
SANTA CLARA UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING

Date: June 6, 2021

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Soren Madsen
Jack Schoen

ENTITLED

Jamming Attack Workaround Study

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREES OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING
BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

Thesis Advisor: Dr. Behnam Dezfouli

Thesis Advisor: Dr. Andrew Wolfe

CSE Department Chair

EE Department Chair

Nam Ling (Jun 10, 2021 12:06 PDT)
Nam Ling

https://na2.documents.adobe.com/verifier?tx=CBJCHBCAABAAQXRwIuj38Jf5UkKw1u7058QxsxsK06B0
https://na2.documents.adobe.com/verifier?tx=CBJCHBCAABAAQXRwIuj38Jf5UkKw1u7058QxsxsK06B0


Jamming Attack Workaround Study

by

Soren Madsen
Jack Schoen

Submitted in partial fulfillment of the requirements
for the degrees of

Bachelor of Science in Computer Science and Engineering
Bachelor of Science in Electrical Engineering

School of Engineering
Santa Clara University

Santa Clara, California
June 6, 2021



Jamming Attack Workaround Study

Soren Madsen
Jack Schoen

Department of Computer Science and Engineering
Department of Electrical Engineering

Santa Clara University
June 6, 2021

ABSTRACT

The Internet of Things (IoT) is a fast growing industry with strong footholds in the smart home market featuring de-
vices such as the Amazon Echo, Ring security cameras, smart TVs, and much more. However, it doesn’t stop there; the
industrial sector has begun using smart devices for measurement, automated tasks, and time sensitive communication.
Many of these devices have become reliant on WiFi technology and are vulnerable to attacks on the security of the
protocols involved.

In this paper, we discuss the details of the deauthentication attack on WPA and WPA2 systems and propose a
solution for detection and recovery in IoT networks all included in a single, easy-install device. We evaluated our
solution in a smart home environment against variations in packet reception rate, and concluded that our system is
e↵ective for small smart home networks. In addition, this solution can be modified in a variety of ways to further the
field of IoT security and provide manufactureable, easily accessible smart system security solutions.
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Chapter 1

Introduction

1.1 Motivation

As devices within the Internet of Things (IoT) have become more popular in di↵erent environments, the variety of

products available to consumers and industries has increased with the growth of IoT. With the increase in variety, there

comes a diversity in quality of software and network design. As of 2018, the average US household had 8 connected

devices and that number is projected to rise to 13.6 by 2022 [7]. As growth continues, the design of products tends

to emphasize the convenience and e�ciency provided to the user. This means that while great solutions are being

developed to automate homes and other environments, there has been a lack of investment and quality into protecting

against the security risks that an abundance of connected devices and an over reliance on wireless technology pose.

Figure 1.1: Top Consumer Concerns with IoT Growth
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Because computer and network security is such a broad area of expertise, this paper will be concentrating on

security within the IoT network. In addition, the integrity of a single IoT network is an issue for all users of IoT

devices from smart homes to smart cities to automated production and more. The figure above is a graph depicting the

change in responses to a customer survey designed to address user concerns for further IoT growth. Security is clearly

shown as top growing concern among many. Both companies and individuals with valuable assets intend to maintain

privacy and integrity of their systems.

The largest and most notable presence in the IoT sector has been based in WiFi connected devices. With over 12

billion devices now connected, WiFi connected devices account for 5 billion of the total IoT industry[8]. Yet, with

this expansive growth, security technology has not caught up. Many devices today still rely on old forms of WiFi

Protected Access: WPA and WPA2. The current management of wireless connects has a number of flaws that we

will dive deeper into in this paper. The key takeaway is that many devices still utilize this outdated, and unprotected

technology.

1.2 Problem

Despite its release in 2018, WPA3 technology, the next generation of Wifi Protected Access, has still failed to dominate

the market. Its predecessor, WPA2, was launched in 2004 and still has control over much of the market including

industrial and smart home IoT devices. The IoT typically involves a multitude of devices in a single, making it costly

to upgrade the system as technology advances. With the release of the WPA3 standard, protected management frames

will become implemented across the board, but many devices used in the smart home and industrial IoT will remain

vulnerable to deauthentication attacks.

In industrial IoT environments, we found that despite the availability of WPA3, many devices continue to use

WPA2 technology. Because an industrial IoT network typically features many wireless devices, upgrading exclusively

the WiFi capabilities on a device is not only generally impossible based on the hardware design, but for networks of

hundreds of nodes it simply is worth the time to take apart each device to do so. Thus, many are left with the only

option for network protection to be device replacement. This is still costly in both time and money.

In smart home environments, we see a strong parallel in key issues but on an individual consumer level. With the

release of popular home security devices like cameras and door sensors from major corporations like Amazon, Ring,

and Next, smart home security systems have become more prevalent than ever and the number of connected devices

per are expected to rise 13.6 smart devices per home as mentioned earlier. For many families that desire home security

systems, replacement is not a↵ordable, but why should security be exclusively for those that can a↵ord it? Through an

alternative form of network protection, both the smart home and industrial IoT can be secured in cost e↵ective manner.
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1.3 Solution

Our proposed system is a plug-and-play Raspberry Pi network monitoring system designed to detect deauthentication

attacks in smart networks. Our goals for this project revolve around three key objectives. First, we wanted to provide a

means for deauthentication attack detection in a smart home environment. Second, this device was to provide a simple

user interface such that no experience is required to operate the system. Third, we wanted to investigate possible

recovery techniques for working around the attack and restoring the network. The resulting implementation abstracts

complex network management and security into a single, easy-install device. Our real-time, e�cient design enables

fast response time to an attack through an intuitive web interface that makes network management possible for the

everyday consumer. With this device, we provide the means for an easily accessible, low cost security solution that

reduces the need for device upgrades while simultaneously opening the door for future research in this area relevant

to the IoT industry.
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Chapter 2

Background Information

2.1 Management Frames in WPA/WPA2 Systems

Before the introduction of WPA3, wireless access points utilized what are called Management Frames for establishing

and maintaining connections. In addition, these Management Frames provide functionality for seamless device hand

o↵ in larger area networks with multiple access points. There are seven main types to consider: Probe, Beacon, Action,

Association, Disassociation, Authentication, and Deauthentication. Via these seven di↵erent types, wireless devices

are capable of attempting to connect to an access point, receiving information from the access point, disconnecting

from an access point, and disassociating entirely from an access point.

While Management Frames initially provided an elegant solution for device management, there are several key

drawbacks to consider from a security perspective. All of these frame types are not only unencrypted, but they are

also unauthenticated and extremely easy to spoof with just about any form of packet injection tool. Therefore, the

functionality of the Management Frames can be leveraged for malicious intent by an adversary through what is called

packet spoofing.

2.2 Deauthentication Attacks

In large industrial systems, o�ce buildings, smart homes, and even smart farms, it is not uncommon to find a plethora

of WiFi connected devices. Because many of these systems are designed to be low cost and mass produced, the designs

feature hardware that may be of an older variety. For most purposes, an older WiFi protocol called 802.11n will get the

job done. However, because this is older technology and 802.11w never took o↵, devices are not implemented with

Protected Management Frames (PMFs). As such, an adversary can take down these systems utilizing packet injection.

For example, a porch pirate attempting to steal an Amazon package from a front door equipped with a Ring

camera could deauthenticate the wirelessly connected camera from the network and steal the package while camera

was inoperable. In another example, an adversary could wreak havoc in an o�ce building by taking down Nest

thermostats and sensors. While this does not necessarily warrant the most dire consequences, it violates a fundamental
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right to privacy and protection. Home consumers and industrial workplaces alike demand that purchased technology

function as intended and care about the security of that technology.

A deauthentication attack in practice utilizes the deauthentication Management Frame which is marked via two

parameters in the 802.11 MAC frame header shown below. The field labelled Type, when set to a value of all zeroes, 00

in binary, describes a Management Frame. A Subtype field value of 12, or 1100 in binary, describes a Deauthentication

frame. By using these MAC header fields, we will demonstrate how to combine this with other techniques to perform

detection of an attack.

Figure 2.1: MAC Frame Header Information
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Chapter 3

Related Work

In this section, we present some related works within the field of deauthentication attack research.

