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ABSTRACT 

Agriculture is such a vital part of our society, and according to the United Nations’ Food and 

Agricultural Organization (FAO), plant diseases are considered one of the two main causes of 

decreasing food availability. This paper explores not only the methods and findings of building a 

CNN-based disease detection model, but that of building a deployable remote crop disease 

detection system incorporating IoT technology. By using transfer learning with AlexNet, we 

were able to predict with 89.8% accuracy tomato plant images into one of the ten pre-defined 

disease classes. Our proposed system tracks plant health throughout the day by using a 

microprocessor and a camera to automatically capture images, diagnose the plant, and report 

results. The system is a proof of concept of a technology that can significantly help increase crop 

yield, reduce food waste, and automate the tasks of detecting and caring for diseased crops. 

Keywords: Deep Learning, Agriculture, Plant Disease, CNN, IoT, Disease Identification, 

Machine Learning 
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Chapter 1 – Introduction 

1.1  Technology and Agriculture 

Smart Farming is a fast-growing and evolving concept that involves the creation and 

development of novel methods to meet the challenges of the modern agricultural sector. We must 

preface by defining what exactly constitutes Smart Farming or Farming Automation in 

agriculture- it is the process by which various technological innovations are utilized to upgrade 

and automate the many processes in agriculture that pose challenges to farmers around the world. 

Using Smart Farming methodologies, farmers can acquire more time and resources to manage 

and redirect into their farms for better overall growth that would greatly benefit food production. 

With how our society is dependent upon agriculture today, protecting and improving the 

practices of agriculture would produce significant effects globally. This is the reason why smart 

farming is taking a leap in America and why it is the solution our society is moving towards (see 

Figure 2). By integrating deep learning into agricultural practices, our society can benefit greatly 

from farms that have more food security and climate sustainability [1]. 

 

Figure 1. Usage of digital technology in agriculture in the United States of America over time [2]  



 

One such instance in which farmers have found themselves devoting several hours of hard labor 

into is the planting of crops on large plots of land. This process has been made easier by applying 

robotics and drone technology to plant and water seeds from both the ground and the air. An 

example for such an innovation is DroneSeed [3], which is a planting drone that is used to help 

reforest large spaces that have been affected by forest fires. This drone is capable of locating and 

targeting the precise areas on the ground that are ideal for seeding. Then, they use compressed air 

to shoot the seeds onto the ground without allowing them to scatter because of the wind. 

One such challenge faced by farmers that requires them to spend enormous amounts of time is 

the monitoring and analyzing the conditions for their crop manually. A proposed solution to such 

an issue is seen in the application of machine learning, more specifically, deep learning-based 

diagnosis that has the potential to help farmers monitor their crops after the planting and growing 

phase has been completed. Deep Learning is a subset of Machine Learning that is a rapidly 

growing field, forming itself to be an integral tool to aid image-based classifications of various 

input objects. Our goal with our project endeavor is to adapt a Deep Learning model with our 

custom image database to classify input leaf photographs taken by our camera integrated IoT 

system, resulting in plant health diagnosis and thereby, automating the crop monitoring process 

through this integration of software and hardware processes. 

1.2  Motivation 

Agriculture is one of the most important segments of our society, providing us with food, 

clothing, shelter, and is “identified as one of the pathways to achieve the Zero hunger goal of the 

United Nations Sustainable Development Goals'' [4]. According to the UN, the current world 

population of 7.6 billion is expected to reach 8.6 billion in 2030, 9.8 billion in 2050 and 11.2 

billion in 2100. Therefore, it is extremely necessary to find ways to reduce costs and increase 

production and product quality. To gain a better, more comprehensive understanding of the 

current challenges faced in agriculture, let us examine the existing agricultural environment in 

both developed and developing nations. 

The biggest trials faced by the current global agricultural sector is food insecurity. An interesting 

fact as brought up by the World Bank [5] is that the impact of rising food prices is greater on 



 

people in low- and middle-income countries than on people in high-income countries since the 

former groups spend a larger share of their income on food compared to the latter. 

