenotype and compare them to that of white-flowered
variants (i.e. PAL and WAL phenotypes); after that, this
study was expanded to more individuals and populations
using spectrophotometric quantification of flavonoids. Be-
cause of the negative consequences of the absence of fla-
vonoids [30, 38], we expect the PAL phenotype to be
more common within a population compared to WAL.
Thus, loss of anthocyanins and non-anthocyanin flavo-
noids are expected to be limited to petals in PAL plants,
but extended to the whole plant in WAL individuals.

Results
Frequency of PAL, WAL and fully pigmented phenotypes
Our population surveys confirmed that the PAL phenotype
is limited to two populations in the northern portion of the
species range (Fig. 1). A polymorphism from 8 to 21% of
PAL plants has been maintained over the years at these
two populations (Additional file 2: Table S2). In contrast,
WAL individuals were found in nine of the 21 populations
surveyed, including the two polymorphic populations, but
always at very low frequencies (< 1% of total plants; Fig. 1
and Additional file 2: Table S2) and without any clear
geographic pattern.

Flavonoid identification and composition in each plant tissue
Five anthocyanins and 21 flavones were identified in
petals, as well as four anthocyanins and 19 flavones in
photosynthetic tissues (Additional file 4: Table S3). The

anthocyanins detected were cyanidin derivatives in all cases,
but with different substituents in petals and photosynthetic
tissues (Fig. 2 and Additional file 4: Table S3). The main
anthocyanin present in pigmented petals was a glycosylated
cyanidin with two sugars (one rhamnosylglucose and one
glucose) and acylated with acetic acid (representing 71.0–
74.1% of the total anthocyanin concentrations; peak 3 in
Fig. 2c). In photosynthetic tissues, the structures of the pre-
dominant anthocyanins were simpler, with only one sugar
attached to the aglycone (78.0–99.4%; peaks 6–9 in Fig. 2g).
The flavone composition was also different in petals

compared to photosynthetic tissues: isovitexin derivatives
were mostly accumulated in petals whereas isoorientin de-
rivatives were the main flavones present in photosynthetic
tissues (Table 1 and Additional file 4: Table S3). The pri-
mary petal flavone was an isovitexin glycosylated with two
pentose sugars (69.5–88.3% of the total flavone concentra-
tions in the three phenotypes; peak 17 in Fig. 2a and b).
An isoorientin derivative containing an additional hexose
and a caffeoyl residue was the main flavone present in
calyces (58.8–63.2%), leaves (42.9–58.1%) and stems
(50.6–57.8%; peak 35 in Fig. 2e and f). In all tissues, iso-
scoparin derivatives were also detected, but at relatively
low levels (< 11%; Table 1 and Additional file 4: Table S3).
Flavones were the most abundant flavonoids detected

across tissues. In fully pigmented individuals, concentra-
tions of flavones were 14–56× higher than anthocyanins
in petals, calyces and stems; leaf tissues showed an ever
great bias, producing flavones at rates >100x that of

Fig. 1 Silene littorea sampling and phenotypes with respect to anthocyanin accumulation. The map shows 21 populations covering the distribution
range of S. littorea where frequencies of petal anthocyanin loss (PAL) and whole-plant anthocyanin loss (WAL) phenotypes were estimated (see
Additional file 2: Table S2). Pink circles indicate populations in which only fully pigmented individuals (pink petals and anthocyanic photosynthetic
tissues) are found, pink squares show populations in which WAL individuals are also found in at least one year of the studied period, and white
squares represent populations where WAL and PAL individuals are found. The two polymorphic populations (Louro and Barra) and the two non-
polymorphic populations (Trafalgar and Breña) in which flavonoids were biochemically analyzed are named. Photographs of the three phenotypes
present in polymorphic (above) and non-polymorphic populations (below) are presented. Note the differences in anthocyanin accumulation in calyces
and stems in fully pigmented and PAL plants vs. WAL individuals (indicated by red arrows) (more photographs available in Additional file 3: Figure S1)
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Fig. 2 Examples of chromatograms of petals (a-d) and calyces (e-h) extracts from fully pigmented and WAL plants from Barra population
recorded at 360 nm (flavones) and at 520 nm (anthocyanins). Only main peaks are numbered (details are shown in Additional file 5: Figure S2,
Additional file 6: Figure S3 and Additional file 4: Table S3; A = phenolic acids)
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anthocyanins (Table 1). These differences were even more
apparent in white petals of PAL plants and anthocyanin-
lacking WAL individuals.