3.1 Session Management System

One proposed solution in [1] to the problem of deauthentication attacks suggests using a session management system

which serves to verify deauthentication frames. Since currently management frames are encrypted, they do not require

an authenticated user and thus are able to be manufactured by an attacker to seem as though they originated from the

client. This causes the client to disconnect from the access point, which leaves them vulnerable as they attempt to

reconnect.

Ananay Arora proposes a new solution to this problem in using a secure hashing algorithm, or SHA, which is then

used to hash a unique identifier during the association phase of connection between a client and an access point. When

deauthentication frames are sent, there is then a check for this unique ID along with the frame as a means to verify the

frame. In their paper, Arora proposes making use of Universally Unique Identifiers, also known as UUID, which have

6 predetermined bits and then leave 122 bits for the device’s identifier. This leaves a total of 5.3 x 1036 combinations

of UUID with those bits for clients to utilize. The secure hashing algorithm used is SHA-512 which generates a 512

bit hash. This algorithm is used to hash the UUID that was generated during authentication and the hash is then stored

to be used later as needed.

Arora goes on to claim that after creating benchmark results on two widely commercially available devices, they

have demonstrated that it is fit for implementation. This application of cryptographic functions combined with the

generation of unique tokens allows for a secure association protocol that would prevent deauthentication attacks or-

chestrated against 802.11 wireless networks. Furthermore, they claim that this protocol is fit for implementation across

various access points and clients by simply performing a firmware upgrade, as it was developed as an extension for

802.11 networks.
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3.2 Detection of Deauthentication and Disassociation Attacks with a Test
Device

This project [9], similarly to our own, designed a network device that detects deauthentication and disassociation

attacks against devices within a local area network. This uses a test device on the network that serves to bait an attacker

into sending a deauthentication request from an unused MAC address chosen by the test device. Upon receiving a

deauthentication request from that specific address, the sender of that management frame is confirmed as attacking the

network and steps are able to be taken to counteract the attack.

The way this is set up involves the test device sending first a probe request from the selected previously unused

MAC address. Then, the test device replies with a probe response using the test device’s original MAC address. Next,

the test device sends out an authentication request, once again using the chosen MAC address. It then replies with an

authentication response using the test device’s initial MAC address. Lastly the test device sends out an association

request with its faked MAC address, and then replies to this with its own MAC address sending an association response.

This serves as a way to bait an attacking device sni�ng the network into thinking the selected MAC address is an

access point, and therefore that MAC address should be used as the source when deauthenticating the test device. If the

test device is to receive any deauthentication or disassociation requests from that MAC address, then whichever device

used this address is the attacker. Another suggested approach, which incorporates an element of our own design, is to

have the test device connected to a wired network as well.

This way, when any sort of disconnection request is sent to the established test device, it can confirm over the wired

connection whether or not it received a valid management frame. Our device flips this, using the wired connection to

interface with the network, however instead of acting as a bait target it monitors the devices connected to the network

to see how the deauthentication packets are being sent. One problem with having a device acting as a test connection

to be deauthenticated is that any attack targeting only select devices, not every device within range, may not end up

targeting the test device and thus the attack would go unnoticed.

The main di↵erence between this work and our own is the ability to detect targeted attacks. Our device functions

as a sni↵er on a network, monitoring packets being sent within its range. This device functions as a bobber on a

fishing line, so that you know when a fish is on that specific hook. If an attacker decides not to attack the test device,

it will continue to presume that no attack is underway on the network. Our sni↵er looks for various hallmarks of a

deauthentication attack, and uses these to tell if any of the devices on a network are being attacked.

3.3 Mitigation of Deauthentication and Disassociation Attacks

One proposed solution from [11] to mitigate deauthentication and disassociation attacks uses a number of random bits

that are generated using the current system time, as well as a counter, to create a pseudo random number which can
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be used to authenticate management frames. This solution uses an algorithm, called the MAX algorithm, to combine

the seconds, milliseconds, and microseconds of the current system time with the factorial of the counter, but limits the

counter’s factorial to the remainder when divided by 1048575, the maximum value of a twenty bit number, and then

adds a decimal number derived from the counter value. This creates the pseudo random twenty bit number which is

then used for authentication between the client and access point.

This authentication is handled by first generating the twenty bit number when the client first connects. Twenty bits

were chosen because the last twenty bits of the WLAN MAC layer frame scheme are currently used by the four bit

fragment number which is claimed to be unused in all cases, and the sixteen bit reason code which is a fixed value in

the case of deauthentication and disassociation attacks. It is stated that, as a result, those bits can all be randomized and

used for the access point to issue each client a twenty bit pseudo random number during the authentication response

step.

In order for a client to disconnect or deauthenticate, it must send back the twenty bits issued in the authentication

step. The purpose of this is so that any malicious third party is unable to send the proper deauthentication frame

including these last twenty authentication bits. If the last bits are not a match between the deauthentication request and

the access point, then the client stays connected and deauthentication fails. In their testing, this system generated one

thousand distributed numbers, without any duplicates. They claim that this system will also slow down an attack by

more than an hour, which is a substantial amount of time to slow an attacker, especially if combined with a detection

system to allow for a response to the attack.

This project is di↵erentiated from ours because in this work the group sought to delay and ideally mitigate attacks

without attempting to identify when an attack occurs. By delaying an attack by approximately one hour, they buy

time to detect it, but without any system in place to do that detection an attack could still continue on. Additionally,

while this system for mitigation requires reallocation of bits from the WLAN MAC layer frame scheme, which would

require changes across all the devices, our system works as an adjunct to the network. So while other solutions would

require broader acceptance for implementation to be feasible, our intrusion detection system could simply be added

without any other changes to network functionality. That is just one problem with this system.

Another problem that may need to be addressed is the storage of authentication bits. It declares that the pseudo

random number of twenty bit length will be stored alongside the MAC address of the client it is allocated to, in

”a specific table.” However, not discussed is where and how the client-side storage will be orchestrated, which is

problematic because this storage would need to be made universal across all clients. Additionally, it does not mention

what may happen in the event of an error where one side forgets or loses their copy of the twenty bits, and how a client

would be able to disconnect and if it would be able to re-authenticate in that case. Without being able to deauthenticate,

a client would have routing and hando↵ issues when it comes time to connect to a new access point.

8



3.4 Defense Against Deauthentication Attacks on 802.11 Networks: The
Letter-Envelope Protocol

This proposed solution [10] to deauthentication and disassociation attacks involves using a one way hard function

which serves to verify the legitimacy of deauthentication frames. This solutions uses prime numbers randomly gener-

ated on both the client as well as the access point to enable a form of authentication for disassociation or deauthenti-

cation frames sent between the two nodes.

This is done by taking the generated primes on the client side, and multiplying them together to form N1. Likewise,

the access point’s generated primes are multiplied together to form N2. While in the authentication step, the client

and access point exchange N1 and N2. For the client to disconnect from the access point, the client must send the first

prime used to create N1. Similarly, for the access point to disconnect the client, it must send the first prime of N2. If

there is a mismatch, then there is no disconnection.

Because the generated primes are large, this scheme makes it very di�cult for fake primes to be created and

simply dividing N1 by a number is easily detectable. These numbers are very hard to duplicate, as N1 and N2 can

only be created from the randomly generated primes. This provides security, but is not without drawbacks. A. Arora

goes so far as to claim that this system could even find itself vulnerable to DoS attacks if the attacker repeatedly

sends association requests repeatedly using di↵erent prime numbers and spoofing di↵erent MAC Addresses. Another

issue is that firmware upgrades were required in order to handle the cryptographic scheme when this protocol was

originally announced. While newer systems can handle this burden, it was never widely implemented and has not

made a resurgence.

Like some other proposed methods of mitigating deauthentication and disassociation attacks, this project covers

a separate area of defense from our own work. While we seek to identify, this method looks to prevent and mitigate

attacks by authenticating the packets that make them possible. Another commonality between the letter-envelope

protocol and some other mitigation techniques, storing a sort of key is required, which would need to be implemented

in clients and access points to enable this technology.