A specific and significant issue stemming is acute food insecurity, which is defined as a person’s 

life or livelihood being in immediate danger because of the lack of food. Recent data from the 

Global Network Against Food Crises [6] estimates that a whopping 161 million people 

experienced “crisis” levels of acute food insecurity in 2021, which is an approximate increase of 

4% over the previous year. Furthermore, 227 million people were estimated to be experiencing 

“stressed” acute food insecurity in 2021, which is a 7% increase from the prior year. 

Numerous nations are undergoing high food price inflation on a retail level, which reflects labor 

shortages, currency devaluations, a steep spike in fertilizer costs and other such factors. Focusing 

specifically on fertilizer prices, these surged in March of this year, up nearly 20% since January 

2022 and almost three times higher than in 2021 [5]. High fertilizer costs pose a serious problem, 

adversely affecting the next food production cycle. A potential solution seen to this issue would 

involve periodic, early-stage diagnosis of the plant that would allow farmers to plan ahead in 

terms of fertilizer purchasing and crop maintenance to maximize their resource usage by 

minimizing how much they would spend on fertilizers, water, and other irrigation aids. Our 

project tackles this application of predictive health diagnosis, with our deep learning model 

focusing specifically on tomato plants. However, the training database can be adapted to work 

with leaf images of other kinds of food crops. 

1.3  Tomato Crop Statistics 

Tomatoes are one of the world’s most cultivated and consumed crops and the most popular 

vegetable in the world. The annual global production of tomatoes is 177.04 million metric tons 

and the largest producers are China, India, and the United States [7]. Today, over 200 pests and 

diseases have been identified in tomato plants, which lead to significant production losses both 

directly and indirectly. Illnesses caused by fungi, viruses, bacteria, and nematodes have severe 

implications on the crop’s nutritional value, as well as the overall health of consumers and the 

economy. Some examples of such diseases seen in tomato plants are Late Blight, Bacterial Leaf 

Spot, Yellow Leaf Curl Virus, and Pepino Mosaic Virus. 



 

 

Figure 2. Four examples of disease classes from training dataset 

Late Blight is caused by the Phytophthora infectants and is one of the most destructive diseases 

in tomatoes, resulting in major economic loss from 20% to 70% [8]. Bacterial Leaf Spot is a 

common bacterial disease caused by Xanthomonas campestris. It is highly damaging in both 

greenhouse and field environments, resulting in a 10-15% loss [9]. In India, tomato production 

loss has an estimated range of 10-80% whereas annual production loss due to Bacterial Leaf Spot 

is 10-20% which might rise to 80% in some drastic cases [10]. Two major viral diseases are the 

Yellow Leaf Curl Virus and the Pepino Mosaic Virus. The former disease is seen in tropical and 

subtropical regions worldwide and losses up to a full 100% are most frequent, making the 

Yellow Leaf Curl one of the most dangerous illnesses that hinders and limits tomato production. 

The Mosaic Virus is a rapidly emerging viral illness that has now been establishing itself as a 

significant disease towards tomato crops [11]. 

Our tomato image database comprises 10 classes, with one class being the “Healthy” class and 

the rest of the 9 classes being a type of tomato crop illness, 4 of which are the Tomato Late 

Blight, Bacterial Leaf Spot, Yellow Leaf Curl Virus and Mosaic Virus. Our disease detection 

model can distinguish between the various diseases since it has been trained using leaf images 

being fed into our custom image classifying AlexNet implementation. This enables the user to 

load an image of a leaf on their tomato crop into the system, which would output the disease 

classification result, thereby informing the user of the illness their plant likely has.



 

Chapter 2 – Background 

2.1  Deep Learning and CNN 

First, what exactly is machine learning? Simply put, machine learning is a subset of Artificial 

intelligence that is “based on the idea that systems can learn from data, identify patterns and 

make decisions with minimal human intervention” [12].  This is extremely helpful in situations 

that allow you to use historic data to improve prediction and assessments, scenarios that we can’t 

program by hand such as autonomous driving, and times when we want customizations that are 

tailored to each user [13]. 