Variation in flavonoid content among phenotypes using
HPLC-DAD-MSn

The three phenotypes showed significant differences in
their anthocyanin concentrations. In petals, PAL and
WAL phenotypes accumulated only 1% of the same an-
thocyanins found in the fully pigmented phenotype (Fig.
2d; Tables 1 and 2). In calyces and stems, WAL pheno-
types produced undetectable concentration of anthocya-
nins (Fig. 2h), whereas fully pigmented and PAL
phenotypes showed similar anthocyanin levels. In leaves,
anthocyanin concentration was very low and statistically
similar for the three phenotypes.
In contrast to the differences found in anthocyanin

concentrations, the three phenotypes showed minimal
differences in their flavone content (Fig. 2a, b, e and f),
and only three petal flavones (~ 1.5% of total flavones)
were not present in all phenotypes (see Additional file 4:
Table S3). We found differences in flavone composition
between the polymorphic and non-polymorphic popula-
tions, with five compounds specific to Breña (com-
pounds 16, 18, 21, 33a and 37a in Additional file 4:
Table S3). The first three compounds were rare non-
acylated O-glycosyl-C-monoglycoside flavones of petals
(< 1% of total flavones), whereas the other two were
moderately abundant in photosynthetic tissues (4.17–
21.2% of total flavones). Thus, PCA based on the flavone
composition and concentration showed higher separ-
ation between populations than among phenotypes of
each population (Additional file 7: Figure S4). When we
compared the flavone concentration of each specific

group of flavones (i.e. derivatives of isovitexin, isoor-
ientin and isoscoparin, and di-C-glycosides), we found
no significant difference among phenotypes neither in
the polymorphic nor the non-polymorphic population
(Table 2). Similar results were obtained when using
the relative proportion of flavones in MANOVAs
(Additional file 8: Table S4).

Variation in flavonoid content among phenotypes
measured spectrophotometrically
When expanding the sampling to more individuals and
populations, spectrophotometric quantification showed
similar pattern of anthocyanin and flavone production to
that found in the HPLC analysis. In the two polymorphic
populations, the three phenotypes showed significant
differences for the anthocyanin accumulation in all tis-
sues except for leaves, which showed very low values in
all phenotypes (Fig. 3; Table 3). In petals, PAL and WAL
phenotypes produced near zero anthocyanin concentra-
tion, whereas in photosynthetic tissues only the WAL
phenotype lacked anthocyanins. The three phenotypes
showed statistically similar flavone concentrations in
photosynthetic tissues. In petals, significant differences
were found due to the higher flavone content in WAL
plants from Barra (Fig. 3). Between populations, signifi-
cant differences were found for the anthocyanin produc-
tion in petals and stems, and for the flavone production
in all tissues. Anthocyanins and flavones concentrations
were, in general, higher in Barra than Louro.
In non-polymorphic populations, anthocyanin produc-

tion in petals and calyces were significantly different be-
tween fully pigmented and WAL phenotypes, and near
significant in stems (Fig. 3; Table 3). Flavone concentra-
tions in both phenotypes were similar in all tissues

Table 2 Results from ANOVAs and MANOVAs comparing the anthocyanin and flavone contents among phenotypes in Barra (fully
pigmented, PAL and WAL) and Breña (fully pigmented and WAL). Anthocyanin and flavone concentrations were obtained from
HPLC analyses performed in four plants of each phenotype. Comparisons were made independently for each plant tissue. Total
anthocyanins were considered for anthocyanin analyses, whereas main groups according to the C-glycoside flavone core were
considered for flavone analyses (see Table 1)