3.5 Queuing Deauthentication or Disassociation Requests

This work [3] aims to detect and mitigate deauthentication or disassociation attacks by queuing packets for a set

amount of time, so that the following packets can be observed to determine the nature of the packet attempting to

disconnect a client from an access point. By keeping deauthentication or disassociation requests in a brief queue of

five to ten seconds, an access point can see what types of packets follow the queued requests. If data packets come after

deauthentication packets, then the system knows that it can disregard the deauthentication frames. This is because no

client would want to disconnect while still attempting to exchange information.
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There are, however, some issues with this solution to deauthentication attacks. The first comes into play when

transferring between access points. Because the packets responsible for disconnecting the device as it transfers from

one access point to another will be delayed, there can be problems routing the packets through the new access points.

Another issue is that an attacker could keep a client connected by spoofing packets to the access point appearing to be

from the client. This issue could potentially be addressed by combining with solutions which check to see if a packet

is from a legitimate source.

This project encompasses a larger range of functionality when compared to our own work. However as a trade

o↵ for being able to detect and eventually mitigate deauthentication attacks, there are routing and hand-o↵ issues as

well as the possibility of a malicious user spoofing packets to keep a client connected to an access point. These trade

o↵s come from the attempts to mitigate deauthentication attacks. For this solution to be implemented both the client

and access point need to have modified protocols for dealing with incoming packets, which is another large di↵erence

from a system like ours.

3.6 Reverse Address Resolution Protocol

This protocol, as referenced in [4], is used to map MAC Addresses to IP Addresses. This is useful in the case of

deauthentication and disassociation attacks because they frequently use spoofed packets. These packets appear to

come from one MAC Address but in reality are from an illegitimate source. If the IP Address is not also spoofed,

using the reverse address resolution protocol will show multiple IP Addresses for the same MAC Address which is

impossible, indicating that spoofing is taking place.

3.7 Sequence Number Analysis For Detecting WLAN MAC Spoofing

The goal of this work [13] is to utilize the nature of sequence numbers to be able to detect WLAN MAC spoofing on a

network. The background which enables a detection mechanism like this stems from the allocation of twelve bits for

a sequence number which enables frames to be fragmented with a fragmentation number that indicates which order

the fragments ought to be arranged. When a whole frame is sent, the sequence number advances to the next number in

the sequence, wrapping back to zero after reaching 4095. This number allows for an identification of a flow of frames,

and an out of order sequence number can be an indicator that a packet may not be from the source it claims to be from.

By monitoring the sequence numbers, you can also detect if a singular host is creating tra�c that is designed

to appear as though there are multiple sources. These packets may have various MAC Addresses, however if their

sequence numbers align then it is likely that they all stem from one source. Similarly, and with more relevance to our

project, if there is a stream of network tra�c being monitored and there are erroneous sequence numbers on frames

being sent, likely the frames that don’t match are from an illegitimate source and can be flagged as possibly from an
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attacker.

This work resulted in a solution that was able to determine whether or not an attacker is spoofing a MAC Address

based on its sequence number and if it fits the pattern of sequence numbers. However, to do this you must know with

some certainty what the pattern of sequence numbers is. Additionally, if the attacker is able to sni↵ the sequence

number and then use the expected sequence number, it will likely go undetected. If the deauthentication frame is

received before the frame with the identical sequence number then the attack will be successful. Much like our own

work, this system uses a kind of sliding window to check frames. Our window monitors packets sent in close proximity,

but this window is monitoring the sequence numbers of packets to pick out the anomalous packets.

3.8 Sequence Number-Based MAC Address Spoof Detection Device

This work [6] proposes an algorithm which can be implemented on an external device to leverage sequence numbers

from the link-layer header of IEEE 802.11 management frames to detect spoofing without modifying access points

or wireless stations. As discussed in the above section, the sequence number is incremented each time a new frame

gets sent out. It follows standard set forth by the IEEE to distribute these numbers based on a counter variable that is

modulo 4096 to limit the maximum size of the sequence number to the twelve bits available to the field.

The proposed algorithm incorporates possible normal deviations in the sequence number as a way to increase

accuracy over simply assuming any packets out of order are spoofed. Since any sequence number that is smaller than

the current sequence number should be a re-transmitted frame, it should share the contents with the previously sent

frame that it shares a sequence number with. Since spoofed frames keep duplicating the same sequence number, as

new frames come in this sequence number would fall further and further behind what is considered to be normal error

and re-transmission. This should lead to them eventually being identified as a spoofed frame. Other ways frames might

not appear as sequentially as one might expect are when frames are lost, or sometimes they just are out of order. The

algorithm proposed by F. Guo and T. Chiueh incorporates all of this to minimize errors while maximizing successful

detection of an attack.

The first thing this algorithm does is compute the gap between the sequence number of the received frame and the

previous frame sent from the same source node. Since in general the frame sequence numbers were at most N + 2

with N being the previous frame’s sequence number, anything outside of that would be spoofed, unless it has been

re-transmitted. Re-transmitted frames have a sequence number smaller than or equal to the current sequence number,

and the team found frames being as far behind as N � 3 were normal. They discovered that a four frame gap was the

maximum that would occur in their testing environment. If the current frame is a re-transmitted frame then it can be

checked against the last copy of the frame, by sequence number. If one sequence number was found to belong to two

frames, then one of the frames must have been spoofed. An additional rule put into place was that any data frame
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found to be out of order that was not following either a beacon or probe response frame is likely to be spoofed as data

frames are not usually out of order. Putting this together they created a verification process to check for frames with

larger gaps than N � 3 through N + 2. This verification process involves noting the current frame’s sequence number,

then sending an ARP to the frames source station. It then verifies the frame based on where it is relative to the last and

current sequence numbers, and if it is out of the acceptable range as set forth above.

The team had promising results from their testing of the system, with a false positive rate of zero. Beyond this,

the false negative rate was nearly zero and it was stated that in the worst case it would detect spoofing activity but

would not detect every spoofed frame. However they noted that because sequence numbers do not always follow the

incrementation patter, false positives or negatives are possible.

As for implementing this algorithm, existing hardware could be used however in that case firmware would need

to be modified which is not a simple task and has prevented implementation of solutions in the past. Instead, if the

focus shifts solely to detection, then a separate device monitoring the network can be used which does not require

changes in firmware and can be implemented alongside the existing network setup. This is very similar to our work,

which implements a device to supplement the existing network and add a layer of protection through identifying the

presence of an attack. Both of our works utilize a device acting as a sni↵er, which restricts us to detection without

the ability to perform actions on the network. The main di↵erences lie in that we are observing timestamps while this

system looks at sequence numbers, and that while we focus on deauthentication attacks this group is searching for any

spoofed frame.

3.9 MMDS: Multilevel Monitoring and Detection System

This proposed solution [5] attempts to develop a self-adaptive system that in real time will analyse and monitor the

network, detect attacks, and respond to intrusions. The authors claim that it will fill a gap left by most intrusion

detection systems where they are not detecting distributed attacks. This system seeks to learn from normal behavior,

where the system is not facing an active attack. The authors D. Dasgupta, J. Gomez, F. Gonzalez, M. Kaniganti, K.

Yallapu, and R. Yarramsettii recognize that normal system behavior changes over time, so their system must likewise

adapt to the network as time goes on.

The way they go about this is by introducing four agents. The first is the Manager Agent. Its job is to coordinate

the other agents and act as the interface for users to interact with. The next is the Monitor Agent. This agent’s job

is to detect anomalies by taking in information from the target system. The third agent is the Decision Agent, which

serves as an engine for a fuzzy interface. This allows it to take a robust decision in the case of network abnormalities

or intrusions. It provides imprecise, or fuzzy knowledge to the system. The last agent is the Action Agent, which has

the role of generating alerts or heartbeats to pass along to other systems so they can take action. Some examples of
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action include killing a process, or disabling access for a user. This whole system bases all of its functionality on fuzzy

logic, which is checking sequence numbers.