Deep learning builds on top of this technology. It is not as widely known but is the technology 

behind many inventions that people credit as the work of machine learning. The difference 

between deep learning and machine learning is that with deep learning, the learning algorithm is 

made up of “a hierarchy of concepts. Each concept is defined in terms of its relation to simpler 

concepts” [14]. Deep learning utilizes machine learning algorithms to solve simple problems so 

that the computer can learn complex concepts. 

Dechter introduced the concept of using deep learning in machine learning in 1986, and 

Aizenberg et al. introduced deep learning to artificial neural networks later in 2000 [15]. This 

introduction of neural networks into the architecture of machine learning algorithms has been 

proven to be impactful as currently, “convolutional Neural Networks (CNNs) are the most 

widely used architectures to classify images” [4]. A simple CNN is a sequence of layers 

(convolutional, pooling and fully connected layers) stacked to form a full CNN.  

To allow for effective classification by our Deep Learning model that uses CNN’s, we decided to 

populate our image database with photographs of tomato leaves. This can also be expanded to 

using images of fruits and the whole plant itself, as shown in the image indicator figure below, 

which displays the various metrics and parameters we are looking at for each component of the 

tomato plant. 



 

 

Figure 3. Image indicators to identify the state of the plant 

2.2  Supervised and Transfer Learning 

Supervised learning is done by making predictions based on previous evidence from 

experimental procedures outside of the machine itself. It involves training with labeled data and 

making predictions on unlabeled data and consists of classification and regression. Classification 

is done when there exists discrete output classes and regression is done when the output classes 

are continuous. Our project uses supervised learning as it relies on giving a network labeled data 

and characteristics to classify unlabeled data. 

Transfer learning is a process by which knowledge is transferred from one supervised learning 

task to another and this process is commonly used in deep learning applications. Transfer 

learning enables us to take a pretrained network and using that as a starting point, allows the 

machine to learn a new task. Fine tuning such a network with transfer learning is much faster and 

easier to do than training a network with weights that are randomly initialized from scratch. 

The pretrained network we would be utilizing and repurposing for our project is the AlexNet 

CNN, which can perform classification on new collections of images, or in our case, a custom 

dataset of images. AlexNet has been trained over a million of images, thus allowing it to learn 



 

rich representations of a wide range of images. The AlexNet network takes an image as an input 

and obtains an output as a label for the object in the image together with probabilities for each 

object class category [16]. 

2.3  Literature Review 

Identifying crop diseases using CNN image classification models is an emerging research area. 

This paper [17] reviews more than 200 literature published on deep learning in agriculture, and 

found most of the research successful, with the livestock branch showing “most of the works 

achieved an accuracy above 95%” [17].   

Building on the success of these work, our proposed project incorporates hardware to a deep 

learning model to further the research on deployable systems. This paper [14] explores state-of-

the-art machine learning methods that are used for plant disease detection. It finds the main 

formats of data acquisition to be IoT ground imaging, unmanned aerial vehicle imaging, and 

satellite imaging, with IoT ground imaging to have “guarantee high detection accuracy thanks to 

the close level leaf imaging” [14]. Given IoT ground devices’ ability to add other sensors such as 

humidity and pH sensor, we decided to pursue our research on an IoT ground system to collect 

image data.  



 

Chapter 3 – Design and Methodology 

3.1  General Overview 

With the goal to create an effective, affordable, and easily deployable solution, we designed an 

automated system which includes taking images of the crop with a Raspberry Pi HQ camera 

attached to a NVIDIA Jetson Nano GPU processor, processing the images through a trained 

AlexNet model, and recording the results on Cloud.   