Tissue Anthocyanins Flavones

ANOVA test MANOVA test

SS d.f. F P Wilk’s lambda F d.f. P

Barra Petals 6.403 2, 12 19.32 0.001a 0.215 1.735 4, 12 0.188

Calyces 0.272 2, 12 8.249 0.009b 0.563 0.500 4, 12 0.834

Leaves 0.001 2, 12 2.627 0.126 0.256 1.463 4, 12 0.266

Stems 0.173 2, 12 17.28 < 0.001b 0.248 1.510 4, 12 0.251

Breña Petals 15.11 1, 8 49.89 < 0.001 0.659 0.389 4, 8 0.808

Calyces 0.106 1, 8 30.76 < 0.001 0.260 2.131 4, 8 0.280

Leaves 0.004 1, 8 1.121 0.330 0.445 0.935 4, 8 0.544

Stems 0.170 1, 8 10.71 0.017 0.121 5.448 4, 8 0.098
apost hoc Tukey test showed significant differences between fully pigmented vs. PAL and WAL phenotypes (P < 0.05)
bpost hoc Tukey test showed significant differences between WAL vs. fully pigmented and PAL phenotypes (P < 0.05)
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except for calyces, in which WAL plants from Breña
showed nearly half concentrations compared to fully pig-
mented plants (Fig. 3). Between populations, significant dif-
ferences were found for anthocyanins in all tissues except
for the stems, and for flavones in all photosynthetic tissues,
showing higher concentration levels in Breña population.

Discussion
In this study, we found that shore campion accumulates
both anthocyanins and flavones, but specific classes of
these compounds were differentially produced in petals
versus photosynthetic calyces, leaves and stems. Fully
pigmented and PAL plants showed similar anthocyanin
content in the analyzed tissues, except for the obvious
absence in petals, whereas WAL phenotype lacks antho-
cyanins in the whole plant. In contrast, plants with white
petals (both PAL and WAL phenotypes) have similar fla-
vone composition and concentration compared to pink-
flowered plants. Thus, the synthesis of flavones in each
tissue of both PAL and WAL phenotypes seems to be
not influenced by the loss of anthocyanins. This pattern
of anthocyanin and flavone production in all phenotypes
was congruent in the distant polymorphic and non-

polymorphic populations. Together, these results suggest
that anthocyanin accumulation in photosynthetic tissues
are directly or indirectly involved in petal color poly-
morphism persistence. Below, we discuss these findings
in view of the frequency in which PAL and WAL pheno-
types are found in natural populations.
One of the most significant findings reported here is

that PAL and WAL plants exhibited similar flavone con-
tent as fully pigmented plants, even though they lacked
anthocyanins in either their petals or petals and vegeta-
tive tissues. In a previous study analyzing the sequences
and gene expression of ABP genes in petals of S. littorea,
Casimiro-Soriguer et al. [47] suggested that anthocyanin
petal-loss in PAL individuals is caused by a decreased
expression of flavanone-3-hydroxylase (F3h) controlled
by a petal specific regulatory gene, SlMyb1a. Detection
of flavones in PAL petals is consistent with the blockage
of the ABP at F3 h since flavones are synthetized from
naringenin or eriodictyol, which are produced in the
steps immediately preceding F3H (Fig. 4). We suggest
that downregulation of F3 h prevents a blockage of fla-
vone production [48] and redirects flux from anthocya-
nins to flavones in white petals of S. littorea, as is

Fig. 3 Flavonoid concentrations measured by spectrophotometry in the phenotypes of S. littorea from the polymorphic (Barra and Louro) and
non-polymorphic (Trafalgar and Breña) petal-color populations. Mean (± s.e.) concentrations of anthocyanins and non-anthocyanin flavonoids in
the four studied plant tissues are showed. Pink, pink-white striped and white bars represent fully pigmented, PAL and WAL phenotypes,
respectively. Letters indicate significant differences (P < 0.05) from post hoc multiple comparisons among phenotypes within each population.
Note the different scale between plant tissues and flavonoid types. FW, fresh weight
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described in other flower color polymorphic species
[49, 50]. Similarly, mutations leading to the complete
lack of anthocyanins in WAL individuals may occur
later in the pathway to preserve flavone production.
In Mimulus lewisii and Iochroma calycinum, mutations in
coding regions of a late gene of the ABP, the dihydroflavo-
nol 4-reductase (Dfr), cause the complete loss of anthocy-
anins of rare white-flowered individuals [51, 52]. A similar
downstream blockage of the ABP, but not necessarily
caused by inactivation of DFR, could explain the absence
of anthocyanins in WAL individuals.
Although several studies have examined the genetic