Once implemented, this system was able to successfully detect simulated attacks in a wireless network. However,

due to the nature of the system, the researchers advised that more testing would be necessary to fully determine

the success of such a system. While this work serves a similar function to our own, the methods used are starkly

di↵erent. While this system must learn a network’s normal behavior in order to di↵erentiate an abnormal situation,

our detection system looks for hallmarks of a deauthentication attack which remain consistent despite varying normal

network conditions.

3.10 Other Solutions to Disassociation and Deauthentication Attacks

The solutions below have been accumulated in [2] by B. Aslam, M. Hasan Islam, and S. A. Khan.

3.10.1 Ignore Disassociation Requests

A solution brought up is having the access point and wireless clients ignore disassociation requests. This will ignore

all legitimate and illegitimate disassociation frames, claiming that the association will time out on its own. A problem

with this is when a client moves from one access point to another and must disassociate with the first before attempting

to join the new access point. This would cause hando↵ problems.

3.10.2 Authentication Before Association

It is proposed in this solution that by authenticating before associating, keys will then be available for encryption and

authentication of management frames. To do this, Authentication Information Elements must be added to management

frames. Adding these enables the authentication required to protect against spoofing disassociation requests. However,

this also may incur additional delays from the increase in processing power necessary to execute this.

3.10.3 Authenticating Disassociation Notification

By authenticating management frames, in particular disassociation requests, there is a layer of protection against

attacks that would otherwise be able to simply spoof requests. While this protection is valuable, it also brings the need

for increased processing power as well as a solution for storing the keys used for authentication.
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Chapter 4

Proposed Solution

4.1 Overview

In many modern security architectures, a common practice to monitor the status of a network and its associated devices

is to utilize a packet sni↵er. A sni↵er is essentially an omniscient device that is capable of viewing all network over

a specific medium. In our solution, we focus specifically on the sni�ng of 802.11 Management Frames over WiFi.

By utilizing a packet sni↵er, we are then able to detect and classify malicious Management Frames within normal

smart home tra�c. Based on this analysis, we update a web dashboard that is hosted on the local network for network

management and security alerts.

4.2 Packet Sni�ng

As mentioned before, packet sni�ng is a means to capture all network tra�c within a specific medium of communi-

cation. In performing a packet sni↵ or packet capture, there are two modes of operation that determine the function of

the sni↵er as it relates to the network protocol stack. The first of these modes is called promiscuous and this captures

frames from the network layer and up. In these types of packet captures, one will typically see IP addresses, DNS

messages, and other tra�c related to a specific WiFi network. In promiscuous mode, a device must be connected

to the network it is seeking to sni↵. Because this mode of operation captures packets from the network layer, the

MAC header information is unable to be parsed as it has already been discarded. Without the MAC header, a test

for a deauthentication attack cannot be properly performed. Thus, we utilize the second mode called monitor mode.

Monitor mode allows for the sni�ng of all wireless tra�c in a surrounding area. The only limits are signal attenuation

and antenna design. When a network interface card (NIC) is put into monitor mode, all functionality as it relates to an

internet connection is turned o↵ so that tra�c can be captured and processed. Monitor mode allows us to bypass parts

of the protocol stack using the netlink module in the kernel-space and send all of our packets to the user-space in a

quicker manner as the packet doesn’t have to be processed in each layer of the stack along the way. The figure below

shows two forms of network communication in which the monitor mode interface bypasses the typical protocol stack

14



whereas the other connection traverses this stack for each packet received.

Figure 4.1: Typical Network Tra�c versus Monitor Mode Capture in a Device

To perform packet sni�ng, we utilize a library called libpcap that is specifically designed to perform what are

called packet captures of live network data. Libpcap is an API written in C designed to provide a high level packet

capture interface such that even packets not destined for the receiving host can be recorded. Based on this library

come two more projects called tshark and Pyshark. Tshark is a software tool with command line interface that ports

the utility of libpcap to a network administrator insuch a way that packet captures can be done in a single command

with immense functionality. From this CLI tool came Pyshark, a Python wrapper for tshark that uses the netlink kernel

module the libpcap API to access and convert sni↵ed packet data into ”Packet” objects with fields addressable using

common display filters that can also be used in other sni�ng software such as Wireshark (a GUI version of tshark).

Using these ”Packet” objects, we are then able to process and monitor the network for various tra�c characteristics to

determine the status of a deauthentication attack.

4.3 Berkeley Packet Filter

Over the course of our project development, we discovered that in population dense areas, there is a proportional

density of wireless connected devices. As we began packet sni�ng for attack packets, we discovered an unusually

high load on the processor of our sni↵er node. This processor load was due to an excess of frames being received

by sni↵er. To address this issue, we implemented a Berkeley Packet Filter (BPF). A BPF is a user-space program

that is designed to allow user-space processes to load a filter program into the kernal-space specifying parameters that

determine which packets should be passed up from the link-layer in the network stack. By dropping packets in the

link-layer that do not match the requirements of the BPF, the sni↵er node’s Python program running in user-space

only has to process packets relevant to the goals of deauthentication detection and network device management. By
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reducing the total network tra�c analyzed by the program, real-time monitoring is done in a more e�cient manner

and the processor load on the sni↵er node is greatly reduced. Because our system is designed for IoT environments, it

is imperative that we conserve computing resources and power consumption as much as possible.

4.4 Attack Identification

To detect a deauthentication attack, there are two key characteristics that we determined were most useful in identifying

whether a packet is legitimate or part of an attack. The first and primary characteristic of a deauthentication attack is

a flood of management frames labeled for deauthentication that not only disconnects a device from the network but

ensures it stays disconnected by maintaining the flow for a duration of time. A malicious flood will typically exhibit a

high rate of management frame transmission by sending a dense succession of deauthentication packets directed at a

particular device.

To address this, we found the MAC timestamp field to be particularly important in determining an attack. The

second key characteristic of a deauthentication attack we considered in our design is the presence of association

frames from a device not recognized as a current connection during a flood. In many cases of deauthentication attacks,

an adversary may be seeking to obtain a copy of the 4-way handshake in an attempt to break the encryption and

gain the password to the network. As such, it’s important for our system to consider this attack vector and alert the

administrator of such a possibility.

4.5 Experimental Setup

In our experimental setup, we utilized four main components to simulate a deauthentication attack and test our system:

a wireless router, a victim node, an attacker node, and a sni↵er node. The wireless router is a TP-Link AC1750

running other smart home devices such as a Echo Dot and Google Home. The victim node was connected wirelessly

to the access point, while the sni↵er node was connected via a Local Area Network (LAN) connection for the purpose

of hosting the Flask server on the local network while the wireless NIC was occupied with monitoring the network.

Because our design is intended to avoid the introduction of a bottleneck on the network, the sni↵er node will sit as an

omnispective third party to all tra�c within the network. This also means that the system is not equipped to handle the

prevention of an attack. However, through detection and the presence of a web server dashboard, our proposed system

is meant to be a real-time monitoring system used to assist with identification and recovery.

The sni↵er node runs code designed for Python 3.8 utilizing the aforementioned pyshark library to process packets

in real time via the provided LiveCapture() function with an enabled BPF for filtering out packets not directed to or

sourced from the MAC address of the access point. This improves the run-time e�ciency of the code and reduces

processor load. As each packet arrives, the MAC address of the client, is parsed from the frame header and added to a
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Figure 4.2: System Network Architecture

list of current connections that are monitored by the IDS. If the MAC address appears in a disassociation frame, then

the device status in the dashboard list is updated to disconnected. If a packet is not a deauthentication or disassociation

frame, no more processing is performed on the packet.

When the sni↵er encounters a deauthentication packet, a key is added to a table containing a data structure pertain-

ing to the client address that manages a log of all deauthentication frames received. If other deauthentication packets

are received within the specified duration, they are added to this log. In the case that the rate of deauthentication pack-

ets implies a flood, an attack alert is raised. A flood, in our tested implementation, is defined as having started when

there are more than five deauthentication frames are detected within two seconds. At this point, the system tracks all

deauthentication frames until a timeout of three seconds is reached in which no frames are detected for the specific

victim device. The attack is then classified as ended, and information about the attack is logged. In the other case

where our device is not classified as under attack, the system updates the device status to disconnected in the device

list on the dashboard.