 

Figure 4. System design block diagram 

3.2  Dataset Collection 

One of the most crucial steps in training an effective deep learning model is to acquire a quality 

dataset. The proposed research work uses a dataset from PlantVillage, which contains leaf 

images of 4 different Tomato plant species. These images are divided into 10 subcategories: 

healthy, spider mites, Septoria leaf spot, leaf mold, late blight, bacterial spot, mosaic virus, 

yellow leaf curl virus, early blight, and target spot. The diseases present in the dataset are some 

of the most common Tomato plant diseases.  



 

 

Figure 5. Different tomato disease classes in our dataset 

3.3  Data Pre-Processing 

Before the images are fed into the AlexNet model to train, they are pre-processed by color 

standardization and resizing. The images are first resized to 64 x 64 pixels to fit the transfer 

learning model. They are then pixel-wise standardized using Tensorflow’s 

per_image_standardization function, which linearly scales the pixels in each image to have mean 

0 and standard deviation 1, and drastically reduces training time.  

  (eq. 1) 



 

 

Figure 6. Image before and after standardization 

After resizing and standardization, the images are split so that 75% becomes the training set and 

25% becomes the testing set. For each class we have between 1702 to 1961 images to train, and 

between 425 to 490 images to test.  

 

Table 1. Number of Images Used to Train and Test each Disease Class 

3.4  Training the AlexNet 

To create the system, we performed transfer learning on a trained AlexNet model, which has 5 

Convolutional Neural Networks, 3 Fully Connected Layers, and a Softmax Layer. This AlexNet 

model is trained on Google Colab and serves as our supervised classification model. We 

compiled the AlexNet model with an optimizer set to a learning rate of 0.001. To fit the model 

with the optimal epoch count, we used Tensorflow Keras’ callback EarlyStopping function, 



 

which tracks the validation accuracy until it reaches the maximum value, then restores the model 

to the best weights. Using this method, we have found that the most optimal epoch count is 

around 30. By testing out different batch sizes, we have settled on using the batch size of 32 to 

train our implementation of AlexNet. 

 

Figure 7. AlexNet Model [18] 

3.5  IoT System 

All of the hardware in our IoT system are off-the-shelf and easily accessible products. We used 

NVIDIA Jetson Nano 4GB as our processor and the center of the proposed IoT system. The 

small computer has a 128-core NVIDIA Maxwell™ architecture-based GPU, a Quad-core 

ARM® A57, and a 4 GB 64-bit LPDDR4 RAM [19]. We added connectivity to the 

microprocessor by installing an Intel Dual Band Wireless-Ac 8265 card, which allows the system 

to communicate through Wifi and Bluetooth. We have also added 2 RP style antennas to provide 

a 6dbi of signal gain. On the software side, we installed various drivers and changed 

configurations on the Jetson Nano in order to allow for Wifi connectivity and communication 

through the secure shell protocol. These changes make the IoT system fully configurable and 

controllable remotely. To back up data and improve usability, we connected certain Google 

Drive folders to the system for images and classification results to be automatically transferred to 

Cloud.  



 

Another critical component in our IoT system is a Raspberry Pi HQ camera, which takes high 

quality images even with lower ambient lighting. With one resistor removed, the camera is fully 

compatible with the Jetson Nano. In our testing, we used JOBY GorillaPod as a flexible camera 

tripod.   

 

Figure 8. IoT system setup 



 

Chapter 4 – Results 

4.1  Our First CNN Model 

The first implementation of CNN in our proposed system was one that we implemented from 

scratch using Tensorflow and Keras. It has 3 total layers: 2 convolution and max pooling layers 

and one fully connected and dropout layer as shown in the figure below. For this model, we used 

Adam optimizer, and achieved a validation accuracy of 98.5% in classifying whether the leaf 

shows signs of a disease. Using Tensorflow Keras’ callback EarlyStopping function, we have 

found the optimal amount of epoch to be around 12. The figure below shows the performance of 

this model through different epochs.  

We have ultimately found this CNN model to be insufficient when we expanded the 

classification to more than the 2 classes of classifying an image to either healthy or unhealthy. 