and molecular basis for PAL and WAL phenotypes
[11, 29, 48, 51–53], this is the first study that has
compared the complete flavonoid profile in these two
forms of white-flowered individuals. Nevertheless, some
studies have approached this goal in wild species. For ex-
ample, flowers of the rare white-petal phenotype of
Iochroma calycinum accumulate the same flavonol (quer-
cetin) that the pigmented phenotype as determined by
thin layer chromatography [52]. Although comparisons
between natural and horticultural plants should be ad-
dressed carefully since they are under different selection
when in cultivation, there is some biochemical knowledge
available for ornamental plants. Several studies have re-
ported similar flavonol profiles for white-flowered and
pigmented lines, as for lisianthus (Eustoma grandiflorum)

and gentians (Gentiana triflora) [54, 55]; however, some
white-flowered lines showed different flavonoid profiles,
probably because of distinct genetic blockage of the ABP.
We have found that all WAL plants of the shore campion
showed the same flavonoid profile. This lack of flavonoid
diversity in WAL phenotype reinforces the assumption
that loss-of-function mutations may target specific late
genes rather than the early genes of the ABP, which would
compromise flavone production. The shore campion does
not produce others classes of flavonoids others than fla-
vones and anthocyanins [47]. Thus, any mutation affecting
an ABP gene prior to F3 h should preclude any flavone
production (Fig. 4), making this mutation selectively dis-
advantageous due to the decisive role of these compounds
to plant development and survival [28, 37, 56].
Loss of anthocyanin pigments is relatively common in

nature [39, 40, 57], but its effects on plant fitness will de-
termine the fate of white-flowered individuals. In several
species, PAL phenotypes generally show similar, or even
higher, fitness than fully pigmented plants ([40, 58, 59];
but see, for instance, [11]), resulting in stable flower color
polymorphism in populations. In the shore campion, the
pink-white polymorphism is maintained over the years,
and white flowers represents 8–21% of total plants in the
two polymorphic populations. Myb-mediated loss of an-
thocyanins, as for S. littorea, are frequently cell or tissue
specific [60, 61] and allow downregulation of petal

Table 3 Results from generalized linear models (GLMs) testing differences among phenotypes, populations and their interaction on
the production of total anthocyanins and non-anthocyanin flavonoids in each plant tissue. GLMs were performed separately in
polymorphic (Barra and Louro) and non-polymorphic populations (Breña and Trafalgar). Anthocyanin and flavone concentrations
were obtained from spectrophotometric quantification of flavonoids