All alerts and logs are reported in real-time to a Flask server running concurrently with the IDS (see figure 4.2 for

user interface design). The sni↵er node and Flask server is designed such that it runs without the use of a wireless

connection. It is connected via a patch cable to an Ethernet port on the access point. We used this approach because

using a wireless connection for the sni↵er also made the node susceptible to the same attacks it attempts to identify.

In our dashboard design, we present only key information to the user to facilitate clear communication and provide

an easy to understand breakdown of the network. Three main components are displayed on this page: the list of

devices connected, a log of all attacks, and a main alert status. A network supervisor is able to receive all important

information about an attack performed on a downed device such as when it started, when it ended, and its duration.
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Figure 4.3: Flask Dashboard Sample with Alert Status

Because this sni↵er is physically connected to the network, there is a very low chance of an attack that can bring down

network monitoring. We ensure that the sni↵er node is exclusively vulnerable to a physical attack. In this manner, we

maintain a log of all attacks such that no attack can go unnoticed unless there is a physical removal, disconnect, or

power o↵ of the device.
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Chapter 5

Performance Evaluation

5.1 Testbed

In our experimental setup, we utilized the aforementioned four main components to build a testbed and run simulations

on our attack detection system: a TP-Link AC 1750 wireless router, a victim node (Raspberry Pi 4), an attacker node

(Raspberry Pi 4), and a sni↵er node (Raspberry Pi 4). The wireless router was connected to other smart home devices

such as: Amazon’s Echo Dot, a Google Home, a Google Chromecast, and smart LEDs. In this way, we could verify

that our system was fit to perform in an actual smart home environment (see Figure 4.2 for setup overview).

5.2 Parameters

Based on our network and algorithm design, we decided to verify the accuracy of our system for varying packet

reception rates. Our proposed system performs packet sni�ng and tra�c analysis aimed at the detection of a flood of

deauthentication packets. In this manner, we were mandated to question exactly how the system would perform if not

all packets of the flood were received by the sni↵er. Next, we were curious to see how we could manipulate this rate

without the use of lab equipment (due to COVID-19 restrictions).

Varying distances and RF shielding were deemed the parameters for further experimentation that can be seen in the

figure below. We moved our sni↵er node to 4 di↵erent distances and shielded it from RF radiation with a microwave

oven in the last distance to create packet loss. The four distances tested were: 1m, 5m, 10m, and 15m. By adjusting

these parameters, we could alter packet reception rate and test our system against a range of reception rates for a given

distance. Our hypothesis for system performance was that, as packet reception rate dropped, our system’s success rate

of attack detection should as well.

5.2.1 Packet Reception Rate

Packet receptions rate is a key metric in understand in the behavior of a Layer 2 system such as ours. Because we test

for a flood, it’s imperative to examine the system’s behavior when the sni↵er does not receive all tra�c in the network.
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In WiFi Layer 2 communication, a retransmission protocol is implement such that it is utilized for packets that are

not received correctly or at all. If a packet is malformed or does not pass the test of the Frame Check Sequence (FCS),

a request will be sent for retransmission marked by a bit in the MAC header. This means that in a system with poor

packet reception rate at the Layer 2 level, there can be nearly 100% packet reception in Layer 3 achieved by the use

of a retransmission count that is typically set to 7 in most devices. Deauthentication attacks are all based in Layer 2,

therefore our packet reception rate has to be tested without the retransmissions. It is not ideal for a security system to

request a second sending of specific frames from devices it manages. Rather, the system should be designed to work

around this obstacle. In the figure below, we present the essential design for testing packet reception rate.

Figure 5.1: Packet Reception Rate Sampling Setup

Utilizing a software called iperf3, one station simulating the position of the sni↵ was run as a server, while the

other station simulating the attack was run as a client. When running the software as a client, the attacker node would

send 900 packets at a throughput of 1Mbps to the sni↵er node running the server. While each of these trials was done,

we wrote a python script utilizing pyshark to capture all Layer 2 transmissions to the server that did not include a

value of 1 in the retransmission bit that can be seen in context (labelled as ”Retry”) in Figure 4.2 showing the header

information. We would then compare the packet count marked in our Python code with 900 to derive our packet

reception rate. We performed 30 trials of this for each of the four varying setups and input this information into a

spreadsheet.

5.2.2 Success Rate of Attack Detection

The most important evaluation parameter in the determination of the success of our system is the attack detection

success rate. This is the clear cut way to verify proper functionality and future viability as a security solution. In our

setup, we followed the architecture shown previously in Figure 2.1 to perform such tests. A test of detection success

rate is performed by running our system and launching a series of 30 attacks per test setup. For each attack that was

flagged, we marked success. After the series of 30 trials, we derived our attack success rate for each experiment.
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5.3 Empirical Results

In the figure below, we present our packet reception rate visualized by the box plots displaying the upper limit, the

upper quartile, the mean (green triangle), the median (orange line), the lower quartile, and the lower limit. The X

indicates an outlier value for a trial. The attack detection rate is shown by the blue squares. From this plot, it is clear to

see that our system performed well across the board. However, because our hypothesis was wrong, we were inspired

to ask why.

Figure 5.2: Plot of Packet Reception Rate and Detection Success Rate for Four Trials

From further research into these results we discovered a term called the modulation rate, or PHY rate, that is used

to control the throughput of frames. Typical data frames can be transmitted at about 70 Mbps, which makes sense for

single device communication. However, a network can be made up of both newer and older devices that support a

varying array of throughput values. In accordance with such a concept, management frames can transmitted at a rate

as low as 1 Mbps to account for the oldest devices in the network. By doing this, legacy devices are also alerted of the

management frames in the network. Because the throughput is low, it less susceptible to packet loss. Therefore, our

results exhibit behavior attributed to this implemented feature of the 802.11 protocol.
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Chapter 6

Future Work

We believe that this work has opened the door to a variety of di↵erent routes of possible research to continue with

great pertinence to the IoT industry. It is our hope that some of these areas will be explored by the next generations of

engineers from Santa Clara University.

6.1 Battery Power

In many IoT systems, it is common for devices like sensors and cameras to be powered o↵ of removable or rechargeable

batteries. This reduces the need for cabling and improves the mobility of the devices such that they can be easy moved

around depending on the necessity of the system. Our current design would support has limited capability in the realm

of battery powered functionality. With a 100 Watt-hour battery, the system can run for approximately 40 hours given

standard Raspberry Pi 4 power consumption metrics. This could likely be greatly improved by adjustments to the

current hardware setup. The use of a Raspberry Pi Zero W could be an alternative to test in this regard.

6.2 Hardware Variations

While the plug-and-play nature is a perk when implementing our system into a network that has already been set

up, this feature could also be useful when integrated into a router. This would reduce the need for extra hardware,

extra cables, and excess spending on an additional device. By integrating our system into a router, security could

be available to those seeking a low-cost alternative to protect their smart home devices rather than more expensive

security-integrated routers.

An additional variation we propose for this system is to adjust the receiving antenna of the wireless network

interface. By doing this, the sni↵er would need to process more tra�c, but a larger antenna could provide the device

with extended attack monitoring range. We believe that there would need to be a careful balance between range and

processing power, as real-time detection ability diminishes as processor load increases. The detection system should

not be delaying the processing of packets. Perhaps, the combination of changing the hardware and adjusting the
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antenna could result in a more ideal analysis of the tra�c.

6.3 Station Voting

In larger systems where multiple sni↵ers may be required to encompass all tra�c, we believe that a network of sni↵ers

connected in a mesh fashion could vote on deauthentication packets as an additional security measure. For example, if

an attacker were to try to deauthenticate a device on outside range of a sni↵er, then another sni↵er node could monitor

this tra�c and propose an attack warning to the network. If the device monitoring the attacked node does not also see

this deauthentication frame, the alert can be raised. This provides additional protection by utilizing other parts of the

network that may not necessarily be focused on a specific victim device.

6.4 Additional Attack Vectors

With WPA and WPA2 technologies, there are a number of other threats that still plague WiFi connected devices.

For example, an adversary may utilize a deauthentication attack to force a device to connect to a fake access point,

known as a man-in-the-middle attack, to steal information and any data sent or received over the internet. In addition,

KRACKs (Key Reinstallation AttaCKs) have illuminated cryptographic vulnerabilities in WiFi technology. By con-

sidering these vectors, our project could be improved to mitigate and detection addition forms of malicious behavior.