Using this model to classify tomato leaves into one of the ten classes we have set up, we only 

achieved a validation accuracy of 53.6%. We then implemented K-fold cross validation with 10 

folds in hopes to improve the result. With the K-fold cross validation implemented, we improved 

the validation accuracy to 74.4% with the cost of a significantly increased training time.   

 

Figure 9. Two-class classification performance with our first CNN model 



 

 

Figure 10. Our own CNN implementation 



 

4.2  AlexNet Implementation 

Our final CNN implementation uses transfer learning with a trained AlexNet model. This 

implementation was able to achieve a training accuracy of 98.1% and a validation accuracy of 

89.8%.  We experimented our model with batch sizes of 4, 8, 16, 32, 64, 128, and 256. We have 

found the most optimal batch size to be 8. Testing our system with unseen images from our 

dataset, we were able to consistently get high accuracy predictions.  

 

 

Figure 11. Experimenting with various batch sizes (each graph stopping at the optimal epoch 

count) 



 

 

Figure 12. Final model performance in specifying disease 

 

Figure 13. Sample image prediction 



 

4.3  Testing with Real Images 

To test the validity of our system, we re-trained and tested our AlexNet model with images 

captured through our embedded system. We performed image data augmentation by randomly 

flipping and rotating the images to populate our dataset with more images than we were able to 

collect. For each original image we captured, we resulted in 9 augmented images.  

 

Figure 14. Nine images are produced from each original image 



 

We found that our model was able to correctly classify the leaves as healthy or unhealthy with a 

76.2% test accuracy and a 68.2% test loss. The higher-than-expected test loss and the lower-

than-expected test accuracy is to do with the images in our training dataset not being diverse 

enough with lightings, leaf positions, and background. We are building a larger dataset to 

improve real-life system implementation results.   

 

Figure 15. Test accuracy and loss of our AlexNet model trained with images captured through 

our IoT system 



 

  

 

Figure 16. Health predictions using an image captured with our IoT system



 

Chapter 5 – Professional Issues and Constraints 

5.1  Ethics - Science, Technology, and Society 

As much as we would like to mitigate ethical risks to do with our project, there are still a couple 

of ethical concerns that we cannot eliminate. Just like any platform or product to do with 

collecting data, our project has a component of data ownership and privacy concerns. Under 

external threats, our product could leak plant and farm information a farmer may not want to 

disclose. There is also a concern of who owns the intellectual property to the data collected from 

a farm. The potential ethical problems to do with data ownership and privacy must be addressed, 

understood, and taken precautions before a project such as ours enters the market. 

In addition, inaccurate recommendations provided by our deep learning model may lead to loss 

harvest or earnings for a farm. The likelihood of the risk of misidentification and system damage 

is low and our mitigation strategy for the former is to conduct frequent testing of the ML 

algorithms, and regularly update databases with a new disease, if detected. To make 

changes/updates to the model easier, without being physically near the set-up, we would be 

creating an independent environment on our microprocessor board which we can control 

remotely. A general mechanism we would like to incorporate into our model is a double-

checking feature that would involve re-running the algorithm, that is, the checking is done twice 

totally, and results are compared to detect discrepancies. 

Our research’s goal is to gain knowledge that could help with reducing food waste, protecting 

our agriculture industry, and relieving farmers’ stress. It is our hope that our project only be used 

in tools that supplement and better the lives of farm workers, instead of tools that overtake 

human jobs.  

5.2  Civic Engagement 

There are many ways in which our product may be implemented in our community. Our system 

is meant to be adaptable to settings ranging from large mono-crop farms to indoor vertical farms 



 

to home gardens. The hardware and software setup in each situation would need minimal change. 

So long as we can acquire a quality dataset from the intended setting, we can deploy our project.  

5.3  Economic 

The cost of carrying out our research was relatively low, at under $400. The hardware equipment 

we had to purchase are listed below in Appendix B. We also purchased a 3-months subscription 

of Google Colab to train and develop our deep learning mode.  

5.4  Health and Safety 

Our project has no serious health and safety concerns since most of the research was done in 

software on our laptops. The hardware components of our project run on low current and voltage 

levels.   