Source of
variation

Polymorphic populations Non-polymorphic populations

Anthocyanins Flavones Anthocyanins Flavones

d.f. F P d.f. F P d.f. F P d.f. F P

Petals

Phenotype 2 1447.9 < 0.001 2 4.122 0.020 1 74.58 < 0.001 1 1.284 0.269

Population 1 6.450 0.013 1 4.510 0.036 1 11.54 0.002 1 0.644 0.430

Phen. x Pop. 2 2.525 0.086 2 1.229 0.298 1 2.939 0.100 1 0.945 0.341

Calyces

Phenotype 2 33.47 < 0.001 2 1.019 0.366 1 27.67 < 0.001 1 10.27 0.004

Population 1 0.368 0.546 1 35.15 < 0.001 1 8.231 0.008 1 20.10 < 0.001

Phen. x Pop. 2 0.314 0.732 2 0.688 0.506 1 3.475 0.075 1 1.785 0.194

Leaves

Phenotype 2 1.512 0.227 2 1.407 0.251 1 2.864 0.104 1 0.032 0.860

Population 1 0.001 0.990 1 10.48 0.002 1 4.672 0.041 1 35.24 < 0.001

Phen. x Pop. 2 0.422 0.657 2 2.862 0.063 1 1.391 0.250 1 1.366 0.254

Stems

Phenotype 2 25.28 < 0.001 2 2.285 0.109 1 3.266 0.084 1 1.994 0.172

Population 1 27.78 < 0.001 1 15.49 < 0.001 1 0.157 0.696 1 11.98 0.002

Phen. x Pop. 2 7.131 0.001 2 0.101 0.904 1 0.042 0.840 1 8.106 0.009
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anthocyanins without hindering anthocyanin accumula-
tion in other tissues. Our biochemical results confirmed
that PAL and fully pigmented plants have similar antho-
cyanin content in photosynthetic tissues, in addition to
have similar flavone content, which is expected to have
few or no pleiotropic effects that could alter fitness of
PAL phenotypes [17, 34]. In fact, snails and caterpillars
produced similar herbivory levels in leaves of fully pig-
mented and PAL plants of Barra, but white petals of PAL
plants showed higher hemipteran florivory that petals of
fully pigmented plants (M.L.B. 2019, unpublished data).
A key question arising from our findings is, “Why are

WAL phenotypes so rare even if they have similar amounts
of protective flavones than fully pigmented plants?”. Fla-
vones share many of the numerous protective biological
functions attributed to anthocyanins [27, 56, 62], and are at
least 14 times more abundant than anthocyanins across tis-
sues of the shore campion, as commonly found in other
species [63]. In S. littorea, petal flavones (isovitexins) could
be involved in regulation of vacuole homeostasis in epider-
mal cells and/or act as co-pigments of anthocyanins [64,
65], whereas flavones accumulated in photosynthetic tis-
sues (isoorientins) are effective antioxidants that may play
important functions in stress tolerance [28, 62]. Since these
protective flavones are accumulated in reproductive and
vegetative tissues of WAL plants, it seems plausible that
the loss of anthocyanins could be involved in the ecological

disadvantage by which WAL phenotype remains scarce in
the populations. In fact, it is recently proposed that antho-
cyanins may play a decisive role in the regulation of
signaling cascades responsible for cell growth and differen-
tiation; thus, controlling important developmental pro-
cesses [27, 28, 66, 67]. In addition, genetic linkage between
ABP genes and other loci affecting fitness [16], as well as
the metabolic cross-talk between flavonoid and other
metabolic pathways [68], are other possible explanations
for why loss of anthocyanins (not the flavonoid intermedi-
ates) seems to restrict the spread of WAL phenotypes.
Taken together, our results suggest that the ability to pro-
duce anthocyanin pigments in photosynthetic tissues of
the shore campion is associated with the ability to generate
stable petal color polymorphisms.

Conclusions
In summary, our results show striking differences in the
ability to synthesize anthocyanins between fully pigmented
and white-petal variants of S. littorea, whereas flavone
production is not affected by loss of anthocyanin pig-
ments. Differences in flavonoid profile between PAL and
WAL individuals are based in the absence of anthocyanins
in petals or the whole plant, respectively. The low fre-
quency of WAL plants in natural populations leads us to
consider the negative ecological consequences of antho-
cyanin loss, or other putative pleiotropically-linked traits,

Fig. 4 Simplified flavonoid biosynthetic pathway in Silene littorea. Enzymatic activities (capital letters next to arrows) and metabolic products are
indicated. Main anthocyanins and flavones detected by HPLC-DAD-MSn are in boxes with red, green and yellow letters for compounds found in
petals, photosynthetic tissues or both, respectively. The biosynthetic route was divided into early and late halves using a dotted line based on
genes involved in the synthesis of upstream (flavones) and downstream (anthocyanins) products of the biosynthetic pathway. CHS: chalcone
synthase; CHI, chalcone isomerase; F3’H, flavonoid 3’hydroxylase; FNS, flavone synthase; F3H, flavanone-3-hydroxylase; DFR, dihydroflavonol 4-
reductase; ANS, anthocyanidin synthase; GT, glucosyl transferase; RT, rhamnosyl transferase; AT, acyltransferase
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in photosynthetic tissues and suggests the critical role of
these compounds to generate stable flower color poly-
morphism. It will be interesting to analyze the flavonoid
profile in other species with anthocyanin loss individuals
either in the petals or in whole plant, and linking this in-
formation with their population frequency. These data will
provide new insights into the flower color evolution,
which also may produce new knowledge on microevolu-
tionary processes.