As the IoT industry begins to integrate WPA3 technology into devices, there will be additional attack vectors to

consider for the monitoring of these networks. In [12], Vanhoef and Ronen propose an attack on the WPA3 dragonfly

handshake protocol utilizing timing flaws and information leakage that takes place during the initiation of the protected

stream. Because this new technology also has security flaws, it will be imperative for future iterations of this system

to address them as well.
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Chapter 7

Societal Issues Addressed

7.1 Ethical

The central ethical issue that our project is centered around is the fundamental right to privacy. With vulnerabilities

still running rampant in WiFi systems, those without the time or funds to upgrade their network are left by the wayside.

We believe that the provisions of safety and security for IoT devices that have become paramount to improving the

quality of living are fundamental for all. As such, our design revolves around entirely open-sourced hardware and

software in it’s implementation.

7.2 Social

As our daily routines become more integrated with technology, it is imperative that social values of privacy and safety

are maintained. Through our design, we hope to bolster confidence in the use of connected devices so everyone can

feel safe and private in their own homes and businesses.

7.3 Political

Because user privacy has been increasingly encroached upon, our project aims at giving power back to the people in

the face of government programs that allow for violation of privacy. With the increasing integration of technology

into smart homes, smart cities, and more, it is crucial that citizen privacy is protected by our government as well. This

project can provide a springboard for future designs securing public infrastructure projects as well.

7.4 Economic

Due to low-cost hardware, our solution provides an alternative and cheaper security system than what the market

currently o↵ers to smart home users. In addition, because we address legacy products, businesses running large

networks of legacy products need not worry as this device will handle both WPA and WPA2 standards. This reduces
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the need to replace products already implemented.

7.5 Health and Safety

As systems become more reliant on wirelessly connected devices, the safety of home users and businesses alike

become vulnerable when these devices are not protected. In the case of smart security monitoring, cameras and

sensors that can be taken down via a deauthentication attack are of extreme concern in relation safety. By maintaining

the integrity of these systems, our project will help to ensure the future safety of homeowners and businesses.

7.6 Manufacturability

Our design, as mentioned previously, is low cost and open-source which makes it easily reproducible and manufac-

turable. Since the heart of the project is based on the software, hardware adjustments can be made such that the system

can be reproduced to better fit the network. All of this considered, we believe that this project can be easily produced

to bolster IoT security everywhere.

7.7 Sustainability

The proposed system supports sustainability by providing security for legacy devices. With new technology like

WPA3, new hardware must be implemented if the provided security enhancements are desired. This means overhauling

existing networks and replacing WPA or WPA2 devices with new ones. Not only is this costly, but it creates an

excessive amount of electronic waste, especially when considering that WPA3 still has many flaws that have yet to be

secured. The upgrade is simply not worth the cost and waste. By using our system, one can ensure that their devices

are still protected without creating more waste than necessary.

7.8 Environmental Impact

The fundamental design of the proposed system revolves around the basic requirements for IoT: low cost and low

power. Raspberry Pi’s satisfy these requirements and provide us a solid baseline for protection with a small carbon

footprint. In addition, the implications of the system, as mentioned previously, mean less electronic waste in landfills

by eliminating the need to replace systems with new devices.

7.9 Usability

As mentioned in our project overview, our proposed solution is easy to install, extremely adjustable, and provides

quick access for simple network management via a simple user-friendly interface. Through this, we have made smart
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home and IoT security easy for the everyday person. No networking experience or coding knowledge is required to

use this solution.

7.10 Lifelong Learning

Our design process for this project has provided us with valuable skills of research, knowledge of a booming industry,

and practical application of theoretical ideas. In so doing, we are motivated now more than ever to further explore the

Internet of Things and cyber security.

7.11 Compassion

In our work, we have provided users with a means to protect their privacy and ensure the safety of connected devices

in a low cost and open-source solution available for everyone. We hope that with our design project will inspire others

in pursuit of similar goals. It is crucial that these future pursuits also revolve around low cost designs to ensure that

wealth and class need not be a factor when securing user privacy.
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Chapter 8

Conclusion

In this chapter, we summarize our project design, acquired learning outcomes, and overview the advantages and

disadvantages of our proposed solution.

8.1 Summary

Our project proposes a security solution for smart home and industrial IoT networks that provides an easy graphical

user interface, quick installation, and a low cost design that monitors and protects both new and legacy devices. In

addition, we have evaluated the performance of this system in a smart home environment and found that it to be very

successful. We have concluded that this solution, while it still has a long ways to go in terms of greater development, is

a suitable candidate for a↵ordable smart home protection. In addition, the future work that can come from this design

will benefit the IoT industry in a variety of ways.

8.2 Learning Outcomes

Along the journey of this project, we deeply learned about wireless network functionality and the ins and outs of

the 802.11 protocol. In tandem, we honed our research skills, programming in Python, and network configuration

skills. From our work, we feel confident in our ability to configure and manage WiFi networks for smart home use.

In addition to our improved technical skills, we have attained a better understanding of project management, time

management, and public speaking on technical topics.

8.3 Advantages

As mentioned previously, our design proposal has several key advantages. Firstly, the system monitors network tra�c

for deauthentication attacks in real-time. The e�cient design of code and utilization of the BPF allow us to maximize

the network tra�c that we can analyze. Secondly, our evaluation of the system performance indicates that our solution
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is extremely viable for smart home environments. Lastly, the possibilities of future work mean that our work can

provide a solid basis for a better design that can account for more attack vectors.

8.4 Disadvantages

While we developed a solid solution for deauthentication attack detection, we have several disadvantages One, we

do not perform mitigation of a deauthentication attack. Because it is nearly impossible to detect an attack until it is

already happening, mitigation techniques are limited in terms of feasible implementation on a Raspberry Pi. Second,

our research into a workaround for recovery from a deauthentication attack did not lead us to a methodology to

implement. We found that the 802.11 protocol is based on states, and to recover a connection means to have the

attacked device attempt to connect back to the access point. Thus, our software would have to be running from the

victim rather than a sni↵er node. Lastly, Flask is not the best library for running a web server. We used it because it is

lightweight, but Flask could be exchanged for a more functional software in the future if the system is run on a device

with more processing capability.

28



Bibliography

[1] Ananay Arora. “Preventing wireless deauthentication attacks over 802.11 Networks.” In: (2018). url: https:
//login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=
true&db=edsarx&AN=edsarx.1901.07301&site=eds-live.

[2] Baber Aslam, M Hasan Islam, and Shoab A. Khan. “802.11 Disassociation DoS Attack and Its Solutions:
A Survey”. In: 2006 Proceedings of the First Mobile Computing and Wireless Communication International
Conference. 2006, pp. 221–226. doi: 10.1109/MCWC.2006.4375225.

[3] John Bellardo and Stefan Savage. “802.11 Denial-of-Service Attacks: Real Vulnerabilities and Practical Solu-
tions”. In: 12th USENIX Security Symposium (USENIX Security 03). Washington, D.C.: USENIX Association,
Aug. 2003. url: https://www.usenix.org/conference/12th-usenix-security-symposium/80211-
denial-service-attacks-real-vulnerabilities-and.

[4] Edgar D Cardenas. MAC Spoofing–An Introduction. Aug. 2003.

[5] D. Dasgupta et al. “MMDS: Multilevel Monitoring and Detection System”. In: In the proceedings of the 15 th
Annual Computer Security Incident Handling Conference, pp. 22–27.

[6] Fanglu Guo and Tzi-cker Chiueh. “Sequence Number-Based MAC Address Spoof Detection”. In: in Proceed-
ings of 8th International Symposium on Recent Advances in Intrusion Detection (RAID. Springer, 2005.

[7] IoT Has Quietly and Quickly Changed Our Lives. Feb. 2019.

[8] Knud L. Leuth. “State of the IoT 2020: 12 billion IoT connections, surpassing non-IoT for the first time”. In:
Mar. 2021.