5.5  Manufacturability 

We wanted to focus on the feasibility of our ideas instead of designing our own hardware so 

everything we have used in our project can be bought off the shelf.  

5.6  Usability 

Since the setup of our project is very simple, and we are keeping the software portion of our 

research on our GitHub, we expect our project to be easily accessible to anyone who wishes to 

further the research.  

5.7  Sustainability 

Deep learning is finding its way into more and more applications, and agriculture is one of the 

ways in which it can make the greatest humanitarian impact. IoT technology is also becoming 

more mature with lower power consumption, more powerful processors, and more robust 

networking capabilities. We are sure that there will be further research and development in deep 

learning IoT agricultural technologies, and we hope that our research’s novel findings will help 

guide future work in this area.  



 

 

5.8  Environmental Impact 

The environmental impact of our research was minimal as we did not consume much electricity 

and we did not waste any material. However, if our product was to be deployed in a real-world 

farm, we would see a huge potential for a positive environmental impact in that our system 

would detect problems caused by over/under watering, improper sun exposure, and imbalances 

in the pH level of the soil. By detecting and solving these issues early on, our product would help 

to create a more effective and environmentally friendly system to care for crops.  



 

Chapter 6 – Conclusion and Future Work 

6.1   Conclusion 
 

In furthering the research on deployable systems using deep learning and IoT technology, we 

have implemented a NVIDIA Jetson Nano based system that can remotely monitor the health of 

agricultural crops. We have conducted our research using tomato plants as proof of concept of a 

technology that can be deployed in any agricultural farm to help with the humanitarian cause of 

securing food production and reducing global hunger. 

6.2  Further Improvements to Our Existing Model 

One way we are aiming to improve our Deep Learning model is by training it with a more 

diverse dataset, that is, including images taken directly from the plant. Our current dataset is 

populated mostly with images of singular leaves on a plain background. To acquire a more 

realistic use case environment, populating our images with leaves on the plant itself without 

removing the leaf would be ideal, since this would allow us to fully automate the process of 

periodically checking the plant for diseases. Through our research into other existing work in this 

project field, we have found that the ResNet34 model displays the highest accuracy rates of 

about 99.67% [14], so we would aim to implement this network in the same way we did for 

AlexNet and compare our results. We can also have another camera and model running that 

would calculate, measure, and compare the overall growth rate of the tomato plant to display 

overarching trends that would aid the farmer in making productive conclusions and decisions of 

the impact certain weather conditions and trends have on their crops. 

6.3  Addition of Motion Sensor to System 

Adding a model working with moisture sensing data would also be an intuitive additional 

indicator for the farmer. By collaborating with a system that delivers equal amounts of water to 

all crops in a plot of farmland, helps further automate the process of crop maintenance and 

monitoring. A company that is working on this endeavor of harnessing moisture sensor data and 

technology is Verdi [20], which is based out of Vancouver, Canada. Their innovation consists of 



 

swarms of tiny smart valves that deliver water to crops that display low moisture statistics and 

reduce water delivery to those crops that exhibit high moisture levels. This system is currently 

being tested on grape plants, but a prospective application for it could be working in conjunction 

with our disease detected system, furthering the ability of farmers to regain control over their 

crop growth, in the face of a diverse type of soil, climatic/weather conditions and terrain. 
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Appendix B: Hardware and Software 
 

• NVIDIA Jetson Nano 4GB  

• Intel Dual Band Wireless-Ac 8265 card 

• 2 RP style 6dbi gain antennas 

• Raspberry Pi HQ camera 

• JOBY GorillaPod 

• Tomato Houseplant 

• Macbook Pro 

• Google Colab 

• Google-drive-ocamlfuse 

• Nvgstcapture library 

• Python with relevant libraries 



 

Appendix C: GitHub 

Our GitHub repository with all our final models and a Wiki outlining some of our work can be 

found here: https://github.com/ivychung/plant-ML  

https://github.com/ivychung/plant-ML
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