Methods
Study species and frequency of anthocyanin-deficient
phenotypes
Silene littorea is an annual wild plant that grows in
coastal dune ecosystems from the northwestern to the
southeastern Iberian Peninsula [47]. Depending on the de-
gree of human disturbance on their habitat, population’s
size ranges from approx. 100 (e.g. Algezur, Odiel) to more
than 10,000 individuals (e.g. Sines, Barra). This self-
compatible species is entomophilous, but may produce up
to 20% of fruit and seed set by spontaneous autogamy
[69]. Calyces, leaves and stems produce chlorophylls
showing photosynthetic activity [70].
To account for the population frequency of PAL and

WAL phenotypes, we sampled 21 populations covering
the full distribution range of S. littorea (Fig. 1). In popula-
tions with more than 1000 estimated individuals, fre-
quency estimates were carried out following a random
sampling; in populations with lower number of individ-
uals, the whole population was carefully sampled. Plants
were visually categorized to each phenotype based on the
absence or presence of anthocyanins in petals and photo-
synthetic tissues. PAL and WAL individuals showed a
similar morphology (plant height, number of open flowers,
flower size) than the fully pigmented phenotype.

Sampling for flavonoid analyses
Flavonoid analyses were conducted in two northwestern
petal-color polymorphic populations (Barra and Louro)
and in two southern non-polymorphic populations
(Breña and Trafalgar; Fig. 1). For complete flavonoid
identification, we randomly selected four plants of each
fully pigmented, PAL and WAL phenotypes in Barra and
four plants from each fully pigmented and WAL pheno-
types in Breña. For spectrophotometric flavonoids quan-
tification in these four populations, we extended the
sampling to 11–20 plants of each phenotype except for
the rare WAL individuals, in which six, five, six and
three individuals were analyzed (Barra, Louro, Breña and
Trafalgar, respectively). Sampling was carried out from
March to April 2016, during the early to mid-flowering
period of the species (permissions were not necessary to
collect these samples). For each plant, we collected four
samples: the petals and calyx of one flower, a leaf and

stem sections (1 cm length) from the middle region of the
stem. Flavonoids were extracted in 1.5ml of MeOH con-
taining 1% HCl and stored at − 20 °C in the dark, following
the procedure described in Del Valle et al. [44]. Voucher
specimens from these populations are deposited at the
Pablo de Olavide University Herbarium (UPOS-3954,
UPOS-8982, UPOS-8983 and UPOS-8984).

Flavonoid identification and quantification by HPLC-DAD-
MSn

A volume of 500 μL of methanolic extracts of each plant
tissue (i.e. petals, calyces, leaves and stems) was concen-
trated in a SpeedVac concentrator (Savant ISS110,
Thermo Fisher Scientific, NC, USA) after the addition of
100 μL of ultrapure water (Autwomatic, Wasserlab, Bar-
batáin, Spain). The volume of the aqueous extracts was
then adjusted to 250 μL with acidified water (pH = 1.4,
HCl). Aqueous extracts were filtered (Clarinert™ Syring
Filters, 0.45 μm, Agela Technologies, DE, USA) prior to
the HPLC-DAD-MSn analysis. We followed the proced-
ure described in Alcalde-Eon et al. [71, 72], which has
provided satisfactory results in the analyses of anthocya-
nins in other plant materials and also allows the simul-
taneous detection of anthocyanins and flavones (see
results) in a single run. HPLC analyses were carried out
in a Hewlett-Packard 1100 series liquid chromatograph
(Agilent Technologies, Waldbronn, Germany). Detection
was carried out at 360 nm and 520 nm for flavone and
anthocyanin analysis, respectively. Spectra were recorded
from 220 to 600 nm.
Mass spectrometric analyses were performed in an API