[9] Aruba Networks. “Detecting deauthentication and disassociation attack in wireless local area networks.” In:
(2019). url: https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/
login.aspx?direct=true&db=edspgr&AN=edspgr.10243974&site=eds-live.

[10] T.D. Nguyen et al. “A Lightweight Solution for Defending Against Deauthentication/Disassociation Attacks
on 802.11 Networks.” In: 2008 Proceedings of 17th International Conference on Computer Communications
and Networks, Computer Communications and Networks, 2008. ICCCN ’08. Proceedings of 17th International
Conference on (2008), pp. 1–6. issn: 978-1-4244-2389-7.

[11] Haitham A Noman et al. A Lightweight Scheme to Mitigate Deauthentication and Disassociation DoS Attacks in
Wireless 802.11 Networks. Feb. 2016. url: https://ijens.org/Vol_16_I_01/161901-5858-IJVIPNS-
IJENS.pdf.

[12] Mathy Vanhoef and Eyal Ronen. “Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd”.
In: 2020 IEEE Symposium on Security and Privacy (SP). 2020, pp. 517–533. doi: 10.1109/SP40000.2020.
00031.

[13] Joshua Wright. “Detecting Wireless LAN MAC Address Spoofing”. In: IEEE, 2003.

29



Appendix A

Installation Guide

A.1 Required Libraries
We utilized several key libraries and operating systems for the design, testing, and analysis of our system. The main
operating system for our attacker, sni↵er, and victim nodes was the 2020.4 distribution of Kali Linux with the nexmon
patch. This operating system was chosen because it provided us with the ability to inject packets as well as sni↵
packets at the Layer 2 level for deep analysis of tra�c. The nexmon patch allows the operating system to access the
netlink module of the kernel and virtualizes the network interface functionality to bypass restrictions of the Raspberry
Pi hardware.

A.2 Sni↵er Setup
We mounted our SD card of the Raspberry Pi for with the 2020.4 Kali distribution, once again, with the nexmon patch.
To do this, the Raspberry Pi Imager software (distributed online with the board) was used to mount the operating
system image to the SD card.

Pre-installed on this operating system is Python 3.8, which is the version of Python in which we developed our sni↵er.
In addition to Python, pipwas used to install the pyshark library. Before running our sni↵er code (see section below),
we had to execute two key setup commands:

1. airmon-ng check kill
2. airmon-ng start wlan0

These two commands allow us to put the network interface card in Monitor mode to sni↵ the tra�c at the MAC
layer. To ensure that these commands work properly, verify that the distribution of Kali Linux has the nexmon patch
integrated.

A.3 Evaluation Recreation
A.3.1 Packet Reception Rate Measurements
To test the packet reception rate of the system, we installed iperf3 on the attacker node, and the victim node. Next, we
ran iperf3 on the victim as a server using:

iperf3 -s

Next, we ran iperf3 on the attacker node using a similar command:

iperf3 -c <host>:<port> -n 900 where the host and port are automatically assigned by the DHCP server on
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the router and the iperf3 software, respectively.

Using this command, we send 900 packets to the victim node, simulating the deauthentication frames sent. In tan-
dem with this command, we have the sni↵er running code to parse our the packets sent by the attacker that are not
retransmissions.

A.3.2 Attacker Setup
We again mounted our SD card of the Raspberry Pi for with the 2020.4 Kali distribution, once again, with the nexmon
patch. To do this, the Raspberry Pi Imager software (distributed online with the board) was used to mount the operating
system image to the SD card. This distribution is used primarily because it comes pre-installed with packet injection
tools. In particular, we made use of the aircrack-ng suite. Before executing an attack, the NIC must be placed in
Monitor mode using the following commands:

1. airmon-ng check kill
2. airmon-ng start wlan0

Following this, we can inject packets and perform a deauthentication attack using the command:

aireplay-ng --deauth 10 -c <victim MAC> -a <Access Point MAC> wlan0

We found that this attack could sometimes cause the virtual NIC provided by airmon-ng to fail and stop inject-
ing packets. The quickest solution to this problem is to reboot the device and execute the setup commands again. This
will allow for further attacks to be placed.

A.4 Code and Supplemental Resources
This is our code for our sni�ng system, and it can be found online on GitHub as well.

Sni↵er.py:

i m p o r t p y s h a r k
i m p o r t t h r e a d i n g
i m p o r t t ime
from f l a s k i m p o r t F lask , r e n d e r t e m p l a t e , r e q u e s t , r e d i r e c t , u r l f o r
i m p o r t s y s

g l o b a l s t a t u s , s t a t , a l e r t , s t a t A l e r t , c l r , l o g

h e a d i n g s = ( ’ ’ ’ ”Name” ’ ’ ’ ”MAC” , ” S t a t u s ” )
d a t a = [

’ ’ ’ T y p i c a l Format
( ” R a s p b e r r y P i ” , ”6F : F7 : 4 E : 9 3 : 6B : D8” , ” Connec ted ” ) ,
( ” C l i e n t ” , ”DC: 2 7 : 2D: 5B :BA: 2 8 ” , ” Under A t t a c k ” ) ,
( ” MacBook Pro ” , ” 1 4 : 4 6 : 0 1 : 0A: 0 9 : E0 ” , ” Connec ted ” ) ,
( ” IOT Device ” , ”AC: 8 7 : 3 F : 6 9 : 4 2 : 0 F ” , ” Connec ted ” ) , ’ ’ ’

]

b a d s t a t u s = [ ” Bad ” , ” A c t i v e a l e r t . System f a c i n g d e a u t h e n t i c a t i o n . ” , ” DarkOrange ” ]
g o o d s t a t u s = [ ” Good ” , ”No a l e r t s a c t i v e . System p r o t e c t e d . ” , ” g r e e n ” ]
s t a t u s = ” good ”

logHead = ( ” T a r g e t MAC” , ” S t a r t Time ” , ” D u r a t i o n ” , ” End Time ” )
l o g D a t a = [
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’ ’ ’ T y p i c a l Format
( ”DC: 2 7 : 2D: 5B :BA: 2 8 ” , ” 0 6 : 5 9 : 3 3 ” , ” In P r o g r e s s ” , ”==:==:==”) , # 0 0 : 3 1 : 2 7 0 7 : 3 1 : 0 0
( ” 3 F : 2 8 : 9 3 : 8 9 : 6 0 : 4 8 ” , ” 0 5 : 1 3 : 1 7 ” , ” 0 0 : 0 1 : 2 2 ” , ” 0 5 : 1 4 : 3 9 ” ) ,
( ” C2 : 4 8 : D2 : 7 2 : 3A:CD” , ” 0 3 : 2 2 : 1 6 ” , ” 0 0 : 1 2 : 2 4 ” , ” 0 3 : 3 4 : 4 0 ” ) ,
( ” 8 3 : 4 4 : 6 5 : B7 : 7 1 : 2 4 ” , ” 0 1 : 0 9 : 4 2 ” , ” 0 0 : 0 5 : 2 0 ” , ” 0 1 : 1 5 : 0 2 ” ) , ’ ’ ’

]

@app . r o u t e ( ” / ” , methods =[ ’GET’ , ’POST ’ ] )
d e f home ( ) :

g l o b a l s t a t u s , s t a t , a l e r t , s t a t A l e r t , c l r , l o g

i f s t a t u s i n ” good ” :
# s t a t A l e r t = ”< span s t y l e =\” c o l o r : g r e e n ;\” >Good< / span >”
us = ” g r e e n ;\” >Good”

e l i f s t a t u s i n ” bad ” :
# s t a t A l e r t = ”< span s t y l e =\” c o l o r : DarkOrange ;\” > A l e r t < / span >”
us = ” DarkOrange ;\” > A l e r t ”

e l i f s t a t u s i n ” ug ly ” :
us = ” r e d ;\” >Warning ”

s t a t = ”< d i v c l a s s =\” c o n t a i n e r \”><p>S t a t u s : <span s t y l e =\” c o l o r : ”
s t a t = s t a t + us + ”< / span ></p></ div >”
page = r e n d e r t e m p l a t e ( ” ind ex 1 . h tml ” , h e a d i n g s = head ings , d a t a = d a t a )
page = page + s t a t + r e n d e r t e m p l a t e ( ” ind ex 2 . h tml ” , h e a d i n g s = head ings , d a t a = da ta ,

s t a t u s= s t a t u s , a l e r t= a l e r t , s t a t A l e r t= s t a t A l e r t , c l r=c l r ,
logHead=logHead , l o g D a t a= l o g D a t a )

r e t u r n page

@app . r o u t e ( ” / c y c l e / ” , methods =[ ’POST ’ ] )
d e f c y c l e ( ) :

g l o b a l s t a t u s , s t a t , a l e r t , s t a t A l e r t , c l r , l o g
i f s t a t u s i n ” good ” :

c l r = ” g r e e n ”
# s t a t A l e r t = ”< span s t y l e = ’ c o l o r : g r e e n ; ’>Good< / span >”
s t a t A l e r t = ”Good”
s t a t u s = ” bad ”
a l e r t = ” A c t i v e a l e r t . System f a c i n g d e a u t h e n t i c a t i o n . ”

e l s e :
c l r = ” DarkOrange ”
# s t a t A l e r t = ”< span s t y l e = ’ c o l o r : DarkOrange ; ’> A l e r t < / span >”
s t a t A l e r t = ” A l e r t ”
s t a t u s = ” good ”
a l e r t = ”No a l e r t s a c t i v e . System p r o t e c t e d . ”

r e t u r n r e d i r e c t ( u r l f o r ( ” home ” ) )

@app . r o u t e ( ” / s t a t u s /< s t a t u s >”)
d e f u s e r ( f l o o p ) :

r e t u r n ” S t a t u s i s { f l o o p } ”

# Hard coded f o r our sys tem
ap = ”0 a : 1 1 : 9 6 : 8 c : 1 1 : 2 9 ”
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d e a u t h t a b l e = { ” ” : ” ” }
# a d d r e s s : adddr
# p k t q u e u e : p a c k e t s
# warn ing : t r u e / f a l s e

c o n n e c t i o n s = [ ]

d e f parseMACaddrs ( p k t ) :
# Adds t r a n s m i t t i n g / r e c e i v i n g d e v i c e t o l i s t o f c o n n e c t i o n s i f n o t p r e s e n t
add r = ””
i f p k t . wlan . sa != ap :

add r = p k t . wlan . sa
e l s e :

add r = p k t . wlan . da

i f add r n o t i n c o n n e c t i o n s :
c o n n e c t i o n s . append ( add r )
d a t a . append ( ( addr , ” Connec ted ” ) )
p r i n t ( ”New c o n n e c t i o n d i s c o v e r e d : ” , add r )
c y c l e ( )

r e t u r n add r

d e f removeConnec t ion ( dev ) :
p r i n t ( ” Removing c o n n e c t i o n : ” , dev )
c o n n e c t i o n s . remove ( dev )
d a t a . remove ( ( dev , ” Connec ted ” ) )
d a t a . append ( dev , ” D i s c o n n e c t e d ” )

d e f m o n i t o r A t t a c k P r o g r e s s ( dev ) :
a t t a c k = True
t s = d e a u t h t a b l e [ dev ] [ ” f i r s t t i m e s t a m p ” ]
w h i l e a t t a c k :

l a s t t s = f l o a t ( d e a u t h t a b l e [ dev ] [ ” p a c k e t q u e u e ” ] [ = 1 ] . s n i f f t i m e s t a m p )
i f l a s t t s = t s < 3 and l a s t t s = t s > 0 :

p r i n t ( ” A t t a c k i n p r o g r e s s on ” , dev )
e l s e :

p r i n t ( ” A t t a c k ended on ” , dev )
s t a r t = d e a u t h t a b l e [ dev ] [ ” f i r s t t i m e s t a m p ” ]
end = l a s t t s
l o g D a t a . append ( ( dev , s t a r t , end , end= s t a r t ) )
a t t a c k = F a l s e
b r e a k

t ime . s l e e p ( 2 )
t s = l a s t t s

d e a u t h t a b l e . pop ( dev )

d e f checkDeAuth ( dev , p k t ) :
# p r i n t ( ” T e s t i n g d e a u t h ” )
i f dev n o t i n d e a u t h t a b l e . keys ( ) :

d e a u t h t a b l e [ dev ] = { ” f i r s t t i m e s t a m p ” : f l o a t ( p k t . s n i f f t i m e s t a m p ) , ” p a c k e t q u e u e ” : [ p k t ] , ” warn ing ” : F a l s e }
e l s e :

# Add t o t a b l e
d e a u t h t a b l e [ dev ] [ ” p a c k e t q u e u e ” ] . append ( p k t )
i f ( f l o a t ( p k t . s n i f f t i m e s t a m p ) = f l o a t ( d e a u t h t a b l e [ dev ] [ ” f i r s t t i m e s t a m p ” ] ) > 5) and ( d e a u t h t a b l e [ dev ] [ ” warn ing ” ] != True ) :
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# Timeout i f t h e n e x t
d e a u t h t a b l e . pop ( dev , None )

i f l e n ( d e a u t h t a b l e [ dev ] [ ” p a c k e t q u e u e ” ] ) > 4 and d e a u t h t a b l e [ dev ] [ ” warn ing ” ] == F a l s e :
d e a u t h t a b l e [ dev ] [ ” warn ing ” ] = True
p r i n t ( ” D e a u t h e n t i c a t i o n a t t a c k d e t e c t e d on : ” , dev )
mon = t h r e a d i n g . Thread ( t a r g e t=m o n i t o r A t t a c k P r o g r e s s , a r g s =( dev , ) )
mon . s t a r t ( )

d e f s t a r t I D S ( ) :
f i l t e r = ” e t h e r h o s t 0 a : 1 1 : 9 6 : 8 c : 1 1 : 2 9 ”
cap = p y s h a r k . L i v e C a p t u r e ( i n t e r f a c e =”wlan0mon ” , b p f f i l t e r = f i l t e r )
dev = ””
f o r p k t i n cap . s n i f f c o n t i n u o u s l y ( ) :

# p r i n t ( p k t . wlan . f c [ 3 : 7 ] )
dev = parseMACaddrs ( p k t )
i f p k t . wlan . f c [ 3 : 5 ] == ’ 0 0 ’ :

i f p k t . wlan . f c [ 5 : 7 ] == ’0 a ’ :
# D i s a s s o c i a t i o n i s OK f o r now
removeConnec t ion ( dev )

i f p k t . wlan . f c [ 5 : 7 ] == ’0 c ’ :
checkDeAuth ( dev , p k t )

i f n a m e == ’ m a i n ’ :
i f ”==no= f l a s k ” i n s y s . a rgv :

n o F l a s k = True
e l s e :

n o F l a s k = F a l s e

i d s t h r e a d = t h r e a d i n g . Thread ( t a r g e t= s t a r t I D S )
i d s t h r e a d . s t a r t ( )
i f n o t n o F l a s k :

app . run ( h o s t = ’ 1 2 7 . 0 . 0 . 1 ’ , p o r t =5000 , debug=True )
i d s t h r e a d . j o i n ( )
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This code is used to evaluate the packet reception rate of the sni↵er at various locations.

Capture.py:

i m p o r t p y s h a r k
f i l t e r = ” e t h e r h o s t dc : a6 : 3 2 : c9 : e5 : b9 ” # a t t a c k e r MAC a d d r e s s
c a p t u r e = p y s h a r k . L i v e C a p t u r e ( i n t e r f a c e =”wlan0mon ” , b p f f i l t e r = f i l t e r )
c o u n t = 0
f o r p k t i n c a p t u r e . s n i f f c o n t i n u o u s l y ( ) :

i f p k t . wlan . f c r e t r y != ’1 ’ and p k t . wlan . f c t y p e s u b t y p e == ’ 4 0 ’ :
c o u n t += 1
p r i n t ( c o u n t )
p r i n t ( ” R e t r y : ” , p k t . wlan . f c r e t r y )
p r i n t ( ” Type Subtype : ” , p k t . wlan . f c t y p e s u b t y p e )

Additional resources can be found on GitHub at the following link: https://github.com/sorenjmadsen/JAWS
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