3200 Qtrap equipped with an ESI source and a triple
quadrupole-ion trap mass analyzer that was controlled by
Analyst v.5.1 software (Applied Biosystems, Darmstadt,
Germany). The HPLC system was connected to the mass
spectrometer via the UV cell outlet. Positive mode (ESI+)
and specific conditions were selected to allow the simul-
taneous detection of anthocyanins and flavones (see Add-
itional file 9: Supplementary methods for details).
Identification of the compounds was done considering

their retention times, UV-Vis spectra, m/z of the molecu-
lar ion (M+) for anthocyanins or m/z of the protoned ion
[M+H]+ for flavones, fragment ions and fragmentation
patterns of the compounds. These data supplied valuable
information concerning the nature of the aglycones and
substituents, which was further compared to the features
of standards reported in the literature [73] and to those
standards (cyanidin 3-O-glucoside, isovitexin (apigenin 6-
C-glucoside) and isoorientin (luteolin 6-C-glucoside)) and
samples with known composition on barley (Hordeum
vulgare L. [74]) analyzed in the same conditions. Further-
more, alkaline and acid hydrolyses were performed in all
the types of sample extracts (petals and vegetative parts)
to verify the presence of acids in the molecules as well as
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to determine their identity (see Additional file 9: Supple-
mentary methods for details). Some of the major com-
pounds of petals and photosynthetic tissues were isolated
and alkaline hydrolysis was also carried out on them.
Anthocyanin quantification was done from the area of

the peaks detected in the chromatogram recorded at
520 nm and using a Cyanidin 3-O-glucoside (Polyphe-
nols Labs, Sandnes, Norway) calibration curve. Likewise,
flavone quantification was done from the area of the
peaks detected in the chromatogram recorded at 360
nm. A calibration curve of isovitexin and isoorientin
(Extrasynthese, Genay, France) was employed to quantify
the flavones present in petals and photosynthetic tissues,
respectively.
HPLC results were analyzed separately for flavones

and anthocyanins. In each tissue, exploratory analyses of
flavone content of the different phenotypes were per-
formed by principal-component analysis (PCA), using
concentrations of all compounds identified. We retained
those compounds with the highest principal component
loadings. In addition, compounds highly correlated were
eliminated to overcome co-linearity. PCA was based on
the covariance matrix and without rotation of the ex-
tracted component [75]. Confirmatory MANOVAs
(multivariate analysis of variance) were carried out when
differences between populations were detected [75].
MANOVAs were performed grouping the total flavone
composition of plants into four functional groups ac-
cording to the C-glycoside flavone core (i.e. derivatives
of isovitexin, isoorientin and isoscoparin, and di-C-
glycosides; see Table 1). Since plants from Barra and
Breña locations showed differences in their flavone con-
tent (see results) and the PAL phenotype is only present
in Barra, both populations were analyzed independently.
Because only a few anthocyanin compounds were found
in the samples and some phenotypes did not produce
anthocyanins (see results), exploratory PCAs could not
be performed; instead, differences in the total anthocya-
nin concentrations among phenotypes were analyzed
using ANOVAs with post hoc Tukey test. ANOVAs,
PCAs and MANOVAs were carried out in SPSS v.22.0
(Armonk, NY, IBM Corp.).

Spectrophotometric flavonoids quantification
We used a Multiskan GO microplate spectrophotometer
(Thermo Fisher Scientific Inc., MA, USA) to quantify
global anthocyanin and flavone concentrations in order
to expand the study to more individuals and popula-
tions. Three replicas of 200 μL were measured for of
each tissues of all individuals. Absorbances were read at
350 and 520 nm to determine the concentrations of fla-
vones and anthocyanins respectively [46], and their con-
centrations were calculated using calibration curves of
standards of the main compounds found (i.e. cyanidin 3-

O-glucoside, isovitexin and isoorientin) and expressed as
cyanidin-3-glucoside, isovitexin and isoorientin equiva-
lents in fresh weight, respectively.
Generalized linear models (GLMs) with Gaussian or

gamma error distribution were performed in R v3.4.0 [76]
to test for differences in the accumulation of anthocyanins
and flavones in each plant tissue; phenotype and popula-
tion were considered as fixed factors. Previously, we tested
the error distributions that generated the smaller deviance
in the model, using the Akaike’s Information Criterion. F-
test for analysis of deviance was used to correct for
overdispersion [77]. Multiple post hoc comparisons were
performed using the “multcomp” R-package [78]. Sepa-
rated GLMs were performed for polymorphic and non-
polymorphic populations, using post hoc comparisons
with Bonferroni adjustment to test for differences among
phenotypes within each population.
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